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Abstract—Due to the imbalanced nature of networked obser-
vational data, the causal effect predictions for some individuals
can severely violate the positivity/overlap assumption, render-
ing unreliable estimations. Nevertheless, this potential risk of
individual-level treatment effect estimation on networked data
has been largely under-explored. To create a more trustworthy
causal effect estimator, we propose the uncertainty-aware graph
deep kernel learning (GraphDKL) framework with Lipschitz con-
straint to model the prediction uncertainty with Gaussian process
and identify unreliable estimations. To the best of our knowledge,
GraphDKL is the first framework to tackle the violation of
positivity assumption when performing causal effect estimation
with graphs. With extensive experiments, we demonstrate the
superiority of our proposed method in uncertainty-aware causal
effect estimation on networked data. The code of GraphDKL is
available at https://github.com/uqhwen2/GraphDKL.

Index Terms—causal effect estimation, networked data, uncer-
tainty quantification, feature collapse

I. INTRODUCTION

Estimating causal effect to support decision-making in high-
stake domains such as healthcare, education, and e-commerce
is crucial. With the prevalence of networked data, [1] has
recently started exploring both the features of individuals (i.e.,
nodes) and their structural connectivity (i.e., edges) with graph
neural networks (GNNs) for causal effect estimation.

Owing to the inherent nature of observational data, violation
of positivity is inevitable yet potentially devastating for causal
effect estimation at the individual level, as the low-confidence
predictions on non-overlapping samples may suggest a wrong
treatment or introduce false hope [2]. For networked data
where individuals are mutually connected, the violation of
positivity is further amplified because of the presence of
additional structural information. As shown in Figure 1 (a), to
predict the health status of older users (i.e., control group) after
using dietary supplements, one may train a causal estimator
based on observational data from younger users (i.e., treated
groups). However, as Figure 1 (b) depicts, although decent
counterfactual estimations can be made within the overlap-
ping area, a higher risk exists when estimating in the non-
overlapping area of a different group. In worse scenarios,
the predicted treatment outcomes contradict the ground truth,
leading to a false recommendation with adverse effect.

∗Tong Chen is the corresponding author.
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Fig. 1: (a) Histogram of two treatment groups on a one-
dimensional toy dataset w.r.t. age. (b) The high risk of causal
effect estimation in the non-overlapping area due to violation
of positivity.

Thus, instead of blindly making recommendations based on
low-confidence predictions on individual treatment effect, a
more desirable capability of a causal estimator is to flag every
highly uncertain estimation resulted from violation of posi-
tivity, which can be deferred for human inspections and used
to guide improvements on the observational data collection
process. However, existing solutions for measuring the uncer-
tainty of each counterfactual prediction [3] are predominantly
centered around tabular data without any inter-dependencies
among samples. This renders existing uncertainty-aware meth-
ods unable to capture the nuanced divergence between samples
in graph-structured data, given the combinatorial impact from
not only individuals’ own variables but also their connections
with others in the network.

To fill the gap in uncertainty-aware causal estimation with
networked data in the presence of positivity violation, we
propose our Graph Deep Kernel Learning (GraphDKL) frame-
work which offers uncertainty estimation to identify the likely
unreliable counterfactual predictions. We introduce Gaussian
process (GP) to the GNN architecture, so as to let the causal
effect estimator benefit from the probabilistic nature of GP
by referring to the derived prediction variance as a precise
indicator of the estimator’s confidence in each prediction it
makes. To increase the scalability of GraphDKL on large
graphs, we further design a sparse variational optimization
process to replace the time-consuming covariate matrix in-
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version in GP with a more computationally tractable learning
objective, which significantly reduces the complexity from
O(N3) to O(M2N) with N being the number of training
samples (M ≪ N ). Meanwhile, another notable obstacle with
deep architectures used for causal effect estimation is the
feature collapse issue [4], i.e., two distinct raw data points can
share nearly identical representations after being mapped to
the latent space via deep layers. Despite the richer information
embedded after the graph convolution, the collapse of different
individuals’ latent representations can seriously hinder the
uncertainty quantification. For instance, a sample from the
non-overlapping area is intuitively associated with a stronger
uncertainty in its counterfactual prediction. However, in the
networked data, if it is connected to one or more samples
from the overlapping area, then its representation learned via
GNN’s message passing is likely to possess high similarity
with its neighbors’ representations. Consequently, uncertainty
quantification based on the learned representations will assign
the same individual from the non-overlapping area with a low
uncertainty (i.e., high prediction confidence), which is mis-
leading and thus undesirable. To mitigate the feature collapse,
we constrain our GraphDKL model with Lipschitzness [5] to
preserve the local distances in the latent space, such that the
semantic manifold of the original variables is preserved in
every intermediate latent space during the sequential, layer-by-
layer neural mapping. Hence, predictions on high- and low-
confidence samples can be effectively distinguished, making
it possible for uncertainty-aware causal effect estimation on
networked observational data.

II. RELATED WORK

Deterministic Model For Causal Effect Estimation. So
far, various neural methods [6]–[8] have been proposed due
to the proliferation of deep learning (DL). These parametric
models are good at modelling the individual-level causal effect
and are applicable to unseen instances. Up to date, causal
effect estimation has been extended to the graph domain [1],
where the rich relational information is utilized to learn more
robust deconfounded latent representations. However, all the
above-mentioned models are deterministic, which can result in
over-confident estimations [9] and is incapable of quantifying
the prediction uncertainty to inform the causal estimation
failure when the positivity assumption is violated.

Probabilistic Model For Causal Effect Estimation. It is
noted that some attention has been paid to quantifying the
predictive uncertainty in causal effect estimation with non-
graph data. For example, the light-weight models BART [10]
and CMGP [11] can offer predictive uncertainty for causal
effect estimation, but they lack strong expressive power and
fail to capture the complex relationship when modelling the
high-dimensional data. To fix this issue, [3] and [12] leverage
deep Bayesian methods to enhance the expressive power and
become more capable than BART and CMGP. However, little
attention has been paid to estimating the causal effect on
network data with uncertainty.

III. PRELIMINARIES

We aim to estimate individual treatment effect (ITE) on
the networked data ({xi, ti, yi}Ni=1,A), where xi, ti, yi are
respectively the raw variables, observed treatment, treatment
outcome that correspond to the i-th individual, and A ∈
{0, 1}N×N is the adjacency matrix indicating the connections
between individuals, which can be obtained via consanguinity,
doctor referrals, social networks, etc. The common practice
is to learn a deconfounded latent representation zi for each
individual with a GNN by aggregating its neighbour informa-
tion [1], which is then used for counterfactual ITE prediction.
To achieve this, three common assumptions are needed to lay
the theoretical foundation.

Assumption 1 (Stable Unit Treatment Value Assumption
(SUTVA)): For any individual i: (a) the potential outcomes for
i do not vary with the treatment assigned to other individuals;
and (b) there are no different forms or versions of each
treatment that may lead to different potential outcomes.

Assumption 2 (Unconfoundedness): Treatment assignment
is independent to the potential outcomes {Yt=0, Yt=1} given
the latent covariate z, i.e., t ⊥⊥ {Yt=0, Yt=1}|z. Note that
the potential outcomes Y use a different notation w.r.t. the
observed ones y.

Assumption 3 (Positivity): For every z, the treatment assign-
ment mechanism obeys: 0 < p(t = 1|z) < 1.

A. Hurdles in Quantifying Uncertainty with Graph Data

Based on the latent representation z of each individual, we
aim to estimate its treatment effect and assign an uncertainty
to this estimation. Unfortunately, uncertainty quantification
can be seriously poisoned by the feature collapse issue [4],
especially for latent features extracted by deep neural networks
(DNNs). Feature collapse describes the scenario where two
distinct points in the original feature space X can be mapped
to two similar or even identical positions in the latent space Z .
Consequently, predictions on non-overlapping samples could
be incorrectly assigned an uncertainty as low as predictions
on overlapping ones due to their collapsed representations.

Despite the popularity of GNNs in learning individual rep-
resentations for ITE estimation, little attention has been paid
to the potential feature collapse issue. So far, the state-of-the-
art GNN backbones, e.g, GraphSAGE [13], rely on non-linear
mapping and are hence vulnerable to feature collapse. The
message-passing scheme in GNNs potentially deteriorates the
uniqueness of learned representations even further. For a proof-
of-concept, we generate a toy graph with two-dimensional
node features and four classes, as shown in Figure 2 (a). We
train a 1-layer GraphSAGE with classes 0, 1 and 2, and nodes
from class 3 are held out. The two-dimensional visualization in
Figure 2 (b) shows that the representations generated by the
trained GraphSAGE for class 3 nodes mostly collapse with
class 0 in the latent space. Such collapse is different from the
over-smoothing problem with GNNs, as only a shallow 1-layer
structure is used and the node representations for the first three
classes do not collide.
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Fig. 2: (a) A toy example graph with four classes; (b) Latent
representation from a 1-Layer GraphSAGE.

IV. METHODOLOGY

In this section, we present our graph deep kernel learning
(GraphDKL) framework for handling the causal effect estima-
tion with uncertainty on graph-structured data.

A. Lipschitz-constrained Graph Representation Learning

As a versatile framework, GraphDKL is agnostic to any
GNNs. Without loss of generality, we leverage GraphSAGE
[13] as the base GNN given its balance between efficiency
and effectiveness, and the ability to scale with batch training.
At the l-th layer of GraphSAGE, the core neural operation to
learn the latent representation for individual/node i is:

hl
i = σ(Wl · MEAN({hl−1

i } ∪ {hl−1
j ,∀j ∈ N (i)})), (1)

where σ is the non-linear activation, Wl is the weight matrix at
layer l, while the mean aggregator MEAN(·) is used to merge
the representations of node i and its neighbours j ∈ N (v)
from layer l − 1.

To facilitate uncertainty estimation, our proposed frame-
work, shown in Figure 3, combines the GNN with deep kernel-
based GP to get the best of both worlds – the deconfounded
node representations containing both individual features and
structural information are extracted via GNN first, and the
learned representations are fed into two independent DNNs,
with each of them mapping the graph-based representations
to treated and control latent spaces for subsequent predictions.
For notation simplicity, we omit the formulation of each DNN,
which is a multi-layer perceptron (MLP) with L′ layers, and
takes the final-layer representation hL

i from GNN as its input.
Unless specified, the following descriptions on DNNs apply
to both treatment branches t ∈ {0, 1}.

Decoupling Collapsed Representations. To alleviate fea-
ture collapse and ensure accurate uncertainty estimation, we
propose to preserve the local distance among points after non-
linear mapping. In GraphDKL, this constraint needs to be
enforced in both the GNN for learning individual represen-
tations, as well as the two DNN branches that respectively
model treated and control groups. In a nutshell, the distance
||xi − xj || between any two points xi and xj from the raw
feature space has a corresponding meaningful distance in the
latent space. To achieve this desired property, we introduce
the notion of Lipschitz constant. Specifically, for each given
function s′ = f(s) with input s and output s′, then the

Node Representation Learning Deep Kernel Learning

Lipschitz 
GNN

Lipschitz 
DNN

Lipschitz 
DNN

GP

GP

𝜇!

𝜎!"

𝜇#
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Fig. 3: Structure of GraphDKL framework. The Lipschitz
prefix denotes the Lipschitz-constrained neural networks.

Lipschitz constant Lip(f) w.r.t. f(·) satisfies that, for any pair
of inputs (s1, s2), ||s′1− s′2|| ≤ Lip(f)||s1− s2|| holds. In other
words, Lip(f) ≥ ||s′1−s′2||

||s1−s2|| for any (s1, s2) pair. If Lip(f) ≤ 1,
then it essentially means that the difference in function values
is controlled by the original pairwise distance obtained from
the input space. This property ensures that small changes in
the input result in small changes in the output, providing a
sense of stability and predictability, and f(·) is also termed 1-
Lipschitz (local distance preserving). With the context given,
we define the 1-Lipschitz GraphDKL below.

Theorem 1 (1-Lipschitz GraphDKL): GraphDKL has L
layers of graph convolution HL = gL(gL−1(...g1(X,A))) in
the GNN where X ∈ RN×D, A ∈ {0, 1}N×N , and HL ∈
RN×S respectively denote the D-dimensional raw variables,
adjacency matrix, and S-dimensional latent representations of
N individuals. The GNN is followed by an L′-layer DNN
ZL′

= ϕL′(ϕL′−1(...ϕ1(HL))) in either the treated/control
branch, with ZL′

∈ RN×S being the N representations from
the final layer. The entire representation learning pipeline in
GraphDKL is 1-Lipschitz if:{

Lip(gl) ≤ 1, ∀l ≤ L

Lip(ϕl′) ≤ 1, ∀l′ ≤ L′ , (2)

where Lip(gl) and Lip(ϕl′) respectively denote the Lipschitz
constant of a single GNN and DNN layer.

Proof. We denote the hidden representation of individual i at
the l-th GNN layer as hl

i, and that of the same i at the l′-th
DNN layer as zl

′

i . Note that the raw feature xi is the input to
the first-layer GNN, whose final-layer representation hL

i is the
input to the first-layer DNN. Then, for any pair of instances
(i, j), we have:

||zL′

i − zL
′

j ||
||xi − xj ||

=
||zL′

i − zL
′

j ||
||zL′−1

i − zL′−1
j ||

× · · · ×
||z1i − z1j ||
||hL

i − hL
j ||

×

||hL
i − hL

j ||
||hL−1

i − hL−1
j ||

× · · · ×
||h1

i − h1
j ||

||xi − xj ||
≤Lip(ϕL′)×· · ·×Lip(ϕ1)×Lip(gL)×· · ·×Lip(g1).

(3)

As every Lip(gl) and Lip(ϕl′) is no larger than 1 by premise,
||zL

′
i −zL

′
j ||

||xi−xj || ≤ 1. We thus conclude that the entire neural
mapping from xi to zL

′

i in GraphDKL is 1-Lipschitz.
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To ensure the local distance is preserved for each neural
mapping layer, spectral normalization has been proven rigor-
ous [5] for enforcing 1-Lipschitz. Taking the weight matrix
Wl at the l-th graph convolution layer in (1) as an example,
the spectral normalization states:

Lip(gl) ≤ 1, if ||Wl||2 ≤ 1, (4)

where || · ||2 denotes the spectral norm, i.e., L2 matrix norm of
Wl. Compared with using the spectral norm as a penalization
term for regularization purpose, we formulate a normalization
process that strictly bounds the spectral norm to a designated
value, and this ensures obedience of 1-Lipschitz at all layers
and thus benefit the measurement of uncertainty.

As ||Wl||2 corresponds to the largest singular value of
matrix Wl which is known to be time-consuming to compute
exactly, we perform power iteration [14] over Wl to obtain an
approximation τ of the spectral norm, which is a lower bound
on the largest singular value ||Wl||2. Then, the weight matrix
is normalized as:

Wl =
1

τ
Wl, (5)

which empirically makes Lip(gl) ≤ 1 consistent across all
scenarios by rescaling Wl [5]. Analogously, the same spectral
normalization is adopted on all DNN layers’ weight matrices.

B. Deep Kernel Learning

In each treatment effect prediction branch, the deep kernel
learning (DKL) module passes the latent representation zL

′

i

from the final DNN layer into a Gaussian process (GP) for
causal effect estimation with uncertainty. From now on, we
let zi = zL

′

i for better clarity when there is no ambiguity.
Standard GP. A standard GP is a finite number of random

variables which have a joint Gaussian distribution [15]. Mathe-
matically, it is denoted as GP , with mean function µ(·) :X →R
and covariance function k(·, ·) : X ×X → R over the real-
valued stochastic function f(·) : X → R whose input is the
D-dimensional variable vector x ∈ RD, namely,

f(x) ∼ GP(µ(x), k(x, x′)). (6)

By evaluating the GP at N samples Z = {zi}Ni=1 (any subset
from domain X ), we end up with N multivariate Gaussian
distributions f = {fi}Ni=1 as follows:

f ∼ N (µ,K), (7)

where µ ∈ RN is the variance vector and K ∈ RN×N is the
covariance matrix. With i, j for indexing, µ[i] = µ(xi) is i’s
mean, K[i, j] = k(xi, xj) is the covariance between i and j.

Ramping up Expressiveness. Given the limited capacity
of standard GP in learning the latent distributions [16], [17],
recent frameworks have been expanding the expressiveness
of the standard GP. For instance, deep Gaussian process [16]
stacks a series of GPs, and deep kernel [17] utilizes the latent
variables produced from a deep learning method for the GP.
In this paper, we investigate the deep kernel framework since
it is a natural extension to our neural architecture, as well as
its superiority in expressiveness and computational efficiency.

Specifically, by replacing the raw variables x with the latent
output z from GraphDKL’s neural mapping, (7) is updated
with µ[i] = µ(zi) and K[i, j] = k(zi, zj).

In GP, a mean of zero is normally assumed, i.e., µ = 0,
and we consider the infinitely smooth radial basis function
as the kernel for computing the covariance, i.e., k(zi, zj) =

σ2
ker exp (−

(zi−zj)2

2l2 ), where θker = {σker, l} is a parameter
set of the GP kernel to be optimized. With N latent representa-
tions Z ∈ RN×S learned from X and their corresponding real-
valued labels y = {yi}Ni=1, we can obtain the joint marginal
likelihood w.r.t. the updated (7) as follows:

p(y|Z,θker) =
∫ N∏

i=1

p(yi|fi, zi)p(fi|zi)df = N (y|0,K), (8)

where the optimal kernel parameters are obtained by finding
its maximum through gradients.

ITE Prediction with Uncertainty Quantification. To eval-
uate the model at an arbitrary test point x∗ ∈ RD with cor-
responding latent representation z∗, we leverage the property
that the joint distribution of the training labels y and the test
label y∗ is still Gaussian:(

y∗
y

)
∼ N

(
0,

[
k(z∗, z∗) kT

∗
k∗ K

])
, (9)

where column vector k∗ ∈ RN measures the covariance
between z∗ and all N training samples, i.e., k∗[i] = k(z∗, zi).
Thus, the posterior label distribution is:

y∗|(z∗,Z, y,θker) ∼ N (µ∗, σ
2
∗), (10)

which has the following closed-form solution [15]:

µ∗ = kT
∗K−1y, σ2

∗ = k(z∗, z∗)− kT
∗K−1k∗, (11)

where the mean µ∗ serves as the prediction of y∗ w.r.t. a
treatment t ∈ {0, 1}, and the variance σ2

∗ of the prediction
is used as a direct indicator of the uncertainty w.r.t. sample
x∗. Essentially, the value of σ2

∗ holds a positive correlation
with the uncertainty.

C. Sparse Variational Optimization

If the exact Gaussian process were applied to our proposed
GraphDKL framework, the model would suffer from a O(N3)
complexity due to the inversion of the covariance matrix
K ∈ RN×N , which is computationally prohibitive when
handling large graphs. To increase scalability, we adopt a
sparse GP [15] with stochastic variational inference (SVI) [18]
to our setting, building a computationally tractable GraphDKL
framework with the ability to scale better.

We start by assuming a set of latent inducing points
M = {mi}Mi=1 in the same latent space as Z. For the
stochastic function f(·) with Gaussian prior in (6), we obtain
the corresponding outputs v = f(Z) and u = f(M) w.r.t. the
distributions of Z and M in the same space, respectively. To
form a tractable objective, we derive the evidence lower bound
L as follows:

4



log p(y)= log

∫
p(y, v,u)dvdu = log

∫
p(y, v,u)
q(v,u)

q(v,u)dvdu

= logEq(v,u)

[
p(y, v,u)
q(v,u)

]
≥L = Eq(v,u)

[
log

p(y, v,u)
q(v,u)

]
,

(12)

where the SVI process appproximates the posterior q(v,u) by
minimizing the Kullback-Leibler divergence KL(q||p) between
the variational posterior q and the prior p [18]. As we
essentially aim to perform SVI with a set of global variables,
we let u take this role with a variational distribution q(u),
and follow the widely accepted variational posterior [18]
q(v,u) = p(v|u)q(u). We set q(u) ∼ N (u|µu,Ku) with
mean µu ∈ RM and covariance Ku ∈ RM×M to be learned.
To this end, the evidence lower bound (ELBO) L can be
further decomposed into the following form, with an additional
constraint on q(u):

L = Eq(v) [log p(y|v)]− KL(q(u)||p(u)), (13)

where p(u) is a priori. Since posterior q(u) is Gaussian, with
the analytically achievable p(v|u) analogous to (9) and (10) by
conditioning on the prior p(u), the variational posterior q(v)
can be analytically obtained as follows:

q(v) =
∫

p(v|u)q(u)du = N (v|µ̃, Σ̃), (14)

where µ̃ and Σ̃ are parameterized w.r.t. µu and Ku. Therefore,
the first term in the simplified L can be calculated with
Monte Carlo sampling since posterior q(v) is available with
the unknown parameters {µu,Ku} to be learned. Notably,
the time complexity of sparse variational GraphDKL is sig-
nificantly reduced due mainly to the smaller M ×M matrix
to be inverted, bringing a non-dominant O(M3) complexity.
Consider the matrix multiplication in deriving Σ̃ in 13 for
the q(v) to sample N times in order to calculate L, the
asymptotic time complexity is capped to O(M2N) [15], [18].
With M ≪ N in our case, handling large graph-structured
data with GraphDKL is tractable.

By optimizing the tractable objective L derived by SVI,
we solve the unknown parameters such that the variational
posterior q(v), which only depends on the input x, can be
optimized to fit the data. Eventually, with the fully trained
GraphDKL, given a test point x∗ (with latent representation
z∗), we can use the much smaller K′ ∈ RM×M given by priori,
z∗’s covariance with those M prior samples k′

∗ ∈ RM , and
the optimized posterior q(u) to obtain prediction (i.e., mean)
µ∗ and variance (i.e., uncertainty) σ2

∗:

µ∗ = Γuu, σ2
∗ = k(z∗, z∗)− Γ(K′ − Ku)Γ

T, (15)

where Γ = k′
∗

TK′−1.
To conclude, the final ITE estimation and its associated

prediction uncertainty w.r.t. test sample x∗ have the following
approximations:

ITE∗ = E[Yt=1−Yt=0|z∗] ≃ µ∗,t=1−µ∗,t=0,

Uncertainty∗ = E[(Yt=1−Yt=0)
2|z∗] ≃ σ2

∗,t=1+σ2
∗,t=0.

(16)

V. EXPERIMENTS

We present our experimental analysis in this section.

A. Experimental Setup

1) Dataset: We adopt two public benchmarks with net-
worked observational data: Blogcatalog [1] and Flickr [1].
Both BlogCatalog and Flickr datasets are processed and sim-
ulated in the same practice in [1]. For both datasets, three
settings are created with k = 0.5, 1, and 2, respectively, where
k denotes the magnitude of the imbalance in the semi-synthetic
dataset. The higher the k value, the more imbalanced the
dataset is. In total, we evaluate the model performance in six
different scenarios.

2) Metric: We use precision in estimation of heteroge-
neous effect (PEHE) [6], a well-established metric defined as√
ϵPEHE =

√
ΣN

i=1((Yi,t=1 − Yi,t=0)− (µi,t=1 − µi,t=0))2/N
for measuring the treatment estimation accuracy at the individ-
ual level. The lower the

√
ϵPEHE, the better the performance.

3) Baselines: Note, that our proposed GraphDKL is the first
model to handle causal effect estimation with uncertainty on
graph data. To obtain better comparisons, we share the learned
node representation with the other baselines which can only
be operated on the non-graph data: BART [10], BCFRMMD
[3], BCEVAE [3], and CMGP [11].

4) Evaluation Scheme on Uncertainty Quantification: We
randomly split each dataset into train/val/test with a 3/1/1
ratio. To evaluate the most effective uncertainty-aware method
(a.k.a. rejection method), we reject the estimations with the
highest uncertainty and calculated the

√
ϵPEHE over the re-

tained samples: the lower the retained
√
ϵPEHE, the better

the rejection method. As setting an uncertainty threshold for
rejection can be domain-specific in real-world cases, here
we use the specific uncertainty threshold given by each
method that rejects a certain proportion of the top most-
uncertain test samples. We test on an increasing proportion
{0%, 5%, 10%, 15%, 20%, 25%, 30%, 50%, 70%, 90%} in our
experiments, where the

√
ϵPEHE scores are reported for all

methods from the same amount of retained test samples.

B. Rejection Policy Performance

Since the main task of this paper is to explore the pivot
of positivity assumption with the uncertainty-aware model
for causal effect estimation on graph data. We compare our
proposed GraphDKL with various rejection methods with the
main results shown in Table I. When compared to other
rejection methods, our method GraphDKL always initializes
with a lower

√
ϵPEHE at 0% rejection rate, even though all

the other baselines designed for independent data leverage the
same learned node representations from the GraphSAGE con-
volution. Furthermore, GraphDKL outperforms all the other
models over the retained test set in terms of the following
key performance: (1) it keeps rejecting the bad estimation
while preserving the lowest

√
ϵPEHE on both datasets under

most settings; (2) it has the fastest error convergence with an
increased rejection rate.
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Table I: The proportion in each column represents the fixed percentage of the test samples rejected by each method. Thus, we
calculate the

√
ϵPEHE over the same-size retained test samples by averaging results from 10 simulations for each setting.

Dataset BlogCatalog Flickr
k Method 0% 5% 10% 15% 20% 25% 30% 50% 70% 90% 0% 5% 10% 15% 20% 25% 30% 50% 70% 90%

0.
5

BART 10.15 10.18 10.21 10.23 10.28 10.30 10.31 10.16 9.73 9.27 8.86 8.86 8.86 8.86 8.87 8.87 8.88 8.89 8.90 8.85
BCFRMMD 7.93 6.96 6.24 5.53 5.04 4.56 4.25 3.72 3.66 3.83 48.65 44.86 43.01 41.67 40.82 39.60 38.97 35.02 28.40 3.47
BCEVAE 42.76 37.7 33.29 29.06 25.59 23.07 21.67 20.79 21.25 21.38 53.81 38.13 33.54 31.18 29.26 28.05 27.41 25.43 22.54 9.60
CMGP 10.89 10.18 9.41 9.31 9.32 9.15 8.99 8.73 9.14 9.33 10.37 5.86 4.97 4.38 4.05 3.77 3.63 3.28 2.99 2.86
GraphDKL 4.31 4.21 3.98 3.80 3.67 3.48 3.31 2.90 2.64 2.21 3.92 3.24 3.10 3.01 2.95 2.92 2.92 2.84 2.69 2.46

1

BART 12.97 12.89 12.94 12.96 13.01 13.07 13.15 13.00 12.16 11.63 15.70 15.70 15.7 15.7 15.62 15.63 15.64 15.46 15.41 15.51
BCFRMMD 10.45 9.29 8.58 7.93 7.37 6.90 6.46 6.13 6.33 6.69 10.87 7.59 6.12 5.20 4.59 4.14 3.81 3.37 3.40 3.61
BCEVAE 36.75 33.11 29.97 27.51 24.93 22.99 21.85 20.83 21.40 21.82 24.63 16.09 12.99 11.36 10.67 10.33 10.11 9.91 10.03 10.06
CMGP 11.46 9.84 9.18 8.69 8.44 8.01 7.70 7.06 6.73 6.76 18.51 10.15 8.28 7.23 6.58 6.17 5.87 5.28 5.15 6.41
GraphDKL 5.08 4.79 4.48 4.32 4.17 4.00 3.90 3.76 3.63 2.97 7.29 4.49 4.23 4.11 4.04 3.97 3.93 3.91 3.91 3.71

2

BART 30.96 31.32 31.51 31.65 31.97 31.63 31.48 31.78 30.10 29.50 28.80 28.80 28.81 28.75 28.76 28.76 28.73 28.53 28.8 28.38
BCFRMMD 26.83 23.31 21.09 19.11 17.55 16.12 15.06 14.15 14.56 15.14 18.80 13.20 10.59 9.05 7.95 7.12 6.50 5.71 5.83 6.22
BCEVAE 42.76 37.70 33.29 29.06 25.59 23.07 21.67 20.79 21.25 21.38 20.95 13.76 11.31 10.09 9.49 9.20 8.96 8.55 8.60 8.82
CMGP 28.20 25.00 23.87 23.06 22.70 22.32 22.10 21.19 21.39 23.20 34.66 20.24 17.05 14.84 13.54 12.77 12.48 12.91 15.09 23.36
GraphDKL 10.32 8.92 8.13 7.56 7.23 6.82 6.64 5.96 5.49 5.33 12.38 6.73 6.26 6.00 5.85 5.76 5.71 5.67 5.58 5.38
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Fig. 4: Ablation study on Lipschitz constraint of the neural mapping. Lipschitz-constrained
GraphDKL has a clear performance gain over GraphDKL* without such constraint.
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Fig. 5: Rejection per-
formance with different
GraphDKL variants.

C. Ablation Study on Lipschitzness

We conduct a detailed ablation study on the Lipschitz
constraint. We use GraphDKL and GraphDKL* to respectively
denote variants with and without this constraint. As shown in
4, GraphDKL is superior to GraphDKL* across all the scenar-
ios. Note, that the base model’s performance on BlogCatalog
datasets has a bouncing-back retained

√
ϵPEHE when rejecting

more samples on the test set. Additionally, we compare its
influence to GNNs with varying capacity by using different
graph convolution layers. Based on the results in Figure 5,
the Lipschitz-constrained 3-Layer GraphDKL has the best
rejection performance as shown in Figure 5 by decoupling
the collapsed representation to get more accurate uncertainty
of each estimation, while the proposed spectral norm can
effectively bring performance gain for different GNN variants
in uncertainty-aware counterfactual prediction.

VI. CONCLUSION

We investigate the violation of the positivity assumption
for causal effect estimation on graph data and take a novel
perspective to create a safer causal estimator on graph data –
quantifying the estimation uncertainty. Extensive experiments
on the two widely used semi-synthetic graph datasets show
the superiority of our proposed Lipschitz GraphDKL over the
other baselines in terms of identifying high-risk estimations.
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