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Abstract—Sparse logistic regression is for classification and
feature selection simultaneously. Although many studies have
been done to solve ℓ1-regularized logistic regression, there is no
equivalently abundant work on solving sparse logistic regression
with nonconvex regularization term. In this paper, we propose a
unified framework to solve ℓ1-regularized logistic regression, which
can be naturally extended to nonconvex regularization term, as
long as certain requirement is satisfied. In addition, we also utilize
a different line search criteria to guarantee monotone convergence
for various regularization terms. Empirical experiments on binary
classification tasks with real-world datasets demonstrate our
proposed algorithms are capable of performing classification and
feature selection effectively at a lower computational cost.

Index Terms—logistic regression, sparsity, feature selection

I. INTRODUCTION

Logistic regression has been applied widely in many areas
as a method of classification. The goal of logistic regression is
to maximize the likelihood based on the observation of training
samples, with its objective function formulated as follows with
a natural and meaningful probabilistic interpretation:

min
β

n∑
i=1

− ln p(yi|xi;β) =

n∑
i=1

ln(1 + exp(βTxi))− yiβ
Txi,

(1)

where xi and yi denote the i-th sample and its label.
Though logistic regression is straightforward and effective,

its performance can be diminished due to over-fitting [10],
especially when the dimensionality of features is very high
compared to the number of available training samples. There-
fore, regularization term is usually introduced to alleviate over-
fitting issue [23]. Also, in applications with high-dimensional
data, it’s desirable to obtain sparse solutions, since in this way
we are conducting classification and feature selection at the
same time. Therefore, ℓ1-regularized logistic regression has
received more attention with the sparsity-inducing property
and its superior empirical performance [1].

More recent studies show that ℓ1-norm regularization may
suffer from implicit bias problem that would cause significantly
biased estimates, and such bias problem can be mitigated by a
nonconvex penalty [9]. Therefore, nonconvex regularization has
also been studied to induce sparsity in logistic regression [29].
Solving sparse logistic regression with convex ℓ1-norm regu-
larizer or with nonconvex term using a unified algorithm has
been studied in [19]. However, it imposes strong regularity
condition on the nonconvex term and it transfers the nonconvex
problem into an ℓ1-norm regularized surrogate convex function,

which limits its generality. As a contribution, we extend the
scope of nonconvex penalties to a much weaker assumption
and compare the performance of different regularization terms
with a unified optimization framework.

In this paper, we solve ℓ1-regularized (sparse) logistic regres-
sion by proposing a novel framework, which can be applied
to non-convex regularization term as well. The idea of our
proposed method stems from the well know Iterative Shrinkage
Thresholding Algorithm (ISTA) and its accelerated version Fast
Iterative Shrinkage Thresholding Algorithm (FISTA) [3], upon
which we modify the step-size setting and line search criteria to
make the algorithm applicable for both convex and nonconvex
regularization terms with empirical faster convergence rate. To
be clear, we call any logistic regression with regularization term
that can produce sparse solutions as sparse logistic regression,
therefore, the term is not only limited to ℓ1-norm regularization.

II. RELATED WORK

Due to the NP-hardness of ℓ0-norm constraint problem,
being its tightest convex envelope, ℓ1-norm is widely taken
as an alternative to induce sparsity [17], [18], [32]. The main
drawback of ℓ1-norm is it’s non-differentiable, which makes
the computation challenging compared to squared ℓ2-norm.
Sub-gradient is an option but can be very slow even if we
disregard the fact that it is non-monotone. Besides, there has
been active research on numerical algorithms to solve ℓ1-
regularized logistic regression. Among these, an intuitive idea
is as the challenge originates from the non-smoothness of
ℓ1-norm, we can make it ‘smoothable’. For example, in [24],
the ℓ1-norm is approximated by a smooth function that is
readily solvable by any applicable optimization method. The
iteratively reweighted least squares least angle regression
(IRLS-LARS) method converts the original problem into a
smooth function by the equivalent ℓ1-norm constrained ball [14].
In addition, coordinate descent method has been utilized to
solve the ℓ1-regularized logistic regression as well: in [7]
and [20], cyclic coordinate descent is used for optimizing
Bayesian logistic regression. Besides, the interior-point method
is another option with truncated Newton step and conjugated
gradient iterations [12]. We refer readers to the papers and
references therein.

The bias of ℓ1-norm is implicitly introduced as it penalizes
the parameters with larger coefficients more than the smaller
ones. Recently, nonconvex regularization terms have drawn
considerable interest in sparse logistic regression since it is able
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TABLE I
NONCONVEX REGULARIZATION TERMS IN SPARSE LOGISTIC REGRESSION.

Name Formulation

ℓp-norm, 0 < p < 1 λ|βi|q

Capped ℓ1-norm λmin (|βi|, ϵ)

SCAD


λ|βi|, |βi| ≤ λ
−β2

i +2θλ|βi|−λ2

2(θ−1)
, λ < |βi| ≤ θλ

(θ+1)λ2

2
, |βi| > θλ

MCP

{
λ|βi| −

β2
i

2θ
, if|βi| ≤ θλ

θλ2

2
, if|βi| > θλ

to ameliorate the bias problem of ℓ1-norm, and it acts as one
main driver of recent progress in nonconvex and nonsmooth
optimization [28].

It is worth noting that there have been many studies trying to
solve the ℓ0-regularized problems directly. The most common
method is to conduct coordinate descent for nonconvex regu-
larized logistic regression [5], [22]. The alternating direction
method of multipliers (ADMM) inspires the development of
incremental aggregated proximal ADMM to solve nonconvex
optimization problems, and it achieves good results in sparse
logistic regression [11]. In [21], the momentumized iterative
shrinkage thresholding (MIST) algorithm is proposed to mini-
mize the nonconvex criterion for linear regression problems,
and similar ideas can be applied to logistic regression as
well. Besides the ℓ0-norm, other nonconvex penalties are also
explored. The minimax concave penalty (MCP) is studied
in [31] together with a penalized linear unbiased selection
(PLUS) algorithm, and it shows the MCP is unbiased with
superior selection accuracy. The smoothly clipped absolute
deviation (SCAD) penalty is proposed in [6], which corresponds
to a quadratic spline function, and the study shows SCAD
penalty outperforms the ℓ1-norm regularizer significantly, and
it has the best performance in selecting significant variables
without introducing excessive biases.

III. OPTIMIZATION ALGORITHMS

A. Algorithms for ℓ1 Regularized Sparse Logistic Regression

We first consider sparse logistic regression problem as:

min
β

f(β) =
∑
i

ln(1 + exp(xT
i β))− yi(x

T
i β)︸ ︷︷ ︸

l(β)

+λ∥β∥1︸ ︷︷ ︸
g(β)

.

(2)

Theorem III.1. ∇l(β) in Eq (2) is Lipschitz continuous, and
it’s Lipschitz constant is L := 1

4λmax(XXT ).

Proof. Let X be the matrix of training samples, where the i-th
column xi represents the i-th sample. We have

∇l(β) = X(p− y),where pi =
1

1 + exp(−⟨β,xi⟩)
(3)

and
∇2l(β) = Xdiag ((pi(1− pi)))X

T . (4)

By the mean value theorem, we know there exists c ∈ (β,β+
∆) such that ∇l(β +∆)−∇l(β) = ∇2l(c)∆. Since

∥∇2l(β)∥ ≤ λmax(Xdiag ((pi(1− pi)))X
T )

= max∥v∥=1v
TXdiag (pi(1− pi))X

Tv

= max∥v∥=1v
T [
∑

(xipi(1− pi)x
T
i )]v

≤ 1

4
max∥v∥=1v

T [
∑

(xix
T
i )]v =

1

4
λmax(XXT ),

(5)

we have

∥∇l(β +∆)−∇l(β)∥ = ∥∇2l(c)∆∥

≤∥∇2l(c)∥∥∆∥ ≤ 1

4
λmax(XXT )∥∆∥,

(6)

thus ∇l(β) is Lipschitz continuous with 1
4λmax(XXT ).

We use ISTA and FISTA with backtracking line search to
solve Eq (2), which are described in Algorithm 1 and 2
respectively, where pL(β) represents the proximal operator
defined as pL(β) = argminw

L
2 ∥w − (β − 1

L∇l(β)∥2 +
g(w). The line search stopping criterion is: f(pL̄(βk−1)) ≤
qL̄(pL̄(βk−1),βk−1), where f(β) is defined in Eq (2), and

qL(pL(β),β)

=l(β) + ⟨pL(β)− β,∇l(β)⟩+ L

2
∥pL(β)− β∥2 + g(pL(β)).

(7)

One potential drawback of the vanilla ISTA and FISTA is
the initial step size which is randomly set as L0 > 0 and keep
increasing Lk during update to satisfy the line search stopping
criterion. In case L0 is larger than the Lipschitz constant L
of ∇l(β), the step size can be too small to obtain optimal
solution rapidly [33]. Thus, different from vanilla ISTA, in
Algorithm 1, we first initialize the stepsize with Lipschitz
continuous constant and then utilize Barzilai-Borwein (BB)
rule to serve as a starting point for backtracking line search:

δk = βk−1 − βk−2,vk = ∇l(βk−1)−∇l(βk−2), Lk =
⟨δk,vk⟩
⟨δk, δk⟩

.

(8)

Experiments on synthetic data show that with BB rule,
ISTA with randomly initialized step size will admit faster
convergence during update, which is demonstrated in Figure 1.
In Algorithm 2, we also initialize the step size as 1

L to avoid
too small step size. However, to guarantee O( 1

k2 ) convergence
rate for FISTA, we still need the step size to be monotonically
nonincreasing, thus BB rule cannot be utilized in FISTA.

Besides the step size setting in BB rule aforementioned,
another option proposed by us is to find the largest step-size
by searching reversely: we start by setting the step-size to 1

L
in each iteration and keep enlarging it until the line search
condition is not satisfied and take the last step-size satisfying
the criterion. In this way, we are able to find the largest step
size satisfying the line search criterion for each update iteration.
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Fig. 1. ISTA with different settings.
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Fig. 2. L1-norm: convergence plots.

Algorithm 1 ISTA-BB: ISTA with Lipschitz constant and BB
rule to solve Eq (2).

Initialize β0, step size 1
L0

as 1
L , where L is the Lipschitz

constant of ∇l(β), set η > 1;
repeat

1) Start from k = 2, update the step size 1
Lk

using the
Barzilai-Borwein (BB) rule
2) Find the smallest nonnegative integer ik such
that with L̄ = ηikLk we have f(pL̄(βk−1)) ≤
qL̄(pL̄(βk−1),βk−1) .
3) Set Lk = ηikLk and update βk = pLk

(βk−1)
until convergence

Algorithm 2 FISTA-Lipschitz: FISTA with Lipschitz constant
to solve Eq (2).

Initialize β0, step size 1
L0

as 1
L , where L is the Lipschitz

constant of ∇l(β), set η > 1, w1 = β0, t1 = 1;
repeat

1) Find the smallest nonnegative integer ik such that with
L̄ = ηikLk−1 we have f(pL̄(wk)) ≤ qL̄(pL̄(wk),wk) .
2) Set Lk = ηikLk−1 and update

βk = pLk
(wk)

tk+1 =
1 +

√
1 + 4t2k
2

wk+1 = βk +
tk − 1

tk+1
(βk − βk−1)

(9)

until convergence

The proposed method is summarized in Algorithm 3. Again,
unlike the conventional ISTA, the step size in Algorithm 3
is not decreasing monotonically, and to compute the largest
singular value with lower computational cost, we can utilize
power iteration method [4] to get rid of the computationally
expensive singular value decomposition.

By Algorithm 3, the objective decreases much faster than
vanilla ISTA. From Figure 2 we can see that for FISTA, when
we initialize the step-size with 1

L (FISTA-Lipschitz), it has
better convergence performance than initialized with a random
number (FISTA-random), which might be smaller than 1

L .
For ISTA, the two algorithms proposed by us (ISTA-BB and
ISTA-reverse) have similar performance and they obviously
outperform vanilla ISTA with backtracking line search, either

Algorithm 3 ISTA-reverse: ISTA with Lipschitz constant and
reverse step size searching to solve Eq (2).

Initialize β0 randomly, step size 1
L0

as 1
L , where L is the

Lipschitz constant of ∇l(β), set η > 1;
repeat

1) Find the smallest nonnegative integer ik such
that with L̄ = L0/η

ik we have f(pL̄(βk−1)) >
qL̄(pL̄(βk−1),βk−1) .
2) Set Lk = L0/η

ik−1 and update βk = pLk
(βk−1)

until convergence

ISTA-random or ISTA-Lipschitz.
The convergence proof of Algorithm 1, Algorithm 2, and
Algorithm 3 can be easily adapted from the proof in [3], here
we only present the key theorems of the convergence rate.

Theorem III.2. Let {βk} be the sequence generated by either
Algorithm 1 or Algorithm 3, for any k > 1,

f(βk)− f(β∗) = O(
1

k
), (10)

where β∗ is an optimal solution to Eq (2).

Theorem III.3. Let {βk} be the sequence generated by
Algorithm 2, for any k > 1,

f(βk)− f(β∗) = O(
1

k2
), (11)

where β∗ is an optimal solution to Eq (2).

B. Algorithms for Nonconvex Regularized Sparse Logistic
Regression

While the ℓ1-norm regularization is convenient since it’s
convex, several studies show that sometimes nonconvex reg-
ularization term can have better performance [28] though it
turns the objective to nonconvex and even nonsmooth, which is
challenging to obtain optimal solution. Current literature lacks
a unified yet simple framework that works for both convex
and a wide class of nonconvex regularization terms. With this
consideration, we would like to list a bunch of nonconvex
regularization terms that on one hand can ameliorate the bias
problem, and on the other hand, can be solved with the same
algorithms for the convex term.
Nonconvex regularization terms can be written as the difference
between two convex functions as long as the Hessian is
bounded [30]. For such nonconvex penalties, we are able to
solve by ISTA with slight modifications.

min
β

f(β) =
∑
i

ln(1 + exp(xT
i β))− yi(x

T
i β)︸ ︷︷ ︸

l(β)

+ g1(β)− g2(β)︸ ︷︷ ︸
g(β)

,

(12)

where the Hessian of g(β) is bounded. We summarize our
methods in Algorithm 4 and 5 with modified backtracking
line search criteria:

f(βk+1) ≤ f(βk)−
Lk

2
∥βk+1 − βk∥2. (13)



TABLE II
EXAMPLES OF REGULARIZATION TERMS AND CORRESPONDING PROXIMAL OPERATORS.

Penalty g1(βi) g2(βi) Proximal operator

SCAD λ|βi|


0, |βi| ≤ λ
β2
i −2λ|βi|+λ2

2(θ−1)
, λ < |βi| ≤ θλ

λ|βi| − (θ+1)λ2

2
, |βi| > θλ


sign (t)max (|t| − λ), 0, |t| ≤ 2λ
(θ−1)t−sign(t)θλ

θ−2
, 2λ < |t| ≤ θλ

t, |t| > θλ

MCP λ|βi|
{

β2
i

2θ
, if|βi| ≤ θλ

λ|βi| − θλ2

2
, if|βi| > θλ


0, |t| ≤ λ
sign(t)(|t|−λ)

1−1/θ
, λ < |t| ≤ θλ

t, |t| > θλ

ℓ1-norm sign (t)max (|t| − λ, 0)

Algorithm 4 ISTA-BB: ISTA with Lipschitz constant and BB
rule to solve Eq (12).

Initialize β0, step size 1
L0

as 1
L , where L is the Lipschitz

constant of ∇l(β), set η > 1;
repeat

1) Start from k = 2, update the step size 1
Lk

using the
Barzilai-Borwein (BB) rule
2) Find the smallest nonnegative integer ik such that
with L̄ = ηikLk we have f(pL̄(βk−1)) ≤ f(βk−1) −
L̄
2 ∥pL̄(βk−1)− βk−1∥2 .
3) Set Lk = ηikLk and update βk = pLk

(βk−1)
until convergence

Algorithm 5 ISTA-reverse: ISTA with Lipschitz constant and
reverse step size searching to solve Eq (12).

Initialize β0 randomly, step size 1
L0

as 1
L , where L is the

Lipschitz constant of ∇l(β), set η > 1;
repeat

1) Find the smallest nonnegative integer ik such that
with L̄ = L0/η

ik we have f(pL̄(βk−1)) > f(βk−1) −
L̄
2 ∥pL̄(βk−1)− βk−1∥2 .
2) Set Lk = L0/η

ik−1 and update βk = pLk
(βk−1)

until convergence

The convergence of ISTA with different step-size searching
methods is illustrated in Figure 3 with SCAD.
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Fig. 3. Nonconvex: convergence plots.
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Theorem III.4. Let {βk} be the sequence generated by either
Algorithm 4 or Algorithm 5, then all limit points of the sequence

{βk} are critical points of the problem in Eq (12). More
specifically, after n iterations, we have

min
0≤k≤n

∥βk+1 − βk∥2 ≤ 2(f(β0)− f(β∗))

nLmin
, (14)

where β∗ is a limit point of the sequence {βk}, Lmin is the
minimum L among the n iterations.

Proof. With the line search criterion, we have

Lk

2
∥βk+1 − βk∥2 ≤ f(βk)− f(βk+1), (15)

sum the above inequality we have

Lmin

2

n∑
k=0

∥βk+1 − βk∥2 ≤ f(β0)− f(βn+1), (16)

With f(βn) ≥ f(β∗), we have

Lmin

2

n∑
k=0

∥βk+1 − βk∥2 ≤ f(β0)− f(β∗), (17)

based on which we will obtain the desired conclusion.

IV. EXPERIMENTS

The empirical studies are conducted on the following 5
benchmark classification datasets, which can be found in UCI
machine learning repository [2]: Wine, Specheart, Ionosphere,
Madelon, and Dorothea. For the logistic regression with convex
ℓ1-norm penalty, we compare our proposed methods with
the following counterparts: OMFISTA [34], Interior-Point
method [12], GSLR [15], SPA [26], Lassplore [16], HIS [25],
and proximal Newton [13]. For the logistic regression with
nonconvex penalties, we compare our proposed methods with
GPGN [27] and HONOR [8], and the nonconvex penalty we
utilize in the experiment is SCAD. In this benchmark result, the
classification performance is measured by the average testing ac-
curacy obtained with k-fold cross-validation, in our experiment,
we set k = 5. It’s known there exists a valid upper threshold
for λmax in logistic regression [12], when the regularization
parameter is larger than that, the cardinality of the solution
will be zero. Therefore λ is usually selected as a fraction
proportion of λmax. We choose a 10-length path for λ, where
the fraction is 0.01, 0.02, 0.05, 0.07, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8



TABLE III
TESTING ACCURACY OBTAINED FROM 5-FOLD CROSS-VALIDATION, WITH ℓ1-NORM REGULARIZATION.

λ/λmax OMFISTA Interior-Point GSLR SPA Lassplore HIS Newton ISTA-BB ISTA-rev FISTA-Lip

Wine
0.02 0.920 0.920 0.845 0.902 0.898 0.905 0.902 0.919 0.922 0.922
0.1 0.907 0.911 0.841 0.882 0.886 0.899 0.901 0.911 0.913 0.909
0.5 0.892 0.891 0.825 0.856 0.852 0.896 0.895 0.908 0.902 0.899

Specheart
0.02 0.739 0.705 0.732 0.752 0.711 0.585 0.739 0.752 0.751 0.758
0.1 0.721 0.691 0.716 0.735 0.702 0.571 0.722 0.739 0.739 0.731
0.5 0.685 0.672 0.701 0.698 0.681 0.559 0.659 0.688 0.697 0.701

Ionosphere
0.02 0.835 0.821 0.832 0.828 0.808 0.576 0.851 0.855 0.857 0.858
0.1 0.802 0.809 0.825 0.815 0.789 0.573 0.809 0.818 0.825 0.822
0.5 0.796 0.791 0.809 0.792 0.761 0.558 0.778 0.781 0.801 0.801

Madelon
0.02 0.615 0.611 0.612 0.621 0.601 0.605 0.615 0.621 0.621 0.621
0.1 0.603 0.601 0.601 0.611 0.592 0.601 0.611 0.615 0.611 0.615
0.5 0.592 0.582 0.583 0.591 0.579 0.589 0.592 0.601 0.601 0.602

Arrhythmia
0.02 0.611 0.591 0.601 0.608 0.599 0.589 0.608 0.615 0.615 0.615
0.1 0.591 0.588 0.589 0.595 0.591 0.578 0.588 0.595 0.592 0.595
0.5 0.567 0.567 0.567 0.577 0.562 0.551 0.572 0.579 0.579 0.579

TABLE IV
TESTING ACCURACY FROM CROSS-VALIDATION WITH SCAD.

λ/λmax GPGN HONOR ISTA-BB ISTA-rev

Wine
0.02 0.921 0.925 0.929 0.931
0.1 0.912 0.912 0.915 0.917
0.5 0.897 0.905 0.905 0.907

Specheart
0.02 0.751 0.761 0.761 0.763
0.1 0.732 0.735 0.737 0.739
0.5 0.691 0.711 0.711 0.711

Ionosphere
0.02 0.855 0.857 0.859 0.857
0.1 0.825 0.827 0.829 0.831
0.5 0.792 0.795 0.795 0.799

Madelon
0.02 0.621 0.625 0.631 0.628
0.1 0.612 0.616 0.619 0.615
0.5 0.585 0.597 0.601 0.603

Arrhythmia
0.02 0.595 0.609 0.611 0.618
0.1 0.581 0.592 0.597 0.595
0.5 0.566 0.577 0.579 0.581

respectively. All the other parameters are set as suggested
in the original papers. In Table III and Table IV, we show
the testing accuracy with various λ for ℓ1-norm and SCAD
regularizer item, respectively.

We compare the efficiency of our proposed methods with
other methods. We show the computation time for the training
with 1000 and 500 features. The number of samples is fixed
at 1000 and with λ/λmax = 0.1. From Figure 4 we can see
that in the ℓ1-norm regularized logistic regression problem,
our proposed methods (ISTA-BB, ISTA-reverse, and FISTA-
Lip) require less computation time to converge. The proximal
Newton method is not included in the figure because its running
time is way higher than the others, making it hard to visualize
the time in the same figure. The nonconvex regularized logistic
regression follows a similar path, ISTA-BB and ISTA-reverse
have better performance than GPGN and HONOR in terms of
less time consumption. We also conduct numerical experiments
to show the scalability of our methods. We varied the number
of features and the number of samples to show how our
algorithms perform with the size of samples increase. The
results are illustrated in Figure 5. For our proposed methods,
the computation time is quite low even with a large number

of features and samples, the trends of increasing computation
time with increased features/samples are quite stable, there is
no explosive increase in the computation time with the rapid
growth in features/samples.

We present the convergence of our proposed methods along
the regularization path, using a Ionosphere data from the UCI
repository, which is shown in Figure 6. Similarly, we also
include the original ISTA and FISTA methods to show the
superiority of our proposed. The figure shows that our methods
have similar performance in terms of convergence, but require
less iterations to converge han that of vanilla ISTA and FISTA.
We also explore the sparsity of the solutions, which is shown
in Figure 7. The numbers of nonzero entries obtained by our
methods are pretty similar to each other, and the solutions are
more sparse than the counterparts. In general, we can see that
the regularization parameter λ has effects on the number of
iterations to converge and the sparsity of optimal solutions.
Also, we note that the proximal Newton method is not able to
induce sparsity even with large λ.

V. CONCLUSIONS

In this paper, we propose new optimization frameworks
to solve sparse logistic regression problem which work for
both convex and nonconvex regularization terms. Experimental
results on benchmark datasets with both types of regulariz-
ers demonstrate the advantages of our proposed algorithms
compared to others in terms of both accuracy and efficiency.
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