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Abstract 
 

Estimating missing sensor values is an inherent problem 

in sensor network applications; however, existing data 

estimation approaches do not apply well to the context of 

datastreams, a major characteristic of sensornet 

applications. Additionally, they fail to account for 

relationships among sensors and simultaneously, 

incorporate the time factor making the estimation process 

computationally aware of the relative relevance of each 

data round in the datastream. To address this gap, we 

propose a data estimation technique, FARM, which uses 

association rule mining to discover intrinsic relationships 

among sensors and incorporate them into the data 

estimation while taking data freshness into consideration. 

FARM was tested with data from two real sensornet 

applications, namely climate sensing and traffic 

monitoring. Simulation shows that in terms of estimation 

accuracy, FARM outperformed existing techniques 

costing only marginally more space and time overheads 

while scaling well with the network size, thus assuring 

quality of service  for real-time applications.  

 

 

1. Introduction 
 

In wireless sensor networks, sensors send their data to 

servers and other nodes. The continuous flow of data 

readings from a sensor farther into the network is called 

datastreams. It can be expected that transmitted sensor 

data are lost or corrupted due to many reasons, such as 

power outage at the sensor’s node, random occurrences of 

local interferences, or a higher bit error rate of the 

wireless radio transmissions as compared with wired 

communications. Simply re-querying data is a naïve 

alternative as it may induce a long wait, quicken the 

power exhaustion of the node, and above all, it is still not 

guaranteed to make available the original reading. Hence, 

to be able to efficiently process queries that need to access 

missing sensor readings, it is crucial that missing stream 

values be estimated. 

Data mining is employed to discover knowledge from 

the existing data. Suck knowledge can be utilized in 

computing estimates for missed values. In this paper, we 

present a data mining based technique, called Freshness 

Association Rule Mining (FARM) to estimate values for 

missing, corrupted, or late readings from one or more 

sensors in a sensornet at any given round.  The technique 

aims to provide a good quality of service (QoS) for real-

time applications, which can be defined as a function of 

both the time needed by the queries to produce results 

based on the data gathered by the sensors and the 

accuracy of these results. The need to be aware of the time 

factor in sensornet applications gives rise to the data 

freshness concept, which FARM integrates through a 

formal data representation scheme capable of compacting 

datastreams and assigning freshness value to each round. 

To evaluate the performance of FARM, we conduct 

simulation experiments to compare it to the following 

estimation techniques: WARM [14], SPIRIT [8], TinyDB 

[9], and four statistical estimation methods: Simple Linear 

Regression (SLR), Multiple Linear Regression (MLR), 

Curve Regression (CE), and estimation by average [11]. 

Two real data sets were used in the experiments: the air 

temperature sensor data of the Huntington Botanical 

Gardens in San Marin, California collected from the 

NASA/JPL Webs Sensor Project in 2006 [12], and the 

traffic data collected by the Department of Transportation 

in Austin, Texas in 2000 [13]. Additional synthetic 

datasets were used to study the scalability of the 

algorithm. 
 

2. Related work 
 

The problem of estimating missing values has been 

extensively investigated in statistics. Examples include 

Mean Substitution, Imputation by Regression, Hot/Cold 

Deck Imputation, Expectation Maximization, Maximum 

Likelihood, Multiple Imputations, Bayesian Estimation, 

and Pairwise and Litwise Deletion [1-6]. None of these 

methods fits the wireless sensor networks and stream data 

environments for reasons of efficiency, disregards to 



  

temporal factors, or priory requirements such as “Miss at 

Random (MAR)”. 

In the NASA/JPL Sensor Webs project [7], if one 

sensor fails, its neighboring sensors compensate for the 

lost data by increasing their sampling rates. This implies 

that there must be a tight collaboration among sensors for 

a sensor to know that its neighboring sensor has failed. 

This increases power consumption on every sensor even 

during its normal operation. In addition, the approach 

does not address how sampling rates should be adjusted in 

order to guarantee good QoS. It is also possible that when 

some neighboring sensors fail, no sampling adjustment 

could potentially compensate for missing values. 

Spirit [8] uses auto-regression as its basic forecasting 

model to estimate missing values in datastreams. It spots 

correlations on numerical streams and extracts the hidden 

variables which summarize the key trends in the entire 

stream collection. To estimate, SPIRIT uses auto-

regression on the extracted hidden variables, and uses the 

results to predict the values of the missing data. To 

estimate missing data of current round, SPIRIT bases the 

forecast on the values of the previous round. It is unclear 

whether SPIRIT can provide good estimation accuracy in 

datasets where a sizeable portion of the data is missed.  

TinyDB [9] is a query processing system for extracting 

information from a network of special type of sensors. 

Given a query specifying the user data interests, TinyDB 

collects that data from motes in the environment, filters it, 

aggregates it together, and routes it to a PC. TinyDB does 

this via power-efficient in-network processing algorithms. 

It estimates the missing values by taking the average of all 

the values reported by the other sensors in the current 

round. This straightforward estimation heuristic is blind to 

any correlations between sensors, which might yield poor 

estimation accuracy.  

WARM [14] uses association rule mining to estimate 

missing readings. It makes use of the sliding window 

concept where only the latest w rounds of data reports are 

stored and used for estimation. One deficiency of WARM 

is its sensitivity to the window size – a small w induces a 

risk of loosing data trends while large values require a 

considerable space overhead. An additional deficiency is 

WARM’s disregards to temporal aspects since it views all 

round data as equally important. 

 

3. Freshness Association Rule Mining 

(FARM) 
 

3.1. Motivation and Contribution 
 

FARM uses association rule mining to find related 

sensors. The estimation of a missing sensor reading is 

based on a weighted average of the current reading of the 

sensors related to the sensor with the missing reading. 

Each participating weight in the averaging is directly 

derived from the strength of the corresponding sensor 

association. Pioneer work in [14] used association rules to 

estimate lost sensor data. A major contribution of FARM 

is its use of a data freshness framework on top of an 

association rule method. The integration of this 

framework is non-trivial and translates the rationale of 

FARM. The fundamental idea behind using freshness is to 

incorporate the temporal factor that is inherent in most 

data stream applications. The contribution of FARM is; 

however, threefold:  

• Incorporate the temporal aspect into association 

rules and estimation 

• Compact data streams and allow a large history 

to appropriately influence sensor rules 

• Guarantee retrievability of original data from its 

compact form 

Association rules shall be constructed while paying a 

close consideration to the freshness of data. The benefit 

from this conception is self-evident in that the fresher the 

data is the more importance it shall be given. Typically, 

the current state of any sensed physical environment is 

more likely to be influenced by the set of its previous 

states that has manifested in the nearest time period. It is 

this rationale that gives rise to the notion of data 

freshness, which, if properly combined with association 

rules, can potentially uncover temporal trends across 

different sensors. Temporal patterns shall be obtained by 

combining information on the data of a particular sample 

together with the round order of the same sample in a way 

to allow the more recent (fresh) data to contribute more 

towards the estimation. 

By assigning each round a different weight that grows 

in accordance with its order, it is possible to define a 

reversible mapping between an entire stream history from 

one sensor and the set of real numbers. This allows the 

data to be compact and yet sufficient for estimation. Our 

analysis shows that the reverse mapping procedure is 

nicely scalable as the number of samples increases and 

thus can be interfaced with a separate query processor 

module. All these advantages of our proposed technique 

are possible under the umbrella of the freshness 

framework. 

To recapitulate, it is this duality between the data 

freshness and the data compaction scheme as well as their 

positive implications on the space and time complexities 

that derive the motives of the FARM method.  

 

3.2. Considering freshness of data in estimation  
 

To actualize the previous motives, FARM makes each 

round in the sensor stream participate with a different 



  

level of contribution (round weight) that is based on its 

relative recency. Round weights satisfy the following 

recursive relation: w(1) = 1; w(n) = p*w(n-1)  where p ≥ 1, 

input to w is the round order, and w is a function that 

returns the weight of a given round. The weight of an 

arbitrary round n is p times the weight of the previous 

round (n-1). p is referred to as the damping factor, which 

represents the relative importance of a round 

comparatively with the previous round. The weight of the 

1
st
 round is 1. The above recursive definition stems from 

the rather intuitive conception of relative round 

importance. An equivalent definition is w(n)=p
n-1

. 

Obviously, w(n) grows in terms of n and, thus, the 

recency of a round is reflected in the value of its weight. 

The more recent the data is, the higher weight it will have 

and subsequently, the more it will contribute to the 

calculation of the estimated values. It is worth noting that 

the choice of the exponential scheme might eventually 

yield an overflow due to the buffer limit in finite 

arithmetic. Refer to Section 3.7. 

 Assuming p = 3, Table 1 presents an example of a 

centralized network with five sensors (S0, S1, S2, S3, and 

S4) that send the traffic state data to a central server at 

specific time intervals.  Four traffic states can be reported 

as follows: Light = “L”, Moderate = “M”, Heavy = “H” 

and Congestion = “C”. Table 1 shows the weight of the 

three rounds of data readings. 
 

Table 1. RMSEs for Climate Sensing data set 

Round 

Number 

S0 S1 S2 S3 S4 Round 

Weight 

1 M L M M M 30 

2 M M L L M 31 

3 C M M C C 32 

 

As shown in Table 1, the weights of rounds 1, 2, and 3 

are respectively 3
0
, 3

1
, and 3

2
. This simple data example 

in Table 1 connotes two basic assumptions used in our 

technique. One is that the sensor data is categorical where 

data discretization is done offline. Secondly, it is assumed 

that the sensor network in question follows a centralized 

architecture where all sensors are one-hop from a base 

station. All sensors report their readings to the server 

where data is normally processed and analyzed and where 

also estimation is to be performed. Although an in-

network data collection/estimation scheme might be more 

power-aware, an application of FARM to such non-

centralized sensornets is possible though will only be 

addressed in future work. As we shall see in Section 4, 

this type of centralized net topology conforms to the two 

real-world sensornet deployments whose datasets are used 

to test our method. 

 

3.3. Determining the relationships among sensors 
 

FARM attempts to find association rules between 

sensors in an apriori-like fashion [10]. Apriori is a level-

wise iterative algorithm that successively determines the 

frequent itemsets where in each new iteration the frequent 

itemsets of the next order are found. 

One can quickly think of the different sensors as the 

entities to be substituted in for the generic concept of 

items in traditional data mining. However, few 

modifications need to be put in place. To address the issue 

of categorical data as apposed to basket data, we shall 

define the frequency of a sensor with respect to a certain 

state [14]. Therefore, one state is assimilated to true and 

all others to false. This will in turn complete the definition 

of the prior and posterior probabilities (respectively, the 

actual support and actual confidence of an association 

rule).  

Datastreams are continuously generated, which makes 

it time consuming to re-generate frequent itemsets of all 

order given the new arriving data. Note that an 

incremental online update of the frequent itemsets of any 

order is not possible. This is because given only frequent 

itemsets of all orders up until the last round and the 

reports (transactions) of the new round, it is impossible to 

update the different frequent itemsets without having the 

details of the reports in all previous rounds. Furthermore, 

saving frequent itemsets of high orders require large 

storage capacity. For these two reasons, the maximum 

order of frequent itemsets is limited to two. In other 

words, FARM only seeks sensor rules where there is one 

antecedent sensor and one consequent sensor. A FARM 

sensor rule would then read: if Sensor A reports state e 

then “likely” Sensor B also reports state e. 

Experimentation shows good estimation accuracy despite 

this rule-load shedding approach. 

To incorporate the freshness factor, reported states are 

weighted according to the round weight in which they 

were reported. To accommodate for this principle, actual 

support (actSup) and actual confidence (actConf) need to 

be reconfigured. We propose an actual weight support 

actWeightSup and an actual weight confidence 

actWeightConf  for the pattern Sensor A → Sensor B w.r.t. 

e. The actual weight support is the sum of the weights of 

the rounds where both sensors A and B report state e 

divided by the sum of all round weights. The actual 

weight confidence is the sum of round weights where both 

A and B report the same state e divided by the sum of the 

round weights where e is reported by A. Clearly, these 

formulations of actWeightSup and actWeightConf reflect 

the temporal factor translated by the notion of round 

recency. To develop an intuition, consider the data rounds 

of Table 1. It can be verified that the actWeightSup for the 



  

rule Sensor S1→ S2 with respect to state “M” equals 9/13. 

The actWeightConf for the same rule is 9/10. This 

completes how round weights are used for the purpose of 

incorporating data freshness in association rules.  

 

3.4. The proposed data structures 

 
FARM uses two main structures: (1) buffer and (2) 2D-

Ragged Array. The buffer is simply a one-dimensional 

array that is reset with new round data after each new 

sample with a special value for missing/corrupted values. 

The ragged array can be viewed as the upper triangular 

part of a matrix where each of the column and row sets 

consists of the entire set of sensors. An element of the 2d 

ragged array is an object that corresponds to a particular 

pair of sensors not necessarily distinct. An object holds 

the history of round information for the particular pair of 

sensors that it corresponds to. This information is useful in 

evaluating the association mining variables before 

potentially qualifying the sensor elements in the given pair 

as being related. Object [Si][Sj] (i ≥  j) contains a one 

dimensional array of s entries, where s is the number 

sensor states. Each array entry in [Si][Sj] stores the sum of 

all round weights in which both sensors reported the same 

particular state. The index of each particular array entry 

determines the state with respect to which the weight sum 

is computed. For instance, in Table 1, object [S4][S0] 

contains the following array of weight sums: {0,4,0,9} 

with respective indices: “L”, “M”, “H”, and “C”. Note that 

it is the round weights that make it possible to store only 

one number (weight sum) and yet be able to summarize all 

information about the specific rounds in which a given 

pair of sensors had reported a common state. Given a 

weight sum and the weight sequence w, it is 

algorithmically possible to retrieve the orders of all 

respective rounds where the two sensors had a common 

reading. Section 3.6 annotates the data retrieval algorithm.  
 

3.5. The proposed algorithms 
 

 FARM consists of three main algorithms, checkBuffer, 

update, and estimateValue. checkBuffer serves as the main 

routine, where it checks for any existing missing values 

and accordingly directs the estimateValue method, to 

perform estimation before finally calling the update 

procedure to update the 2d ragged array with new round 

data including any possibly predicted values. Although 

this update scheme makes no distinction between 

estimated and original values, we are still able to control 

the quality of the estimate under a basic sensor model 

assumption. In our theoretical analysis (omitted here), we 

formulate the RMSE as well as other metrics in terms of 

the mining variables. Then a constrained minimization 

setting assures the lowest possible RMSE and a bounded 

estimate error with the respect to the assumed data model. 

This initiative also sets the ground for a parameterless 

data mining framework.  

The update method traverses the buffer to check if 

there are any two sensors reporting the same value in the 

current round. For any such pair, it sets the current 

common report and it increments the appropriate weight 

sum by the current round weight. It can be quickly 

verified that this algorithm requires O(d
2
) operations 

where d is the number of sensors as it iterates in the order 

of all possible sensor pairs. 

The estimateValue finds all sensor associations with 

the missing sensor (hereon MS) then uses these 

associations to compute an average by weighing in each 

involved state in all rules. The average is rounded up or 

down to the nearest legal sensor state. The algorithm 

follows the below steps: 

Step 1: Determine eligible states for estimation. A state 

is said to be eligible if its actual support is larger than the 

minimum support, minSup.  In the context of a state, the 

actual support is simply its frequency divided by the total 

frequencies of all states. 

Step 2: Create a temporary data structure called 

StateSet for each eligible state. The purpose of this set 

structure is to group sensors reporting the same state in the 

current round. Each StateSet is initialized to empty set and 

then sensors are distributed into the appropriate state sets 

depending on the values of their current readings. The 

individual StateSet will go through several updates before 

they exactly contain sensors that associate with MS. 

Step 3: Test for potential sensor associations by 

identifying all sensors of each StateSet that individually 

with MS constitute a 2-frequent itemset. This test is done 

by comparing actWeightSup with the user-defined 

minSup. If the support, actWeightSup, between one sensor 

and MS fails to be larger than minSup, that sensor is 

deleted from the StateSet. If the test succeeds, the 

actWeightConf of the potential rule Si → MS with respect 

to the eligible state reported by Si is compared with the 

user-defined minConf. If the confidence test is satisfied, 

then Si is considered as an eligible sensor and will 

contribute in estimating the missing sensor value; 

otherwise, Si will be deleted from the StateSet. 

Step 4: Compare the contribution weight of each 

eligible state towards the estimation in terms of the 

supports between MS and each of the eligible sensors 

reporting that particular eligible state. The contribution 

weight is distinct from the accumulated state weight 

computed in terms of round recency. Evidently the latter 

weights influence the former. 

Step 5: Calculate the missing value and round it to the 

closest state value. The estimated reading of MS is 



  

obtained by averaging the readings of its related sensors.  

Averaging coefficients are based on the strengths of the 

relations involved defined in terms of the supports of 

those relations. Our analysis shows that estimateValue 

requires no more than O(ds) operations while on average 

it requires only O(max(d,s)). 

 

3.6. Retrieving data at any point in time 
 

Our data compaction scheme that maps the stream 

history of one sensor to a real quantity is reversible by the 

aid of a procedure that scales well even as the number of 

rounds increases. Compacted report history of any sensor 

is located in one diagonal entry of the 2d ragged array. 

Given a weight sum ws relative to a particular sensor with 

respect to particular state, the algorithm determines the 

orders of rounds in which the sensor reported a certain 

state. The algorithm computes the partition of round 

weights that sum up to the given weight sum. However, 

when p = 1, the decomposition is completely ambiguous 

and thus retrievability is not possible. For values of p 

greater than or equal to 2, the algorithm iterates in the 

order of the cardinality of the state weight partition 

summing to ws. Complexity remains practical for the 

upper half range between 1 and 2 [15].  

   

3.7 Implementation Issue 

 
Evidently, from a practical perspective it is impossible 

to store an infinitely growing sum in a finite buffer limit 

since the 64-bit buffer will overflow at some point. This 

limits the value of the maximum weight sum that can be 

stored and, implicatively, the maximum number of rounds 

that can be allowed. Our analysis (omitted for brevity) 

shows that for a damping factor of 2, we would be able to 

store at most 1023 rounds [15]. This can be practical in 

the sense that neglecting much older rounds does not 

significantly change the support of the rules due to their 

exponentially lower weights. Few remedies that allow the 

storage of a much larger history are elaborated on in [15]. 

 

4. Simulation experiments 

 
We compare FARM to WARM, SPIRIT, TinyDB, and 

four statistical estimation methods: (1) The Simple Linear 

Regression (SLR) approach, (2) The Multiple Linear 

Regression (MLR) approach, (3) The Curve Regression 

(CE) approach, and (4) estimation by average (Avg) [11].  

Comparison was done with respect to the space, time, and 

accuracy metrics. Additionally, we evaluate FARM and 

WARM’s ability to estimate by means of data mining 

without resort to a default procedure when no associations 

are found. We evaluate the programs on two different pre-

collected datasets as noted in Section 1 with 15% of the 

data missing. We averaged the results for FARM for 

damping factors ranging from 1 to 10. We provide a 

summary of results below. Refer to [15] for a 

comprehensive discussion and analysis. 
 

4.1. Evaluation of Time 

 
By execution time, we mean the average time it takes to 

finish estimation per round. The execution time of FARM 

is longer than that of most other methods by less than one 

millisecond. Execution took 9.73x10
-4

 seconds in the 

climate dataset and 434.37 x10
-4

 seconds in the traffic 

dataset. However, it is still manageable for the purpose of 

most sensor network applications since it took less than 

one millisecond to complete all estimations of one round. 

This time is negligible compared to the sampling rates (5 

and 15 minutes) in our two test applications and most 

sensornet applications for that matter.  
 

4.2. Evaluation of Estimation Ability 
 

Each of FARM and WARM has estimation ability 

exceeding 80% on each of the datasets.  

 

4.3. Evaluation of estimation accuracy 
  

 The accuracy of the estimation is evaluated using the 

normalized root mean square error (RMSE). The RMSE 

results on both data sets for all the approaches are 

presented from the best to the worst in Table 2. We 

tabularize both the RMSE and the relative difference in 

accuracy between the best method and the rest. This latter 

measure is a better assessment of the difference as 

apposed to directly basing the comparison on an 

evaluation of the difference in magnitudes of the 

individual RMSEs. We note that FARM’s average RMSE 

is the best on both real datasets. 

 In particular, on the climate dataset, the relative 

estimation error is about 23% and 42% better than the 

second and third best methods. As for the traffic dataset, 

FARM is best with a margin of about 3% and 14% 

relative to the two next best methods. We can attribute 

this outcome to the nature of the dataset at hand, i.e. 

whether the data rounds have in reality different levels of 

relevance or not. This result can best interpreted by noting 

the average of all damping factors used. Precisely, the 

average p was about 3.9, which is considerably higher 

than 1. This basically translates the assumption that the 

given dataset naturally encloses data rounds of varying 

importance. This explains why the average error on the 

traffic dataset is only marginally better (about 3%) than 



  

the second best method. It might therefore be suspected 

that the best results on that dataset would show a larger 

gap in the relative estimation accuracy if the real 

importance of round recency is far off the average decay 

rate. To verify this claim, we here state the best results. 

On the climate sensing dataset the lowest attained RMSE 

was 0.0043, which was obtained for the damping factor 

values of 4. This explains why the best RMSE is close to 

the average RMSE for this dataset. As for the traffic 

dataset, the lowest RMSE was 0.069 which is 25.96% 

better than SPIRIT, the second best approach. This lowest 

RMSE was in fact yielded by a damping factor of 1.25, 

which is noticeably far from the average value. Despite 

the compromise yielded by considering the average 

results, FARM still achieved the best estimation accuracy. 

We refer the reader to our technical report [15] on how to 

optimize the choice of the damping factor by considering 

a data model for the sensor readings. 

 

Table 2. RMSEs for both datasets 

Climate Sensing Data Traffic Monitoring Data 

Method RMSE Relative 

Accur-

acy % 

Method RMSE Relative 

Accur-

acy % 

FARM 0.0048

7 

Best 

Method 

FARM 0.090 Best 

Method 

WARM 0.0063

6 

23.43% SPIRIT 0.0932 3.43% 

Tiny 

DB 

0.0085 42.71% WARM 0.105 14.28% 

SPIRIT 0.0116 58.02% Tiny 

DB 

0.137 34.31% 

Avg 0.015 67.53% Avg 0.1445 37.72% 

MLR  0.121 95.98% MLR 0.493 81.74% 

SLR 0.342 98.58% CE 2.253 96.01% 

CE  0.346 98.59% SLR 2.286 96.06% 

 

4.4. Evaluation of Sensitivity 

 
 For lack of space, we do not include any sensitivity 

figures (see [15]). We note that FARM enjoys a good 

scalability in terms of network and state space size on the 

time and space metrics as well as the estimation error. 

Total average time cost is O(max(nd2,ms,md)) where m is 

the number of estimations. Total space cost is O(sd
2
).

  

5. Conclusions  

 
 This paper presents a data estimation technique, called 

FARM, which uses association rule mining to estimate 

missing sensor data in data streams. FARM recognizes the 

difference in importance between recent and old rounds of 

sensor readings and achieves this by appropriately 

decaying data of old rounds. It does this via the virtue of 

the data freshness concept, which incorporates a temporal 

factor in the estimation. The data freshness framework not 

only serves to assimilate the temporal element, but also 

offers a way of compacting the data stream and thus 

enhancing the space complexity and, in turn, the access 

time since compacted data is sufficient to perform 

estimation. Moreover, the freshness framework allows the 

retrievability of raw data when requested by queries. 

FARM is compared to a pool of statistical and algorithmic 

methods, which it outperforms on the RMSE measure. 

FARM’s time and space performances easily assure a 

quality of service for sensor network applications. FARM 

also enjoys good estimation accuracy on datasets that 

naturally contain a temporal element as well as datasets 

where data recency is irrelevant through the flexibility in 

choosing the decay rate or damping factor.     
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