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INRIA, CNRS, and Université Paris-Sud 11, 91405 Orsay, France

{xlzhang,sebag,cecile}@lri.fr

Abstract

Grid systems are complex heterogeneous systems, and

their modeling constitutes a highly challenging goal. This

paper is interested in modeling the jobs handled by the

EGEE grid, by mining the Logging and Bookkeeping files.

The goal is to discover meaningful job clusters, going

beyond the coarse categories of ”successfully terminated

jobs” and ”other jobs”. The presented approach is a three-

step process: i) Data slicing is used to alleviate the job het-

erogeneity and afford discriminant learning; ii) Construc-

tive induction proceeds by learning discriminant hypotheses

from each data slice; iii) Finally, double clustering is used

on the representation built by constructive induction; the

clusters are fully validated after the stability criteria pro-

posed by Meila (2006). Lastly, the job clusters are submit-

ted to the experts and some meaningful interpretations are

found.

1. Introduction

The increasing complexity of computer science systems

has brought on new demands for Autonomic Computing

systems (http://www.research.ibm.com/autonomic/). Con-

cretely, autonomic systems are expected to “manage them-

selves in accordance with high-level objectives from hu-

mans” [1]; they should be able to discover problems, send

reports to the system administrator in real-time, and recover

from functioning incidents. In order to do so, such systems

should be self-aware, i.e. endowed with a model of their

normal functioning mode to detect a deviation from its nor-

mal functioning mode and/or to anticipate upcoming prob-

lems. As behavioral models of complex systems can hardly

be based on prior knowledge (see below), Autonomic Com-

puting is becoming a source of challenging applications in

Machine Learning and Data Mining (see e.g. [2]).

This paper is concerned with the behavioral modeling of

the EGEE grid (Enabling Grid for E-Science in Europe 1 ).

EGEE involves about 20,000 CPUs, 5 Petabytes of storage,

and it concurrently handles 20,000 jobs on average. Mod-

eling such a system raises diverse difficulties. The EGEE

topology and state is hardly known with certainty at any

point in time and its load depends on the collective behav-

ior of the users, reflecting the diverse communities sharing

the grid and their agendas.

As a first step toward a behavioral model of the EGEE

system, this paper focuses on modeling the jobs handled

by EGEE. These jobs are described from the Logging and

Bookkeeping (L&B) files recorded by the grid broker. The

challenge is to extract clusters of jobs with meaningful in-

terpretations from the rough partition of good (“success-

fully terminated”) and bad (all other cases) jobs.

This goal raises several difficulties besides the data size

(5 Gb). Firstly, job traces are represented using a structured

representation (Job Description Language) and there is no

natural metric on this representation space. Secondly, jobs

are highly heterogeneous, with orders of magnitude varia-

tions depending on the period of the year and on the users.

The approach presented in this paper is a three-step

process, combining constructive induction and clustering.

The constructive induction step uses the training set and the

clustering step operates on the test set. In the first step, the

training set is partitioned into subsets, in order to both i) al-

leviate the jobs heterogeneity, and ii) afford the use of dis-

criminant learning algorithms. The partitions are based on

the users and on the weeks. Every subset is expected to

provide a (more) consistent snapshot of the grid use, fil-

tering out the user-related or the period-related aspects. In

the second step, every subset undergoes discriminant learn-

ing; hypotheses discriminating the good from the bad jobs

in the subset are extracted. A stochastic algorithm optimiz-

ing the area under the ROC curve called Roger [3] is used.

In the third step, the hypotheses are used as new features

to redescribe the jobs in the test set. Inspired from [4], the

double clustering of the hypotheses and the jobs is achieved.

1http://www.eu-egee.org/



The significance of the job clusters is assessed by compar-

ing the clusters independently extracted from the user-based

and week-based hypotheses. The clusters are fully validated

after the stability criteria proposed by Meila [5]. Finally,

these clusters are submitted for interpretation to the experts,

and some meaningful interpretations are provided.

The paper is organized as follows. Section 2 briefly re-

views the state of the art in dimensionality reduction and

clustering. Section 3 describes the data preparation and

slicing and the constructive induction process. Section 4

describes the double clustering of the hypotheses and the

jobs. Section 5 explains the experimental setting and re-

ports on the results. The paper ends with a discussion and

perspectives for further research.

2. State of the art

How to construct a meaningful and tractable representa-

tion for a problem domain, referred to as constructive induc-

tion, is known to be a key difficulty for Machine Learning.

Some paradigms proposed for constructive induction are di-

mensionality reduction and clustering.

2.1. Dimensionality reduction

Let us make the standard distinction between linear and

non linear dimensionality reduction approaches.

Classical approaches in linear dimensionality reduction

are Principal Component Analysis (PCA) and Singular

Value Decomposition (SVD). The main limitation of these

well-established methods in our context is due to the highly

heterogeneous distribution of the descriptors in the initial

representation of the jobs. Typically, when the values for a

numerical attribute differ by orders of magnitude, the mean

value provides little information.

Since 2000, several approaches of unsupervised non lin-

ear dimensionality reduction have been presented, such as

Isomap [6] and Locally Linear Embedding (LLE) [7]. The

baseline Isomap and LLE approaches are limited in our con-

text due to their complexity (at least quadratic in the number

of examples).

Some extensions of non linear dimensionality reduction

to the supervised setting have also been proposed. For

instance, Sugiyama [8] proposed a supervised dimension

reduction method called local Fisher discriminant analy-

sis (LFDA) which performs well on multimodal problems,

combining Fisher discriminant analysis and Locality Pre-

serving Projection. Another approach for Semi-Supervised

Nonlinear Dimensionality Reduction, proposed by Yang et

al. [9], uses prior knowledge to improve the stability of the

solution.

Closely related to dimensionality reduction is distance

learning. For instance, Weinberger et al. [10] formalized

distance learning as an optimization problem, maximizing

(minimizing) the distance of every point to its K nearest

neighbors pertaining to different (same) classes; a Maha-

lanobis distance is determined by solving this optimization

problem using semi-definite programming. Again, this ap-

proach has quadratic complexity in the number of examples.

2.2. Clustering

The so-called K-means clustering approach relies on a

distance function, which is used to partition the space into

K subsets; a key question concerns the stability of the clus-

ters, as these usually depend on random initialization. The

relationship between PCA and K-means was studied by

Ding and He [11], proving that the cluster centers are related

to the PCA eigenvectors. Based on this result, under the

well-separateness assumption, Meila proved that any good

clustering can be approximated (up to a cluster permutation)

from the principal components of the data [5]. Accordingly,

a bound on the quality and stability of a clustering can be

derived from its distance to the PCA eigenvectors.

The well-separateness assumption requires that the data

do not live in a manifold of dimension less than K−1. Note

that, if the assumption does not hold, this will not imply

that the quality of K-means clusters will be low; rather, it

implies that this quality cannot be assessed after the above

bound.

3. Constructive induction with slicing

3.1. Data preparation

The L&B files used in the paper is collected from EGEE

Resource Brokers which are being monitored to display the

status of all jobs submitted to the grid. The logs are updated

in real time and describe the job behavioral traces; the life

cycle of every job is represented as a variable-length se-

quence of events, where the number of events ranges from

1 to 174. The sequences are generated in real-time accord-

ing to the job executing statuses in the grid system. About

300,000 jobs and 3,300,000 events are represented in the

dataset 2. Events that describe some service achieved for

the job are saved using three different tables, the structure

of which is represented in Fig. 1.

As widely acknowledged, data preparation is a most

time-consuming task. A software suite has been designed

to identify functional dependencies, segment compound at-

tributes, parse the strings and more generally filter out re-

dundant information and format every job into a proposi-

tional vector.

Numerical attributes are normalized. Prior knowledge

is used to parse the categorical attribute values (machine

2These will be available soon in public.



Figure 1. L&B Data structure

names, file names, user logins). Thereafter, every categori-

cal attribute with m values is converted into m boolean at-

tributes; more precisely, sufficiently frequent values derive

boolean attributes; other values are merged together as an

“other-values” boolean attribute. Eventually, every job is

described through 408 numerical and boolean attributes.

3.2. Data slicing

As mentioned in the introduction, the dataset is com-

posed of good jobs (30% of the jobs) and bad jobs. Both

classes of jobs are very heterogeneous, for (at least) two rea-

sons. The first type of heterogeneity is due to the users: they

differ based on their level of expertise, and their scientific

field. The second type of heterogeneity is due to the mutu-

alization paradigm of the EGEE grid: the load of the grid

hugely varies along time; typically some weeks are heavily

loaded while other weeks are not.

In order to get rid of this heterogeneity, the proposed ap-

proach, inspired from [12], proceeds by aggressively sub-

sampling the training dataset (90% of all data). More pre-

cisely, job subsets are defined by retrieving: i) all jobs sub-

mitted by a given user; ii) all jobs submitted during a given

week. The subsets which do not include a sufficient number

of jobs or percentage of good/bad jobs were removed.

3.3. Constructive induction

The second step of the presented approach is concerned

with constructive induction. Each data subset constructed

as above undergoes discriminant learning; the hypotheses

learned to discriminate good from bad jobs in the given sub-

set will be used as new features for describing all jobs.

In order to enforce the stability of the discriminant hy-

potheses, an AUC-based learning approach, optimizing the

so-called Wilcoxon-Mann-Whitney statistics [13], was con-

sidered.

As shown by [13], the WMW criterion, equivalent to the

optimization of the area under the ROC curve (AUC), con-

stitutes a stable learning criterion (e.g. quadratic in the num-

ber of examples as opposed to the linear mis-classification

rate). Further, AUC-based hypotheses directly provide an

estimation of the classification probability.

To find “sufficiently” diverse hypotheses from every data

subset for the same reason advocated in ensemble methods,

the learning algorithm achieves the stochastic optimization

of the AUC criterion, using a (λ + µ) Evolution Strategy

termed ROGER (ROC-based Genetic Learner) to find lin-

ear hypotheses with complexity O(n lnn) where n denotes

the number of examples [3]. Finally, a set of ℓ hypothe-

ses is obtained from each training subset by independently

running the ROGER algorithm ℓ times.

Every such hypothesis, mapping every job onto a real

value, defines a new attribute (feature) of the problem do-

main.

These new features together define a new representa-

tion of the problem domain. Finally two representations,

referred to as U -representation and W -representation, are

considered. They respectively include the set of features

(hypotheses) learned from user-based and week-based data

subsets.

Formally, let hu,i (respectively hw,i) denote the i-th hy-

pothesis extracted by ROGER from the job subset associ-

ated to user u (resp. to week w). The U -representation

(W -representation) associates to every job x the real-valued

vector U(x) (W (x) ) defined as (hu,i(x)) ((hw,i(x)) ) for

i = 1 . . . ℓ and u (w) varying in the set of users (weeks); let

N ′
u = Nu × ℓ (N ′

w = Nw × ℓ) denote the dimensionality of

vector U(x) (W (x)).

4. Clustering stability and double clustering

4.1. Clustering stability

Following Meila [5], clustering C = {C1, . . . , CK} is

represented as a J ×K matrix C̃, where C̃i,k is 1 iff the i-th

example belongs to Ck and 0 otherwise. Let Ĉ be defined

by normalizing C̃; denoting nk the size of cluster Ck,

Ĉi,k =

{
1/
√

nk if the i-th example belongs to Ck

0 otherwise

(1)

The similarity between two clusterings Ĉ and Ĉ ′ defined

on the same dataset is computed from the scalar product of

Ĉ and Ĉ ′:

S(Ĉ, Ĉ ′) = ‖ĈT Ĉ ′‖2
Frobenius =

K∑

i,j=1

n2
i,j

1

nin′
j

(2)



where ni,j is the number of jobs in Ci

⋂
C ′

j , ni and n′
j

respectively are the size of Ci and C ′
j .

Theorem

With above notations, similarity S(Ĉ, Ĉ ′) admits a lower

bound and an upper bound as follows:

K ≥ S(Ĉ, Ĉ ′) ≥ J

(J − K + 1)

1

K
(3)

After Meila [5], the upper bound is used to measure

the clustering stability and hence its quality: the closer

S(Ĉ, Ĉ ′) to K, the better Ĉ and Ĉ ′ are. However, when

the well separateness assumption does not hold, the upper

bound is not necessarily reached; in such cases, the lower

bound gives an indication about the quality of clusterings.

4.2. Double clustering

The new representations proposed for the jobs suffer

from both their high dimensionality (some thousand fea-

tures) and high redundancy (all features are based on the

initial attributes and furthermore subsets of features are

learned from the same data subset). Therefore, a double

clustering approach inspired from [4] will be used. The

double clustering mechanism proceeds as follows (consid-

ering independently the U - and the W -representation):

1. Features belonging to the U -representation (W -

representation) are clustered using K-means;

2. The examples are clustered using K-means based on

the average feature of each feature cluster obtained in

the first step.

This procedure eventually defines two clusterings on the

training set, respectively based on the U -clustered and W -

clustered representation.

The validity of the approach is finally assessed from the

stability of the clusters obtained from both representations,

as detailed in next section.

5. Experiments

5.1. Experimental settings

The training set is first sliced into single-user and single-

week subsets as detailed in Section 3.2. Finally the total

number of single-user (respectively single-week) subsets is

Nu = 36 (resp. Nw = 47).

On each subset, ROGER is launched ℓ = 50 times, using

the same parameters over all runs. The number of parents:

µ = 10; the number of offspring: λ = 70. Maximum

number of evaluations is 1000.

Table 1. Data used
N. total N. training N. testing

Good jobs 88,131 78,131 10,000

NAR 117,369 100,000 17,369

Bad jobs GNG 40,906 36,000 4,906

ABU 2,561 2,000 561

Total 248,967 216,131 32,836

In this way, N ′
w = 47 × 50 = 2350 hypotheses are ex-

tracted from single-week datasets and N ′
u = 36 × 50 =

1800 hypotheses from single-user datasets.

Finally, the test set is rewritten using the U - and W -

representations defined from the ROGER hypotheses, and

it undergoes the double clustering(Section 4.2); the number

T of feature clusters ranges from 6 to 36 with increment

step 2. The number K of example clusters ranges from 4 to

32 with increment step 1.

5.2. Failure types

As already mentioned, about 70% jobs are not termi-

nated successfully[14]. On grid system, there are vari-

ous factors resulting in the job failures, such as Hardware

problem, Misconfiguration, security attacks, mistakes of

users. According to the causes of failure, the “bad” jobs

are roughly divided into 3 classes:

1. No Adequate Resource(NAR): It happened at the map-

ping step on Resource Broker. Possible scenarios are

“User error” or “True mismatch”.

2. Generic and Non Generic errors(GNG): Generic errors

which do not refer to specific job. There are many

kinds of these errors, such as: “The user proxy ex-

pired”, “Job size exceeds limits”. There are also Non

Generic errors which happen accompanied by generic

errors, such as: IO problems reported as “Cannot

download/upload/retriev”.

3. Aborted By User (ABU): the user requests the job to

be canceled. Two overlapping cases are “True user re-

consideration” and “Grid problem”.

The four job categories represented in the dataset are de-

scribed in Table 1; remind that the learning algorithms are

only provided with the “good” and “bad” information.

5.3. Experimental results

Fig. 2 shows the double clustering based on ROGER hy-

potheses when T = 30 and K = 29. Most clusters are pure

with respect to the four categories. A few clusters present
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Figure 2. ROGER-based representation: job
clusters for T = 30 and K = 29

a mixture of GNG and ABU jobs. Each cluster is labeled

from the majority category in the cluster.

The quality of the clustering is first assessed from its er-

ror rate, that is the percentage of the examples which belong

to a cluster with different label.

In order to show the influence of the number of exam-

ple and feature clusters on the error rate, Fig. 3.(a) reports

the error rates depending on K , i) averaged over all val-

ues of T , ii) obtained for the best T value, considering the

U -clustered representation. The error rates obtained by ex-

cluding the ABU class are also given. Fig. 3.(b) symmet-

rically illustrates the error rates depending on T . The error

rates of W -clustered representation are similar to those of

U -clustered representation.

To avoid reporting too optimistic results (misclassifying

all of the ABU jobs does not show on the global error rate),

the y axis in Fig. 3 is the average over all four classes,

of the percentage of misclassified examples in this class.

When discarding the ABU class, the stability of the error is

excellent wrt the number K of job clusters as well as the

number T of feature clusters.

The second goal of experiments is to assess the cluster-

ing stability, measured as follows. Denoting D(C, C ′) =
1
K

S(C,C ′) as defined in Section 4.1, we introduce the self-

stability of the U -clustered and W -clustered representation,

and the mutual stability between them.

• Self-stability: For each K, its stability index DK =
1

|Ti|(|Ti|−1)

∑
Ti

∑
allTj 6=Ti

D(CKTi , CKTj ), where |Ti| is

the number of different Ti. CKTi is the clustering ob-

tained when the number of example clusters and fea-

ture clusters are K and Ti.

• Mutual stability:

For each K, D
′

K = 1
|Ti|

∑
Ti

D(CKTi
w , CKTi

u ).
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Figure 3. Error rate: influence of K (a) and T
(b) considering U -clustered representation

For each T , D
′

T = 1
|Ki|

∑
Ki

D(CKiT
w , CKiT

u ).

The above stability indices are displayed in Fig. 4.

6. Concluding remarks

The above results raise the following remarks.

With respect to the classification accuracy, it is shown

(Fig. 2 and Fig. 3) that the clusters obtained after the

presented approach successfully identify the job categories

in the test set, complying with the given types of failures

(NAR, ABU and GNG) and even suggesting refinements of

these categories.

Most generally (Fig.3 (a)), the error rate is very low in

all categories, particularly so for a high number of clusters

(K > 20), except for the ABU category, which appears

to be rather polymorphic. Indeed there are many diverse

reasons why the user might want to abort a job. In the case

of the double clustering, the influence of T appears to be

quite limited (Fig.3 (b)) in the considered range.

The cluster stability is excellent for small values of K
(K = 6) and it gracefully decreases as K increases; the

stability index observed for K ≃ 30 is still quite good (close
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Figure 4. Self-stability and mutual stability of
the clusters. (a) shows the self-stability of U -

and W -representations and mutual stability
between them on different K. (b) shows the
mutual stability changing with T

to 0.6 Fig. 4 (a)). In the meanwhile, the error rate decreases

as K increases. The number T of feature clusters has no

impact on the error rate or on the cluster stability in the

considered range (Fig.3 (b)).

In conclusion, the paper presents two contributions re-

garding constructive induction and stable clustering of het-

erogeneous datasets. Empirically, the approach was found

to be successful to cluster the EGEE grid jobs, identifying

classes which were unknown to the algorithm, and finding

even finer-grained subclasses, which are under inspection

by the user. The stability analysis provides guarantees about

the quality of the clusters found after two independent pro-

tocols. The double clustering approach was shown effective

in reducing the dimensionality of the redescription without

degrading the error rate.

Our next step is to construct user and job profiles to en-

able some personalized support and prediction of job fail-

ures.
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