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Abstract

There is a need to develop methods to automatically incorporate prior knowledge to support the 

prediction and validation of novel functional associations. One such important source is 

represented by the Gene Ontology (GO)™ and the many model organism databases of gene 

products annotated to the GO. We investigated quantitative relationships between the GO-driven 

similarity of genes and their functional interactions by analyzing different types of associations in 

Saccharomyces cerevisiae and Caenorhabditis elegans. Interacting genes exhibited significantly 

higher levels of GO-driven similarity (GOS) in comparison to random pairs of genes used as a 

surrogate for negative interactions. The Biological Process hierarchy provides more reliable 

results for co-regulatory and protein-protein interactions. GOS represent a relevant resource to 

support prediction of functional networks in combination with other resources.

1. Introduction

The reliable prediction of functional networks of genes may be achieved by integrating 

multiple data sources, such as gene expression and high-throughput protein-protein 

interaction experiments. This is necessary because such individual sources may be 

considered as weak prediction models. Several studies have reported significant links 

between different types of genomic data sets, as well as techniques to combine them and 

improve prediction quality for relatively simple model organisms [1], [2]. Furthermore, it is 

crucial to integrate prior knowledge resources, such as annotation databases and the 

literature, not only for building advanced functional classifiers, but also to assist in the 

validation of technique-independent predictions (e.g., to detect potential spurious 

associations). The Gene Ontology ™ (GO) is one such source of prior knowledge, which has 

become the de facto standard for annotating gene products [3]. Information extracted from 

model organism databases annotated to the GO has been applied to gene expression analysis 

and for making de novo functional predictions [4]. Methods based on the GO have been 
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proposed for measuring similarity between genes. Previous research showed significant 

relationships between GO-driven similarity of pairs of genes and their sequence-based 

similarity [5]. We have also evaluated relevant relationships between GO-driven similarity 

and gene expression correlation [6].

Prior to integrating a predictive resource, Res, it is first necessary to assess its predictive 

relevance in relation to data sets of known positive and negative interactions. In this case the 

hypothesis to prove is: Can information extracted from Res be in principle applied to 

distinguish pairs of interacting genes (positives) from those that have not shown evidence to 

be interacting (negatives)? Are there significant quantitative relationships to indicate that 

Res may be used as an input to different prediction models?

The application of information from model organism databases annotated to the GO to 

support the prediction of functional networks has not been rigorously investigated. Jansen et 

al. [1] integrated different data sets including annotations derived only from the GO 

Biological Process hierarchy to predict protein-protein (PP) interactions. The GO-driven 

similarity of a pair of genes was used as an indicator of PP interactions in yeast. Between-

gene similarity was calculated by identifying the set of GO terms shared by the two sets of 

annotations. For a given database of protein pairs, the total number of protein pairs sharing 

the same set of annotations was used as an estimator of similarity. Thus, the lower this 

frequency, the more similar the gene pair under consideration. They found that lower term 

frequencies were correlated with a higher likelihood of finding two proteins in the same 

complex. Nevertheless, such a similarity assessment approach does not fully exploit relevant 

topological and information content features that may be useful for estimating between-gene 

similarity. In some cases genes annotated to closely related but distinct GO terms may 

actually exhibit no similarity according to this method.

Using annotations from the three GO hierarchies: Molecular Function (MF), Biological 

Process (BP) and Cellular Component (CC), we sought to assess relationships between the 

GO-driven similarity of a pair of genes and their functional interactions. This study 

investigated the feasibility of applying GO-driven similarity to support the prediction of 

functional interactions of genes, including physical and regulatory interactions, in 

Saccharomyces cerevisiae and Caenorhabditis elegans. A key question addressed was: Can 

GO-driven similarity be applied to estimate the functional coupling of genes? Our 

hypothesis is that the GO-driven similarity among genes is a relevant indicator of functional 

interaction.

2. Materials

2.1. Data sets

Gene co-regulation in S. cerevisiae (CoReg)—This data set originated from a 

comprehensive collection of annotated regulons compiled by Simonis et al. [7]. Their data 

set comprised more than 1400 pairs of gene-factor associations retrieved from public 

databases and literature. More than 13000 pairs of co-regulated genes were then extracted 

from these data. These pairs comprised the CoReg reference data set analyzed in this 

investigation.
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Functional network of yeast genes (FunNet)—This data set was obtained from an 

extensive, high-quality functional gene network investigated by Lee et al. [2]. Unlike the 

CoReg data set, FunNet comprises different types of functional associations, mediated or not 

by physical interaction. This network was inferred by integrating diverse, high-quality 

functional data sets (e.g. mRNA coexpression, gene-fusions). A sub-sample of 19,216 pairs 

of genes representing the most reliable interaction predictions were analyzed in this study.

PP interactions in C. elegans (PPInt)—This data set represents another level of 

complexity, in which 860 protein-protein (PP) interactions were obtained from the Worm 

Interactome (WI5) map. The selected data set, from now on referred to as PPInt, contains 

the highest-confidence WI5 interactions [8].

2.2. The GO

The GO hierarchies provide controlled terms for describing the role played by a gene 

product, the biological goals to which a gene product contributes and the cellular 

localization of the gene product respectively. Within each hierarchy, GO terms are 

organized in a directed acyclic graph, whose nodes are the terms. There are two types of 

relationships among GO terms: “is a” and “part of”. The first type is used when a child term 

is more specific than its parent term. The second type is used when a parent has the child as 

its part. This study takes advantage of both types of links for computing similarity between 

terms as justified elsewhere [5]. The annotations recorded in the model organism databases 

consist of associations between gene products and GO terms. The evidence supporting such 

annotations is captured by evidence codes, including TAS (Traceable Author Statement), ISS 

(Inferred from Sequence or structural Similarity) and IEA (Inferred from Electronic 

Annotation). While TAS refers to peer-reviewed papers and indicates strong evidence, IEA 

and ISS denote automated predictions, i.e., generally less reliable annotations. The reader is 

also referred to [6] and [9] for an introduction to some of the predictive data analysis 

applications of the GO.

2.3. GO annotation databases

The pairs of interacting genes in the three data sets presented earlier are annotated to the 

GO. We performed experiments on data excluding the less reliable annotations (i.e., 

ignoring annotations whose evidence code is either ISS or IEA). Moreover, we compared 

these results against those obtained from excluding only IEA annotations. The August 2005 

database releases of the Saccharomyces Genome Database (SGD) and WormBase (WB), all 

available at www.godatabase.org, provided the GO annotations for these data sets. CoReg 

has 8,839, 10,874, and 11,309 interacting pairs with both genes linked to at least one GO 

term under the MF, BP and CC hierarchies respectively. FunNet had 11,767, 15,520 and 

16,865 pairs of interacting genes with both genes associated with at least one GO term under 

the MF, BP and CC hierarchies respectively. In PPInt the numbers of interacting pairs of 

genes in which both genes were described by at least one GO term were 152 under the BP 

hierarchy and 5 under the CC hierarchy. This data set did not contain any valid annotations 

under MF. The number of annotations reported above refers to non-ISS/non-IEA 

annotations.
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3. Methods

3.1. GO-driven similarity

To estimate the similarity between two genes gk and gp, annotated with sets of GO terms Ak 

and Ap respectively, one must first understand how to calculate the similarity between two 

GO terms. Several information-theoretic approaches to measuring ontology-driven 

similarity have been studied previously [5], [9]. Unlike traditional edge-counting techniques, 

these methods are based on the assumption that the more information two terms share in 

common, the more similar they are. Lin’s similarity model, for example, has shown to 

produce both biologically meaningful and consistent similarity predictions [5], [6] in 

comparison to related approaches. Given terms ci ∈ Ak and cj ∈ Ap, the between-term Lin’s 

similarity is defined as:

(1)

where S(ci,cj) represents the set of ancestor terms shared by both ci and cj, ‘max’ represents 

the maximum operator, and p(c) is the probability of finding c or any of its descendants in 

the database analyzed. It generates normalized values between 0 and 1.

Between-gene similarity results from the aggregation of similarity values between the 

annotation terms of these genes. In practice, given a pair of gene products, gk and gp, with 

sets of annotations Ak and Ap comprising m and n terms respectively, the between-gene 

similarity, SIM(gk, gp), is defined as the simple average (inter-set) similarity between terms 

from Ai and Aj:

(2)

where sim(ci,cj) may be calculated using (1). Nevertheless, this method might not always 

produce consistent results. For example, intuitively, the similarity between two genes having 

the same sets of annotation terms is expected to be equal to 1. However, this is not true 

when several annotations within a hierarchy are assigned to the genes. It will estimate, for 

instance, SIM(gi, gj) = 0.5, for gi = gj when Ai and Aj are described by the same set of 

annotations with more than one GO term within a hierarchy. In order to address this 

limitation, we have introduced an alternative approach that selectively aggregates highest 

average (inter-set) similarity values [9] as follows:

(3)

These approaches and their relationships to sequence-based similarity and co-expression 

have been investigated in [5] and [6]. From now on we will refer to (2) and (3) as the simple 

and highest average similarity methods respectively.
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3.2. Linking GO-driven similarity and functional interactions

Comparing GO-driven similarity to other indicators of functional relations—
GO-driven similarity values were calculated for all the annotated pairs of genes in the data 

sets described in Section 2. These data represented our sets of true positive interactions, 

which were statistically analyzed to show significant relationships with GO-driven 

similarity. In order to illustrate such links, similarity values from these sets of true positive 

interactions were compared to similarity values measured in a set of randomly associated 

genes, used as a surrogate for negative interactions, i.e. pairs of genes not showing evidence 

of interaction. In practice, a set of “non-interacting genes” was produced as follows. For a 

given data set, P, comprising M true positive interactions, a set N, with M negative 

interactions was built by randomly pairing genes from P. Moreover, the resulting sets were 

verified to ensure that newly formed pairs were not included in P. One has to take into 

account that some of the pairs included in N may actually be false negatives (i.e., interacting 

genes whose interaction has not been not recorded in P) and this might influence the 

comparisons performed. However, at least with regard to the data sets analyzed (evidence 

available) this could not be demonstrated. The resulting data sets N represent a valid 

approximation of counter-examples, which are essential to explore potential associations 

between functional interactions and GO-driven similarity. Furthermore, the random effects 

and variability linked to this data sampling procedure is reduced by generating K 

independent N sets. These K sets are then analyzed as an aggregated set, N′, consisting of K 

× M pairs of (non-interacting) genes.

Fundamental relationships between GO-driven similarity and the existence/absence of 

interactions were estimated by comparing similarity values exhibited in P versus values 

observed in N′. This was done for each of the three problems described in Section 2 and for 

the three GO hierarchies independently. Differences between P and N′ were summarized by 

estimating their respective mean similarity values. The significance of their differences was 

tested by applying the Student’s t-Test. The relevant null hypothesis tested was that these 

mean similarity values originated from the same sample, i.e. there are no significant 

differences between mean values in P and N′.

Using GO-driven similarity to predict interactions—After identifying significant 

differences, the capacity of GO-driven similarity to predict functional interactions was 

analyzed. Given a similarity value, SIM(gk, gp), and a pre-defined predictive similarity 

threshold value, GOS-Th, genes gk and gp are predicted to be an interacting pair (positive 

interaction) if SIM(gk,gp) ≥ GOS-Th. Some of these predictions will obviously be false. 

Therefore, the next task was to estimate the rate of falsely predicted interactions. More 

generally, this is related to the problem of estimating the decisive false discovery rate, which 

has shown to be a robust and conservative estimator of the probability, P, of detecting 

spurious associations [10]. To estimate P, AbN′ and AbP are calculated. AbN′ represents the 

number of interactions that would occur by chance and AbP the number of pairs correctly 

predicted as positive interacting pairs. The ratio AbN′/AbP represents the rate of falsely 

predicted interactions. AbN′ was estimated using the mean number of interacting pairs 

obtained from the K data sets, N, i.e. the total number of interactions observed in N′, divided 

by K. A rate of falsely predicted interactions, P, close to 1 corresponds to random prediction. 
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In contrast, low P values indicate strong evidence to support the validity of the positive 

interactions detected by the GO-driven similarity method. P values were calculated for the 

data sets described above using different GOS-Th values. This analysis allows one to have a 

better idea about how many false positive predictions may potentially be made when 

applying the GO-driven similarity method as a single prediction model. The analysis tasks 

described above were carried out with K = 10.

4. Results

4.1. Results from CoReg

Differences between the sets P (positives) and N′ (negatives) with regard to their mean 

similarity values from the simple and highest average methods respectively were 

summarized for. Unknown, IEA and ISS annotations were excluded. Interacting pairs of 

genes generally exhibit higher similarity values than non-interacting pairs using both 

methods. Significant differences (p < 0.001) for all GO hierarchies were obtained. This 

suggests the feasibility of applying GO-driven similarity to support the distinction of co-

regulated from non-co-regulated pairs of genes. Figure 1 shows the estimated probabilities, 

P, that such predictions are false as a function of the predictive threshold, GOS-Th.

4.2. Results from FunNet

Significant differences (p < 0.001) for all GO hierarchies were obtained. With both methods, 

pairs of interacting genes tend to exhibit higher similarity values than pairs of non-

interacting genes. This suggests the feasibility of using GO-driven similarity to help to 

distinguish interacting from non-interacting genes (including physical and non-physical 

interactions). Figure 2 shows the estimated probabilities, P, that such predictions are false as 

a function of GOS-Th

4.3. Results from PPInt

Significant differences (p < 0.05) were observed only in connection to the BP hierarchy. 

Figure 3 presents the estimated probabilities, P, that such predictions are false as a function 

of GOS-Th. Interpretations should also take into account the very low number of gene pairs 

with CC annotations.

5. Discussion and Conclusions

This study demonstrated significant relationships between functional similarity and known 

interactions. This pattern was remarkably observed under all hierarchies for CoReg and 

FunNet. GO-driven similarity of pair of genes may be applied to support the prediction of 

functional interactions (including co-regulatory and PP interactions) in yeast. We also 

performed a manual verification to assess the potential biological significance of some of the 

“false positive” (novel) links. This procedure reported nine pairs of proteins (with unknown 

interactions), which are feasible candidates to be interacting partners in C. elegans, such as 

F28D1.2 and B0547.1, which are involved in DNA repair and ubiquitination, respectively.

Our research does not of course suggest that this approach is sufficient or even necessary to 

detect relevant interactions. It motivates the application of this functional similarity measure 
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as a complementary predictive resource. This, in combination with other sources, such as 

gene co-expression, may support more accurate and biologically-meaningful predictions.

P.H Lee and D. Lee [11] recently integrated ontology-driven similarity information as part 

of their modularized network learning method (MONET). They first identified modules of 

interrelated genes using gene expression correlation and MIPS (Munich Information center 

for Protein Sequences database) annotations. Bayesian networks were then inferred from the 

detected modules that successfully predicted relevant gene regulation networks in yeast. 

Ontology-driven similarity was used to aid in the identification of clusters of genes on the 

basis of their MIPS annotations. Between-gene similarity was estimated using the between-

term Resnik’s method [12]. We showed that these relationships go beyond the regulatory 

level and can support applications involving uni- and multi-cellular organisms. Previous 

research has shown that Lin’s technique may outperform Renisk’s and other information-

theoretic approaches [6], [12].

The results suggest that in general the larger the GOS-Th, the lower the probability of 

making false positive predictions. But it also highlights the fact that many of the false 

positive interaction predictions might show relatively high similarities. This may be 

explained by the difficulties in creating exact true negative data sets. Nevertheless, the 

results strongly suggest that there is a tendency to reduce the number of false positive 

interactions by applying more rigorous thresholds.

Alternative assessments may incorporate other estimators of P, including less conservative 

methods. We are applying the GOS assessment approach to support the prediction of 

integrated, large scale functional networks [13].
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Figure 1. 
CoReg: Rate of false positive predictions, P, as a function of the GOS-Th for all GO 

hierarchies. P estimates the probability of predicting spurious associations.

Azuaje et al. Page 9

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2015 February 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 
FunNet: Rate of false positive predictions, P, as a function of the GOS-Th for all GO 

hierarchies. P estimates the probability of predicting spurious associations.
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Figure 3. 
PP-Int: Rate of false positive predictions, P, as a function of the GOS-Th for all GO 

hierarchies. P estimates the probability of predicting spurious associations.
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