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Abstract— RNA molecules are distinguished by their sequence
composition and by their three-dimensional shape, called the
secondary structure. The secondary structure of a pre-mRNA
sequence may have a strong influence on gene splicing. In our
previous work, we showed that a splice-site model employing
sequence features built using our feature generation algorithm
was very effective in predicting splice sites. The generated
sequence features also contained biologically relevant features.
In this paper, we extend the feature generation algorithm to
construct secondary-structure features. These features capture
the nucleotide pairing tendency in the splice-site neighborhood.
We extend the splice-site model to include both pre-mRNA se-
quence and structure characteristics. The new model significantly
outperforms the sequence-based features model. The identified
secondary-structure features capture biologically relevant signals
such as splicing silencers. We also found these signals to prefer
specific regions around the splice-site neighborhood and we detail
their preference.

I. INTRODUCTION

The three-dimensional shape of proteins or nucleic acid se-
quences is called secondary structure. The secondary structure
of RNA molecules is defined by the pairings of the nucleotides
along the sequence. RNA secondary-structure characteristics
are important in biology, because RNA sequences fold into
structures that are critical to their biological functions. More-
over, RNA secondary-structure properties may help identify
subsequences of nucleotides that interact with other molecules
or complexes.

Human genes — and the genes of every eukaryotic organism
— are composed of contiguous coding regions in the DNA
sequence. The coding regions, exons, are separated by non-
coding regions, introns. During the transcription process, the
messenger RNA copies the portion of the DNA that contains
a gene (pre-mRNA). After transcription, during the splicing
process, the non-coding regions are excised from the pre-
mRNA sequence. All the coding pieces, then, are ligated
together into the final gene product (mRNA), ready to be
translated into protein. The borders of the introns are called
splice sites, the start of an intron is called the donor splice
site and the end of an intron is called the acceptor splice site.
Splicing takes place in several stages [1]. There are a number
of proteins that recognize the splice-site locations and bind to
the sequence facilitating the intron excision.
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Splice-site prediction is the task of recognizing the actual
boundaries of the protein-coding regions in the DNA sequence.
Accurate splice-site prediction is a critical component of gene
prediction. Gene prediction from DNA sequence data is an
important goal in bioinformatics, not only to provide fast and
reliable annotation of the large quantity of sequences data, but
also to provide valuable biological insights. In our previous
work, [2], [3], we developed a splice-site prediction model
achieving significant accuracy improvements over existing
methods. We also showed that the features generated using
our algorithm correspond to biologically significant functional
elements [4], [5].

In our splice-site prediction model, we have considered only
sequence-based features. However, the splicing process is not
a mere linear process. In fact, the correct identification of the
splicing borders actually involves a large number of proteins.
The affinity of sequence nucleotides to form pairing bonds
may guide these proteins to their binding sites, thus having
an important effect in the splicing process. To investigate this,
we use an RNA secondary-structure prediction algorithm [6]
to fold the training sequences into their secondary-structure
form. Using the secondary-structure sequences, we extend
our feature generation algorithm to generate structure-based
features. These novel features capture the pairing tendency
of the position-specific subsequences in splice-site neighbor-
hood. The combined splice-site model of both sequence- and
structure-based features improves splice-site prediction. The
secondary-structure features also capture important biological
properties.

The possibility of extracting useful information from RNA
secondary structure for splice-site prediction was proposed
by Patterson et al. in [7]. Their splice-site prediction model
combined a sequence-based splice-site predictor score and
a few structure-based metrics, such as the optimal folding
energy score, the max-helix score, and a second-order Markov
model to capture the pairing profile of a folded sequence.
They suggested that there are structural cues that should be
exploited by gene-finding algorithms. Our approach differs
from [7] in that we searched the space of possible position-
specific nucleotide pairings in order to find specific features
that improved splice-site prediction. We also offer biological



interpretation for the identified features. Our recent work
demonstrated that our sequence-based splice-site predictor
achieved much better results than the WAM model, which was
used as the sequence-based predictor in their work.

We describe our data in Section II and the generation of
structure-based features, using our feature generation algo-
rithm, in Section III. Section III also summarizes the defi-
nitions of the sequence-based features used in the splice-site
prediction model. We provide a detailed description of our
experiments, using the novel features, in Section IV. Next, we
discuss our findings and the possible biological relevance of
the new features.

II. DATA CHARACTERISTICS

The dataset used for feature generation was a collection
of 162-nucleotide-long training sequences centered at the
splice site. Both upstream and downstream regions were 80
nucleotides long and the sequence alphabet was {A,C,G,T}.
The acceptor-site training data contained 20,996 positive
instances and 200,000 negative instances, and the donor-
site training data contained 20,761 true positive instances
and 200,000 negative instances. We used these sequences
to generate sequence-based features. For secondary structure
characteristics, we need the three-dimensional shape. We used
the RNA secondary-structure prediction algorithm, Afold [6],
to fold all the training sequences into their three-dimensional
form. Afold was modified so that given the training sequences
as input, the result was a new set of sequences that, for each
nucleotide, denoted whether it participated in paring bonds in
the secondary form. Those constituted the secondary-structure
sequences.

We wanted to understand if splicing was affected by the
pairing tendency of the nucleotides in the close neighborhood
of the splice site. To answer that question, we plotted the
fraction of positive sequences having a paired k-nucleotide
subsequence (k-mer) for each position of its length and
compared it with that of the negative sequences. Those plots
are shown in Figures 1 and 2. We were surprised to see
that for acceptor splice-site sequences, the positive sequences
showed a higher tendency to have paired k-mer sequences in
the upstream region, with a clear peak of pairing tendency
just before the actual splice-site position. The donor splice-
site sequences, on the other hand, showed a tendency toward
reduced k-mer pairings in the upstream region and a higher
tendency for pairing in the downstream region.

These observations are of interest because they are con-
sistent with the actual splicing scenario that takes place in
living cells. These findings encouraged us to investigate the
possible impact of secondary-structure features on splice-site
prediction.

III. FEATURE GENERATION FOR SPLICE-SITE PREDICTION
This section describes our feature generation algorithm

(FGA) [2], [3]. FGA uses domain knowledge and data prop-
erties to construct and select useful features for the prediction

task. Starting with an initial feature set, FGA iteratively calls a
feature construction method to expand the current feature set,
and a feature selection method to reduce the feature set size to
manageable levels. After a specified number of iterations, the
algorithm produces an output feature set. Those features are,
in turn, used by a classification algorithm for the classification
task. The classifier that consistently gave the best performance
for our data was CMLS [8]. We used the 11-point average
precision (11ptAvg Precision) to evaluate the performance of
our algorithm. For any recall ratio, we calculated the precision
at the threshold that achieved that recall ratio. The 11ptAvg is
the average of precisions estimated at the recall values of 0%,
10%, 20%, ..., 100%.

A. Feature Construction for Splice-site prediction

The first stage of the feature generation algorithm generates
feature sets useful for splice-site prediction. Initially, we
define the basic elements to construct features. In the case
of pre-mRNA sequences, we use the nucleotide alphabet and
sequence length to construct sequence-based features.

1) Feature Construction for Sequences: We considered
several feature types that capture compositional and positional
properties of sequences: general k-mer, upstream/downstream
k-mer, position-specific k-mer and conjunctive positional fea-
tures. We have described these features and their individual
construction methods in [3]. Here we extend our algorithm to
capture the secondary-structure characteristics of the splice-
site sequence.

2) Feature Construction for Secondary-Structure Se-
quences: We define a novel feature type that captures the
structure characteristics of the RNA sequences, the position-
specific paired k-mers. A position-specific paired k-mer is a
string of k nucleotides that, in the output sequence of the RNA
secondary-structure algorithm, is predicted to form pairing
bonds with other nucleotides in the sequence. To identify
possible binding motifs for the proteins that affect splicing,
we employ our feature generation algorithm to identify useful
position-specific paired k-mer features.

Construction Method: This construction method starts with
an initial set of position-specific paired k-mer features and
expands them to a set of position-specific paired (k + 1)-
mers by appending the letters of the alphabet to each fea-
ture. As an example, assume Fjp;tiq1 is {AACCt}. This set
contains one feature, the 4-mer “AACC” starting at the first
sequence position. Each nucleotide of this feature was paired
in the secondary structure. Now, we can extend it to the next
level set of position-specific paired 5-mers, Feonstructed =
{AACCA;,AACCC,,AACCG,,AACCT:}. In that man-

ner, we incrementally construct higher levels.

B. Feature Selection for Constructed Features

To reduce the size of our constructed feature sets, we
considered different feature selection methods. Information
Gain (IG) measures the number of bits of information obtained
for category prediction by knowing the presence or absence
of a feature. Chi-Square (CHI) statistic measures the lack of
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Fig. 1. Position-specific paired features found in true acceptor-site sequences (positive) vs. non-acceptor-site sequences (negative). The acceptor-site consensus
“AG” is at positions [80,81] in the sequence. The upstream region, the sequence region to the left of the splice site, indicated pairing affinity in the true
sequences.

Donor splice sites

Position-specific paired 2-mers in donor Position-specific paired 3-mers in donor
splice-site neighborhood 5 plice-site neighb d

o
o
a

=}

>
@
8

_positi
$ &

Fraction of paired
sitions

Fraction of paired
ositions

0.
Q
0.
0.40
035 0=
030 0.15
0 20 40 Bequendd Positithl 120 140, 160 9 Lo W 5 Sequengg Pcsi!ioﬁoo 120 110 s
Position-specific paired 4-mers in donor Position-specific paired 5-mers in donor
- splice-site neighborhood . splice-site neighborhood
B [~
© 026 f--- o
g Bl e ,g
Sa T 0
25022 oc
52 52
c £0.20 =0.
68 §2
5 o018 28
€ 016 f--- g °
[y i
0.14 p---
012 |-+
0.10 0.08
0 20 40 60 80 - 100 120 140 160 0 20 40 60 80 100 120 140 160
Sequence Position Sequence Position

— — = Pairings in positive sequences Pairings in negative sequences

Fig. 2. Position-specific paired features found in true donor-site sequences vs. non-donor-site sequences. The donor-site consensus “GT” is at positions
[80,81] in the sequence. The upstream region shows a lower pairing affinity compared to the downstream region, the sequence region to the right of the splice
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independence between feature f and the category ¢;. Mutual
Information (MI) is a criterion commonly used in statistical
language modeling of word associations. The definitions of
these values are the same as those presented by Yang and
Pedersen in [9]. The other filtering method that we use, KL-
distance (KL) criterion, measures the divergence between the
distribution of features present in a training sequence and the
categories that sequence may belong to. KL definition is given
by Schneider in [10].

For each initial feature set, we iterate between the con-
struction feature method to obtain more complex features, and
a feature selection method to reduce the dimensionality of
the constructed set. We perform this process for a predefined
number of iterations. In this manner, we generate different
feature sets, each useful for splice-site prediction.

Recursive Feature Elimination
After we generate the individual feature sets separately, we
collect all features into a mixed set. Starting with the mixed
set, we learn a prediction model using a classifier similar
to linear support vector machines. The CMLS classifier [8]
produces a decision boundary that discriminates between the
two different categories. Each feature is assigned a weight
during learning. These weights define the decision boundary
and can be used for ranking. Features with zero weights, or
weights very close to zero, are assumed to not contribute to
the classification task [11], and are therefore eliminated. In this
manner, we learn a new model and eliminate a fixed number
of features after each iteration.

C. Splice-Site Prediction Model

Our generated features are of two major feature types:
features capturing sequence properties and features capturing
structure properties of the splice-site neighborhood. Using
this natural separation, we use a classifier to learn sequence-
and structure-features splice-site prediction models. Then, we
define a new model for the splice-site prediction — a linear
combination of the structure-features model and the sequence-
features model:

Scoreseq =cotcy % Scorestructure + c2 * Scoresequence

The structure-model and sequence-model of splice-site predic-
tion are used to score a held-out training-sequences set. Then,
we use the classifier to learn the coefficients for the linear
combination of the models. We give a detailed analysis of all
the mentioned methods and their results for the problem of
splice-site prediction, in the next section.

IV. EXPERIMENTS AND DISCUSSION

To explore the splice-site prediction impact of the nu-
cleotides showing high pairing potential, we conducted the
sets of experiments described in this section. All the reported
11ptAvg precision values are the results of three-fold cross
validations.

A. Position-specific paired k-mers

Similar to our position-specific sequence-based k-mer fea-
tures [3], we constructed all the position-specific k-mers for k
values ranging from 1 to 5. We scored the features, using the
feature-selection methods and used the top 1,000 features to
predict both donor and acceptor splice sites. The results are
shown in Table I.

We collected 4000 features from position-specific paired k-
mer sets for & from 2 to 5. To this set, we added position-
specific paired 1-mer features (648 for a 162 nucleotide long
sequence). We applied recursive feature elimination on those
sets of features, as shown in Tables II(a) and II(b). Compared
with individual results of our sequence-based features, the
11ptAvg precision performance of the position-specific paired
k-mers was very promising. It clearly showed that such a fea-
ture carried an important amount of information, which could
possibly help to further understand the splicing mechanism.
Also, when combined with a previously identified sequence-
based features model, it might provide a model that could
substantially increase our ability to predict splice sites from
stretches of un-annotated RNAs.

B. Splice-site prediction with sequence and structure-based
features

We selected a set of features from the position-specific
paired k-mers to combine with our previously identified
acceptor and donor sequence-features sets [3]. The mixed
model for acceptor-site prediction contained a collection of
3000 sequence features 3148 structure features. The mixed
model for donor-site prediction contained a collection of 1675
sequence features and 3148 structure features. These models
produced the following 11ptAvg precision results: 89.74%
for acceptor splice sites and 89.46% for donor splice sites.
Although producing a low rate of false positives and rank-
ing well, those results have not produced better predictions,
compared with our sequence-based feature model (see our
previously published work for a comprehensive description of
those results). In fact, at this point, our sequence-based feature
models have produced higher splice-site prediction 11ptAvg
precisions: 90.35% for acceptor splice-sites and 90.61% for
donor splice sites.

To understand the importance of the secondary-structure
features for splice-site prediction, we conducted the following
experiments. Starting with the whole set of sequence and
structure features, we applied recursive feature elimination,
eliminating 200 features for each iteration. Tables IlI(a) and
III(b) show the splice-site prediction results for both acceptor
and donor datasets in our experiments. In those tables we also
list the number of features that describe sequence composition
or structure characteristics for each mixed feature set. We
also trained the classifier and built prediction models for each
separate sequence- and structure-feature set and reported the
individual 11ptAvg precisions.

From the results shown in Table III we made several
observations. First, the sequence composition was of primary
importance in defining a splice site. The 11ptAvg results of



TABLE I
FEATURE-GENERATION COMPARISON FOR POSITION-SPECIFIC PAIRED k-MER FEATURES FOR k£ FROM 1 TO 5 FOR ACCEPTOR AND DONOR SPLICE-SITE
PREDICTION. WE GIVE THE 11PTAVG PRECISION FOR EACH SET WHEN ALL THE FEATURES ARE USED AND WHEN TOP-1000 FEATURES ARE USED FOR
DIFFERENT SELECTION METHODS.

Acceptor-Site Models

Donor-Site Models

K-mer All IG KL MI CHI K-mer All 1G KL MI CHI
1 61.79 - - - - 1 61.07 - - - -
2 64.46 62.11 61.84 46.62 62.13 2 66.08 61.88 61.78 4429 61.92
3 59.82  55.05 - 43.46  54.96 3 - 5473  53.09 4791 54.61
4 51.04 4293 3698 40.17 43.02 4 5121  44.06 4130 3942 4340
5 44.13  38.72 27.17 3720 - 5 4529 43.14 3512 4137 4370

(@) (b)
TABLE I

SPLICE-SITE PREDICTION RESULTS FOR POSITION-SPECIFIC PAIRED k-MER FEATURES FOR DIFFERENT STAGES OF RECURSIVE FEATURE ELIMINATION
USING CMLS. WE START WITH 4648 FEATURES FOR (A) ACCEPTOR AND (B) DONOR, WHERE 648 IS THE NUMBER OF POSITION-SPECIFIC PAIRED
NUCLEOTIDES AND 4000 ARE THE CHI-SELECTED FEATURES FOR k£ VALUES FROM 2 TO 5. FOR EACH ITERATION WE REDUCE THE NUMBER OF
FEATURES BY 500 AND REPORT THE 1 1PTAVG FOR SPLICE-SITE PREDICTION.

Nr of Features | 1IptAvg (Acceptor)

4648 66.81
4148 66.84
3648 66.91
3148 66.74
2648 66.33
2148 65.24

1648 64.39

1148 61.80

648 58.47

Nr of Features | 11ptAvg (Donor)

4648 69.77
4148 69.82

3648 69.17
3148 69.03
2648 68.55
2148 67.68

1648 65.81

1148 65.28

648 63.10

(2)

models built only on sequence features consistently showed
high values. Second, specific nucleotide pairings of particular
locations could be the key to the discovery of important
binding sites. The 11ptAvg results of models built only on
structure features were several orders of magnitude higher than
random (10%). And third, the secondary-structure information
improves splice-site prediction, in addition to the sequence-
based features. For example, as shown in Table III(a), when the
number of features was reduced to 3048, the addition of paired
position-specific features increased the 11ptAvg from 89.69%,
which was the result of sequence-based features, to 90.36%.
This result was statistically significant with alpha 0.005.

C. New prediction model with sequence- and structure-based
information

The results in Tables III(a) and III(b) suggested that adding
the structure-based features in the large mix of features does
not produce a visible difference in the splice-site prediction
results. Instead, in order to profit from the information encoded
in the newly generated features, we used the combined model.
The combined model initially learns two different splice-site
models; one based on the structure features and one based
on the sequence ones. To illustrate this, we selected the
feature set of size 3000 in Table III. This set contained 1679
position-specific paired k-mers (structure features) and 1321
general, upstream, downstream and position-specific k-mers
and conjunctive positional features (sequence features). The
11ptAvg result for splice-site prediction of the structure-based
features model was 60.42% and the 11ptAvg of the sequence-
based features model was 90.19%. We learned the new splice-
site prediction model as a linear combination of the structure-

(b)

features model and the sequence-features model:
Scoreseq = wo + wy * Scorestructure + ws * Scoresequence

We trained the classifier and learned the weights that defined
the linear combination model. The linear combination model
produced an 11ptAvg precision of 91.46% for donor splice-site
prediction. This result was an improvement over the 90.36%
obtained when using the whole set of 3000 donor features
(mixed), and over the 90.19% obtained when using only the
sequence features, as shown in Table III. This improvement is
statistically significant for alpha 0.005.

V. BIOLOGICAL SIGNIFICANCE

Figures 1 and 2 showed that the nucleotide pairing tendency
in the positive sequences supported the actual splicing sce-
nario. In our splice-site prediction experiments, we generated
features that captured the pairing tendency of nucleotides in
specific positions in the sequence. In this section, we focus
on the generated secondary-structure features and search for
known splicing regulator signals.

The biological signals that are present in the splice-site
neighborhood fall into these categories. Exonic splicing en-
hancers (ESE) are signals that activate the nearby splicing
sites. Exonic splicing silencers (ESS) act as suppressors to
the splicing activity. Both enhancing and silencing effects are
accomplished via the different types of proteins that bind to
the ESE and ESS signals. Fairbrother et al. [12] identified 238
candidate ESE 6-mers, the RescueESE set. Goren et al. [13]
identified a set of 285 candidate splicing regulator 6-mers, the
ESR set. And Wang et al. [14] derived a set of 176 candidate
ESS 6-mers, the FasESS set.



TABLE III
ACCEPTOR(A) AND DONOR (B)SPLICE-SITE PREDICTION 1 1PTAVG RESULTS. RECURSIVE FEATURE ELIMINATION IS PERFORMED FOR MIXED FEATURES
MODELS OF ACCEPTOR AND DONOR SITES. FOR EACH ITERATION WE REDUCED THE NUMBER OF FEATURES BY 200. AFTER EACH ITERATION, WE
COUNTED THE NUMBER OF STRUCTURE- AND SEQUENCE-BASED FEATURES THAT WERE SELECTED AND BUILT SEPARATE PREDICTION MODELS FOR
EACH. THESE RESULTS ARE ALSO LISTED.

Acceptor Models (No.Features and 11ptAvg)

Donor Models (No.Features and 11ptAvg)

Mix Model Structure Sequence Mix Model Structure Sequence
5848  89.74 | 2941  66.55 | 2907  90.35 4823  89.46 | 3148 1675  90.61
5048 90.05 | 2400 64.23 | 2648  90.02 4000 89.83 | 2482 64.68 | 1518 90.22
4448  90.76 | 1981  62.83 | 2467  90.27 3400 90.13 | 2009 62.11 | 1391 90.26
4048  90.55 | 1668  60.26 | 2380  90.26 3000 90.36 | 1679 6042 | 1321  90.19
3448  90.37 | 1227 5852 | 2221  90.09 2400 90.76 | 1206 57.00 | 1194  90.20
3048 90.36 | 957 5541 | 2091  89.69 2000 90.75 | 933  50.58 | 1067  90.23
2448  90.25 | 583 4584 | 1865  89.68 1600 90.57 | 677 4425 | 923  90.13
2048  89.51 376 37.60 | 1672  89.30 1000 90.15 | 335 34.08 | 665  89.82
1448 89.12 153 32.04 | 1295 88.5l1 600  89.46 183 2564 | 417  89.20
1048 88.42 57 24.00 | 991 87.79

(2)

Because the secondary-structure features generated by the
FGA algorithm captured the pairing information of different
nucletides and their preferred location, we hypothesize that,
these specific paired features may have discovered ESE and
ESS sites in the splice-site neighborhood. To test that, we
compared them with the published ESE and ESS sets [12]-
[14]. Our generated features contained, at most, position-
specific paired 5-mers. Therefore, to compare with the exonic
splicing regulator sets, we derived all the 5-mers contained
in the 6-mer sets. The RescueESE set contained 208, the
ESR set contained 297 and the FasESS set contained 142
unique 5-mers. We computed the overlap between the FGA-
generated 5-mer sets and the 5-mers in the regulator sets.
For each overlap, we computed the p-value, based on the
hypergeometric distribution. The results are shown in Table
Iv.

The set of FGA-generated 5-mers of the downstream donor
region produced a significant overlap with the FasESS set of
splicing silencer signals. The splicing silencer signals are more
subtle signals and therefore more difficult to discover. The
upstream donor region 5-mers produced a significant overlap
with the ESR set of splicing regulator signals. To investigate
these signals further, we selected the 5-mer features, that
produced the overlap, and searched their exact positions in
the splice-site neighborhood. We divided the neighborhood
into six regions: the far, near and close regions upstream or
downstream from the annotated splice-site position. The far
region upstream or downstream denoted the interval 50 — 80
nucleotides away from the splice site. The near region denoted
the interval from 20 to 50 nucleotides and the close region
denoted the 20 nucleotides upstream or downstream the splice
site. We grouped the overlapped 5-mer features into these
six regions and we listed them in Table V. This detailed
description has not been done before and we hope it will be
of value to biologists. Although some of the signals appear in
more than one region, it is interesting to note that, the weight
of the features also changed with position, sometimes even
switching sign.

(b)

VI. CONCLUSIONS

In this paper we presented an extension to our feature
generation algorithm to construct features that capture the
three-dimensional characteristics of genomic sequences. This
algorithm was applied to the problem of splice-site prediction,
and a new splice-site predictor model was proposed. The
new model employed features that captured both sequence
composition and structural shape characteristics of splice-
site sequences. The linear combination of structure-features
model with sequence-features model improved the splice-
site prediction accuracy significantly. Moreover, the features
employed by the structure-based model were found to overlap
significantly with splicing regulator motifs. We divided the
160-nucleotide splice-site neighborhood into six regions, and
mapped the position preference of the identified biologically
relevant signals. This detailed description is likely to be
valuable to biologists. In our future work, we plan to in-
vestigate other biologically relevant information, such as, the
identification of features that capture the tendency not to create
a pairing bond and their particular position.
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