Adapting SVM Classifiers to Data with Shifted Distributions

Jun Yang
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 10523
juny @cs.cmu.edu

Abstract

Many data mining applications can benefit from adapt-
ing existing classifiers to new data with shifted distribu-
tions. In this paper, we present Adaptive Support Vector
Machine (Adapt-SVM) as an efficient model for adapting a
SVM classifier trained from one dataset to a new dataset
where only limited labeled examples are available. By in-
troducing a new regularizer into SVM’s objective function,
Adapt-SVM aims to minimize both the classification error
over the training examples, and the discrepancy between the
adapted and original classifier. We also propose a selective
sampling strategy based on the loss minimization principle
to seed the most informative examples for classifier adap-
tation. Experiments on an artificial classification task and
on a benchmark video classification task shows that Adapt-
SVM outperforms several baseline methods in terms of ac-
curacy and/or efficiency.

1 Introduction

Many real-world applications face a common problem
that the data distribution associated with a specific topic or
category is likely to shift, especially in streaming data gen-
erated over a long period of time or heterogenous data gath-
ered from multiple sources. This creates a fundamental dif-
ficulty for learning methods such as supervised classifiers
that assume the training and testing data are drawn from the
same distribution. This problem has been frequently seen in
data mining (as concept drift), adaptive filtering (as users’
changing preferences), and text/multimedia document clas-
sification (as large in-class variances). Applications in these
areas can largely benefit from an efficient method for adapt-
ing existing classifiers to a new set of data with a different
distribution.

We formulate this general problem into the following
scenario. Consider a binary classification task with respect
to a given topic in a primary dataset, where only a lim-
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ited number of examples are labeled. Besides, there is a
fully-labeled auxiliary dataset, and an auxiliary classifier
has been trained from it. The primary data is drawn from a
distribution that is related to, but different from, the distri-
bution of the auxiliary data in a way unknown to the learner.
We call this kind of distribution as a shifted distribution.
To classify the primary data, the auxiliary classifier may
not perform well since it is biased to the training distribu-
tion. On the other hand, a new classifier trained only from
the limited examples in the primary data, although unbi-
ased, may suffer from a high variance. To achieve a bet-
ter bias-variance tradeoff, various methods have been pro-
posed in the data mining and machine learning commu-
nity to leverage the knowledge of the auxiliary (old) data
to build better classifiers for the primary (new) data. Two
main approaches are to construct an “ensemble” combining
the output of classifiers trained independently from the two
datasets [4, 10], or to train an “aggregated” classifier on the
labeled examples combined from both datasets [3, 5, 11]. In
this paper, we seek a rather different approach that adapts
the auxiliary classifier (more precisely, its decision func-
tion) to the primary data using its limited labeled examples
(which results in an adapted classifier), with three goals:

Efficiency: Adapting an existing classifier must be less ex-
pensive than training a classifier on the labeled exam-
ples combined from the primary and auxiliary set.

Accuracy: On average, the adapted classifier is expected
to outperform existing approaches based on ensemble
classifiers and aggregated classifiers.

Minimum human effort: Adapting a classifier should re-
quire significantly fewer labeled examples than what is
needed to train a new classifier of the same accuracy.

We propose Adaptive Support Vector Machines (Adapt-
SVM) as an efficient and principled method for adapting the
auxiliary classifier to the primary data with a shifted distri-
bution using its limited labeled examples. The key idea is



to modify the regularizer in the objective function of SVMs
so that both the classification error over the training exam-
ples and the discrepancy between the adapted and the aux-
iliary classifier are minimized. A fundamental difference
between this method and existing methods in drifting con-
cept detection [4, 3, 10] and transfer learning [5, 11] is that
it directly manipulates the auxiliary classifier and involves
no auxiliary data in its training process. This makes it appli-
cable to domains where old data are unaccessible, and also
more efficient than models trained over old data. More-
over, based on the loss minimization principle, a selective
sampling strategy is proposed to identify the most useful
examples to help the adaptation of the auxiliary classifier.
Experiments on a synthetic dataset and a benchmark video
classification task show that our approach outperform other
methods in terms of accuracy and/or efficiency, and using
selective sampling offers further improvement.

2 Adaptive Support Vector Machines

We use D = {x;,9;}~, to denote a set of N labeled
instances in the primary dataset, where x; is the i*" data
vector and y; € {—1, 1} is its binary label. In addition to
D, there is a large number of unlabeled data in the primary
dataset to be classified. Moreover, D' = {z}, 3/}, de-
notes a set of N’ labeled instances in the auxiliary dataset.

2.1 The Linear Model

In standard linear SVM, the label of a data vector x is
determined by the sign of a linear decision function, i.e.,
9 = sgn(f(z)) = sgn(z?B), where 3 = {3;}M, are
the model parameters'. Training a linear SVM classifier
involves the following optimization problem:
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where . & measures the total classification error, and
|| 3|2 is a regularization term that is inversely related to mar-
gin between training examples of two classes.

Adapt-SVM extends linear SVM to incorporate the
knowledge of the auxiliary data D’ through a modified reg-
ularization term. We assume the auxiliary classifier trained

from D’ to be a linear SVM as f'(x) = z7 3, where 3’ can

be represented as 3/ = ZN 1 coyiay according to the rep-
resenter’s theorem. Since the distribution of D is relevant
to that of D', it is reasonable to treat the auxiliary classifier
f'(z) as a “prior model” of the adapted classifier f(z) to

IThis linear function is equivalent to f(x) = =78 4 b if we add a
constant term as an additional dimension of every data vector x.

be learned. This is achieved by modifying the regularizer to
penalize the discrepancy between the new parameters 3 and
the parameters 3’ of the auxiliary classifier. Specifically, we

replace ||3'||? in Eq.(1) with a new regularizer |3 — 3'||%:
min fllﬁ B1% + CZ& 2)
i=1
subjectto & >0, yxl f>1—& Vi

This modified objective function seeks to reduce the dis-
tance between  and 3 while minimizing the classifica-
tion error. Based on the triangular inequality, we have
18I + 118 = B'll > ||3||. Because ||3||? is inversely related
to the margin, and ||3|| is a constant, minimizing || 3 — 3'||*
is equivalent to maximizing the lower bound of the margin.
Therefore, Eq.(2) also ensures a decision boundary with a
large margin. The objective function in Eq.(2) can be rewrit-
ten as the following (primal) Lagrangian:
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where «; > 0, u; > 0 are Lagrange multipliers. We mini-
mize Lp by setting its derlvatlve with respect to 3 and & to
zero, which gives 8 = ZZ Loy 4+ and o = C' — p;
for every 7. Substituting 3 and «; into Eq.(3), we get the
Lagrange dual objective function:
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where \; = y; Zj L oGyfal xly = yi f'(2;). The model is
now parameterized by {041}1:1, which can be estimated by
maximizing L p under the constraints 0 < a; < C. This is
a quadratic programming (QP) problem solved using Platt’s
sequential minimal optimization algorithm [6]. Given the
solutions &, the decision function of linear Adapt-SVM is:

N
flz) = f'(2) + ) sz a; ©)

The resulted classifier can be seen as adapted from the aux-
iliary classifier f’(z) with additional support vectors from
the primary set as Dgy = {(zi,y;) € D|a; > 0}.

A key difference between the dual form of SVM [1] and
that of Adapt-SVM in Eq.(4) is that that latter contains the
extra term \. A larger «; is preferred in order to maximize
Lp if \; < 0, i.e., if the auxiliary classifier f’ misclas-
sifies x; because A\; = y;f'(x;), and vice versa. This is
intuitive because «; is the weight of each support vector
x; € Dgy in the adapted classifier f(z) in Eq.(5). If the
auxiliary classifier misclassifies x; (or sgn(f’'(x;)) # i),



the output of the adapted classifier f(x;) needs to be made
different from f’(z;) such that it can classify z; correctly
(or sgn(f(x;)) = y;), which is realized by adding a sup-
port vector z; with a large weight «;.

2.2 The Kernel Model

To achieve non-linear decision boundaries, we project
each data vector x into a feature vector ¢(x) in a space
of a higher or even infinite dimension, and learn f(z) =
#(x)T 3 in the projected feature space. Based on the “ker-
nel trick”, we can replace szxj in objective function Eq.(4)
by the kernel function K (z;,z;) = (¢(z;), ¢(x;)) in order
to learn f(z), even if the feature map ¢(-) is unknown. The
dual form of kernel Adapt-SVM can be written as:
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which is maximized under constraint 0 < a; < C. The
decision function of kernel Adapt-SVM is f(z) = f/(z) +

vazl Gy K (2, 25).
2.3 Discussion

Learning cost. Given the dual form in Eq.(4) and (6),
Adapt-SVM does not introduce any extra variables or con-
straints into the optimization problem of SVM. The only
extra term is \;. Based on its definition, computing all the
A; involves computing a:lTa:; (or K (z;, ;) in kernel model)
for any z; € D and z; € D', so this is a one-time compu-
tational cost of N x N’ evaluations of the dot product or
kernel function. Also, since A\; = y; f'(z;), A; can be com-
puted even when auxiliary data {x}} are unavailable.

Cost factor C. Since «; is the weight of each support
vector z; € D and 0 < o; < C, the cost factor C' is an
upper bound on the contribution of x; to the adapted classi-
fier f(x). Similarly, the cost factor of the auxiliary classifier
C' is the upper bound for every z; € D’. Thus, C and C’
controls the relative contribution of the auxiliary and pri-
mary data on a per instance basis. In general, we expect
C > (' because the classifier is intended for data drawn
from the same distribution as D. The appropriate ratio of
C/C" should largely depend on the similarity between the
two distributions. If the distribution of D and D’ is similar,
a smaller C//C" is preferred so that the model relies more
on the auxiliary classifier, and vice versa.

Comparison with other models. The decision function
f(x) defined by Eq.(5) has the same form as an ensem-
ble classifier: the first term is the auxiliary classifier f’(x)
trained from D’, and the second term resembles a classifier
learned from D. However, it is different from a genuine en-
semble classifier that combines two base classifiers trained

independently from D and D’ [4, 10], because {«; } are es-
timated under the influence of f/(z) and their values are
different from those estimated entirely from D. Moreover,
our model is also different from an “aggregated” SVM clas-
sifier trained from DU D’ [3, 5, 11], because the latter treats
both {«;} and {} as parameters, because we treat {«} } as
constants. With N/ fewer parameters to estimate, our model
is more efficient as N’ is typically larger than N.

3 Selective Sampling for Adaptation

An question related to classifier adaptation is to iden-
tify which examples in the primary set we should choose to
label in order to efficiently adapt existing classifiers. Intu-
itively, using informative samples would generate a better
classifier than the one learned from random samples. While
sample selection strategy has been studied in active learn-
ing [2, 9], the existing methods are mainly for building new
classifiers. Here, we are interested in finding samples that
provide complementary information to the auxiliary classi-
fier and help its adaptation to the primary data in the most ef-
ficient way. In this section, we propose a selective sampling
strategy for classifier adaptation with a theoretical justifica-
tion based on the loss minimization principle.

Formally, let P be a pool of instances in the primary
dataset, and D be a set of instances sampled from P for
user labeling. Also, let P(y|xz) be the conditional prob-
ability of an example z in P, and P(z) be its marginal
probability. Given a margin-based classifier f, such as
SVM, the estimated loss of x is written as L(y f (z)). Thus,
the expected risk of the decision function f is defined as
R(f) = EvEyu(L(yf(z)).

Suppose f* is the classifier adapted from an existing
classifier f’ using examples in D. fP is equivalent to f’
when D = @, and it gradually deviates from f’ when more
examples are included in D. In this case, the optimal sam-
ple set is the one that can be used to minimize the expected
risk of the adapted classifier f2, or equivalently, the one
that achieves the largest risk reduction from the auxiliary
classifier f/, i.e., Dopr = argmaxp (R(f") — R(fP)).

Given the difficulty of computing the expected risk over
the full distribution P(x), it is more feasible to mea-
sure this risk over the data in the pool P, ie., R(f) =
I%\ > wep Byl (L(yf(x)). Therefore, D,y is given by:

Doy = argunax 3~ By (L0'0) - Lo (0) )

zeP
(N
Theoretically, maximizing Eq.(7) leads to the optimal sam-
ple set. In practice, however, this is prohibitively expensive
because there are 2/7! possible choices for D and for each
choice fP needs to be re-trained to update the estimate of
the expected loss. To provide a tractable solution, we use



the risk reduction over the sample set D to approximate the
risk reduction over the whole collection P. Moreover, we
assume that the updated classifier f© can always correctly
predict the labels of any 2 € D. Therefore, the risk of f
as > By L(yfP(x)) is so small that it can be dropped.
With these two assumptions, Eq.(7) can be reduced to

Dopt = argmax Z Ey|a:L(yf/<x)) ®)
D zeD

Eq.(8) eliminates the computationally intensive step of re-
training fP for every choice of D. To further simplify,
we assume the samples are collected in a “greedy” manner.
That is, we repeatedly choose = using the following crite-
rion and add it to the existing sample set, i.e., D = DV {x}:

argmax > P(yl)L(yf (x)). )

x€P\D y={—1,1}

Finally, we need to estimate the conditional probability
P(y|z). Although the classifier outputs a confidence score
f(x) indicating the relevance of each z, due to the lim-
ited training examples, it is unlikely a reliable estimate of
P(y|z) even after it is normalized to [0, 1]. We develop two
probability estimation models based on the hinge loss func-
tion of SVM, i.e., L(y f(x)) = max(0,1 — yf(x)) .

Prior Model: We assume P(y|z) is unrelated to the pre-
diction made by f’; instead, we set it to the prior distribution
of y in the auxiliary data D’, i.e., P(y = +1|x) = Pp/(y =
+1), where Pp/(y = =£1) is the ratio of positive (or neg-
ative) instances in D’. In this case, the sample selection
criterion in Eq.(9) is written as:

argmax (PD/(y = 1) max(0,1 - f'(z))
z€P\D

+Pp/(y = —1)max(0,1 + f’(x))) (10)

This is related to the “Random Labels” model in [2] which
dissociates p(y|x) with f(x) and set it uniformly. Our
model is more accurate when the two classes are unbal-
anced, typical in applications like concept or event detec-
tion.

Best Worst Model We approximate the expected loss
with the smallest loss among all the possible labels, which
implicitly assume that f’ correctly predicts the label of x,
i.e., y = sgn(f’(x)). Thus Eq.(9) can be written as:

argmax min max(0,1 — yf'(x)) (11)
z€P\D y=-1,1
= argmax max|0,1 — sgn(f'(z))f'(z)] = argmax |f' ()|
z€P\D z€P\D

This model chooses the most ambiguous examples, which

are also the examples closest to the decision boundary of

f'. This is similar to the uncertainty sampling strategy in

active learning [2, 9].
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Figure 1. The decision boundary of various
classifiers on a synthetic primary dataset

4 Experiments
4.1 A Synthetic Dataset

To illustrate our model, we generate a synthetic auxiliary
set D 4 and a primary set D p, from different distributions in
a 2-d feature space. Each set has 100 positive and 500 nega-
tive data. The positive data in each set are generated from a
Gaussian mixture model with 3 components, and the nega-
tive data are sampled uniformly outside the area of the pos-
itive data. For D 4, the 3 Gaussian components are centered
at (—0.4,0.5), (0.5,0.7), and (—0.1,—0.6), while for Dp
their means shift to (—0.4,0.3), (0.5,0.3), and (0, —0.65).

Figure 1 (a) and (b) shows the distribution of D4 and
Dp, where small circles denote positive instances and dots
denote negative instances. We assume all the instances in
D 4 are labeled, while only 20 instances are labeled in Dp,
including 3 positive and 17 negative instances, shown as
large dots in Figure 1 (b). To classify Dp, we use four clas-
sifiers trained on SVM using a RBF kernel K (z;,z;) =
e~Plei—e;l” with p = 5. They are (1) an Aux classifier
trained from the 600 labeled instances in D 4, (2) a New
classifier trained from the 20 labeled instances in D p, (3) an
Aggr classifier trained from all the 620 labeled instances in
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Figure 2. Comparison of five classifiers on video classification performance averaged across 360

concept-program settings (random sampling).

D4 UDp; (4) an Adapt classifier adapted from Aux using
the 20 instances in D p based on Adapt-SVM. In the train-
ing of these classifier, we set C’ = 1 for the instances in D 4
and C' = 10 for the instances in Dp to reflect the relative
importance of the two datasets. We plot the decision bound-
ary of the four classifiers on Dp in Figure 1 (c) to (f). The
error rate of each classifier is shown below each figure. Not
surprisingly, Aux and Aggr are biased towards the distri-
bution of D 4, and unable to accurately classify Dp. New is
unbiased, but has a large variance due to the limited training
data. Adapt achieves the lowest error rate, and its decision
boundary captures the distribution of the positive data in
D p more precisely than the other classifiers.

4.2 News Video Classification

We evaluate Adapt-SVM based on a benchmark video
classification task TRECVID 2005 [7]. It contains 86-hour
video footage of 13 TV news programs from 6 channels. All
but one channels have two news programs, and the remain-
ing one has two programs. The video in the collection has
been segmented into 74,523 shots. Each shot is represented
by one video frame as its “keyframe”, and a keyframe is as-
sociated with a 273-d feature vector describing its color and
texture properties. This collection comes with manually as-
signed labels with respect to 34 semantic concepts.

In each setting of the experiment, we pick one of the 34
concepts as the target concept, and one of the 13 programs
as the primary program. The other program in the same
channel as the primary program is treated as the auxiliary
program. We train a SVM classifier for the target concept
using all the shots in the target program (based on their fea-
ture vectors), and adapt it to the target program using a lim-
ited number of shots sampled from it. The adapted classifier
is evaluated on the shots in the target program except those
used as training examples. We convert the classifier output
into a shot list ranked by their relevance scores, and measure
the quality of this list using average precision (AP). We also
use mean average precision (MAP) to average the AP scores
in multiple settings. By varying the target concept and pri-

mary program, we have 34 x 13 concept-program settings.
We remove the settings where the number of relevant shots
is less than 10, which results in 360 settings.

We compare our adapted classifier Adapt with another
3 SVM classifiers: Aux trained from all the data in the aux-
iliary program, New trained from the labeled instances in
the primary program, and Aggr trained from the labeled
instances in both programs with different weights. We also
include an Ensemble classifier which computes the rel-
evance score of each instance as a weighted sum of the
scores of New and Aux. All these classifiers are trained
with RBF kernel with p = 0.1. To make Adapt compa-
rable to Aggr and Ensemble, we ensure that the weight
C’ for auxiliary instance/classifier and the weight C' for pri-
mary instance/classifier in these models are the same. We
use C’ = 1 in all the experiments while vary C from 1 to
10 in order to learn its impact on the performance.

Classification Accuracy: Figure 2 shows the perfor-
mance of the 5 classifiers in terms of MAP across 360
concept-program settings against the number of positive
training examples 2. Random sampling is used in this ex-
periment. On average, Adapt outperforms the other four
classifiers in most of the cases. Only when C' = 10 and
training examples are scarce that Adapt performs slightly
worse than Aggr and Aux. Knowing that Adapt is better
than Aggr and Ensemble is especially encouraging, since
they represent two widely used approaches to exploiting the
knowledge of auxiliary data.

We find the performance of Adapt closely related to the
choice of the cost factor C. When C = 1, Adapt relies
more on the prior model and it behaves similar to Aux. This
gives Adapt a “warm start” with very limited examples,
but also makes it too conservative to fully utilize the incom-
ing examples. When C' = 10, Adapt relies more on the
labeled examples. As a result, its performance suffers a bit

2Since most concepts are infrequent (the ratio of positive instances of a
concept is 3.7% on average), the positive examples are more valuable for
training a classifier and thus its number is a better indicator of the amount
of information available. The number of negative examples used depends
on the positive-negative ratio in each program.



Sampling methods on the Adapt classifier
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Figure 3. Sampling methods on Adapt

initially due to a high variance, but ends up higher when
more examples become available. Since it is not legitimate
to choose C based on the performance on the test set, in
practice we need to choose C' by cross-validation.

Efficiency: We compare the training time of Adapt
with that of New and Aggr. Aux is trained “offline” and
thus its cost does not matter, and the cost of Ensemble is
equal to that of New. The total training time in minutes for
all the settings, with C' = 3 and 10 positive examples (ap-
prox. 164 total examples), is 17.4 for New or Ensemble,
20.1 for Adapt, and 271.9 for Aggr. This shows that
adapting a classifier is only slightly more expensive than
training one from the new examples, but an order of mag-
nitude less expensive than training a “big” classifier using
aggregated data. This makes the proposed method applica-
ble to interactive scenarios and/or large-scale problems.

Selective Sampling: We compare two selective sam-
pling strategies described in Section 3, Prior and
Best-Worst, with random sampling. Since they select
different samples from the data which cause the remaining
to be different, we evaluate them based on all the data in
the target program. Figure 3 shows the MAP of all the set-
tings achieved by Adapt with the three sampling methods.
Both selective sampling methods are considerably better
than random sampling, showing that using more informa-
tive samples does help classifier adaptation. Between them,
Prior is slightly better than Best -Worst except when
there are only 50 samples.

5 Related Work and Discussion

The problem of classifier adaptation has been studied
in many related areas. It is closely related to the problem
of drifting concept detection in mining of streaming data,
which is solved either by constructing an ensemble classi-
fier combining a set of base classifiers trained from different
chunks of the data stream (e.g., [10], [4]), or by training a
single classifier using aggregated (and weighted) instances
sampled from the data stream (e.g., [3]). Our work also be-
longs to transfer learning, which aims to apply knowledge

learned in one or more tasks to improve the performance on
a related task. Many methods for transfer learning [5, 11]
take the “aggregation” approach, which incorporate the la-
beled data of related tasks into the current training set in or-
der to build better classifiers. Our method is fundamentally
different since it directly modifies an existing model to fit
the new data, which avoids the cost of training over aggre-
gated data. Our method can be also used as an incremental
learning algorithm, and it is more efficient than existing in-
cremental algorithms (e.g., [8]) that involve training over (at
least) part of the previous data.
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