
Unifying Unknown Nodes in the Internet Graph Using Semisupervised Spectral
Clustering

Anat Almog
School of Electrical Eng.
Tel-Aviv University, Israel

anat@eng.tau.ac.il

Jacob Goldberger
School of Engineering.

Bar-Ilan University, Israel
goldbej@eng.biu.ac.il

Yuval Shavitt
School of Electrical Eng.
Tel-Aviv University, Israel

shavitt@eng.tau.ac.il

Abstract

Most research on Internet topology is based on active
measurement methods. A major difficulty in using these
tools is that one comes across many unresponsive routers.
Different methods of dealing with these anonymous nodes to
preserve the connectivity of the real graph have been sug-
gested. One of the more practical approaches involves us-
ing a placeholder for each unknown, resulting in multiple
copies of every such node. This significantly distorts and in-
flates the inferred topology. Our goal in this work is to unify
groups of placeholders in the IP-level graph. We introduce
a novel clustering algorithm based on semisupervised spec-
tral embedding of all the nodes followed by clustering of
the anonymous nodes in the projected space. Experimental
results on real internet data are provided, that show good
similarity to the true networks.

1. Introduction

The continual expansion of the Internet is daily proof of
its growing impact. Research on the myriad aspects of inter-
net has followed pace and is indeed crucial to any number
of sectors. Concomitantly, research of various aspects of
the Internet has proved to be essential. Internet maps are
particularly of interest to many different communities, and
as such, need to be as accurate and detailed as possible.

Internet maps are created at different levels of abstrac-
tion, the most common of which are: the autonomous sys-
tem, address prefix, router, and IP. In this paper we focus on
IP-level maps. Most IP-level Internet maps are created by
aggregation of paths. The maps consist of nodes that are la-
beled by IP addresses, and edges that connect nodes which
appear consecutively in some path. The paths are acquired
through the use of active measurement methods — meth-
ods that actively send probe packets and use the reply pack-
ets to gather information about the replying routers, such

as their IP address and the time delay of the probe packet
[11, 3, 7]. The key obstacle is those routers that do not
respond to probes, and hence remain anonymous: their IP
address is unknown and so are the time delays of packets
that reach them. Such anonymous routers can appear in
many routes, but because their IP addresses are unknown,
there is no way to tell whether they are separate anonymous
routers or different instances of the same one. Thus multiple
copies of each anonymous router appear in the aggregated
map, causing an inflation of nodes, and a distortion of var-
ious characteristics of the true map. In the following text
we call these copiesunknowns(or unknown nodes), and the
unresponsive routers, which they represent, are calledun-
known roots. A common and practical approach for deal-
ing with unresponsive routers in an IP-level map that was
suggested by Broido and Claffy [2], entails using a unique
placeholder for each unknown. However, this approach per-
petuates the inflation of the graph, as all of the unresponsive
router copies are retained. Placeholder graphs contain many
more nodes than IP-level graphs. The placeholder graphs
have a number of nodes that is larger by an order of magni-
tude than pure-IP graphs (with no unknown nodes). Close
to a third of their probed paths contain unresponsive nodes.
When aggregating paths to form the topology, the over-
representation becomes even worse, as multiple instances of
known nodes from different paths are unified, while those of
the unknowns cannot be merged. When analyzing DIMES
[11] data from10 arbitrarily chosen weeks, (from the end
of 2007 and the beginning of 2008), we found that on aver-
age,39.55% of all nodes were unknown, and28.54% of the
edges were adjacent to an unknown node. Another problem
with using placeholders, is that although they preserve con-
nectivity and hop count, they also change other properties
of the graph, e.g., the degree distribution and clustering co-
efficients are altered significantly in the placeholder graph.

Several recent works have discussed with the inflation of
the graph as a result of unknowns. Yao et al. [14] deal more
with the theory of the problem. They formalize the prob-
lem of topology inference in the presence of anonymous

routers, and after having formulated it as an optimization
problem, show that both an exact and an approximate solu-
tion are intractable. They further suggest heuristics for min-
imizing the produced topology, but these have high compu-
tational complexity, and most of their experimentation was
performed on very small networks. Jin et al. [6] suggest
two methods of merging unknown nodes. The first uses
ISOMAP to map nodes into a multidimensional space. In
the projected space, it employs simple thresholding to ba-
sically merges any pair of unknown nodes that lie within
a given threshold of each other. It also merges unknowns
that share a neighbor and lie within a second threshold of
each other. These thresholds are set according to experi-
mental results on a known network. Nevertheless, these val-
ues may not be applicable to other network configurations.
The second heuristic is a neighbor matching approach, that
merges all nodes that share a neighbor and do not appear in
the same traceroute path. In our experience, this is a very
simplistic approach, and may result in inaccurate results, as
the authors also pointed out. The most recent work that we
know of is [5]. The authors rely on their knowledge of the
domain to identify different structures that occur in graphs
with unknown nodes. They propose a graph-based induc-
tion approach that detects these structures in the graph, and
merges the unknowns in them to their corresponding un-
known roots. This method uses only connectedness infor-
mation and completely ignores the delays. It also relies on
the completeness of the information, but measurements are
frequently obtained from only a few vantage points, so that
much information is missing.

In this paper we describe a method of recreating an IP-
level graph, in which the unknown nodes are not overrep-
resented by unifying groups of unknowns, that are likely to
stem from the same unknown root. We introduce a novel
clustering algorithm based on semi-supervised spectral em-
bedding followed by unsupervised clustering in the pro-
jected space. Applying our algorithm to placeholder maps
yields IP-level maps that are much more meaningful and us-
able. By merging groups of unknowns, we arrive at a good
approximation of the real graph, which can then be used to
study the properties of the IP-level graph. The improved
performance of the proposed method is demonstrated on
large real internet data collected by the DIMES project [11].

The paper is organized as follows. In Section 2 we de-
scribe the IP distance matrix. In Section 3 we present our
proposed clustering algorithm. Section 4 describes the In-
ternet measurement data collection and pre-processing. Ex-
perimental results are shown in Section 5.

2. The IP Distance Matrix

The input to our clustering algorithm is a distance (time-
delay) matrix. In this section we describe how active

measurements are utilized to construct the matrix. Active
measurement methods play an important role in studying
the Internet topology. Specifically, the traceroute tool is
widely used, for instance when building maps of the In-
ternet through aggregation of routes. Traceroute works by
sending a series of probes with increasing TTL (Time To
Live) values. For every packet, including the traceroute
probing packets, the TTL value is decreased by one by each
router on the way to the destination. Once the TTL field
reaches zero, the packet is discarded and an ICMPTTL ex-
ceededpacket is sent by the router to the packet source.
Thus, sending a series of packets to a specific destination
with increasing values of TTL should yield the IP addresses
of all routers in the path between the origin and the desti-
nation, and the time it took each packet to traverse between
the origin and the responding router and back. Aggrega-
tion of several paths results in a map, a graph in which the
nodes are IP addresses, and the distances between them are
defined based on the delays. It is this graph that we want to
represent as a distance matrix.

While sending ICMP messages is common practice,
many routers are configured to discard packets without re-
sponding with an ICMPTTL exceededmessage. If removed
from the emerging path, these unresponsive routers create
gaps in an otherwise connected route. Thus, other methods
have been suggested for dealing with non-responses. The
placeholder method [2] entails assigning a placeholder to
each gap in a route, that is, for each non-response. For ex-
ample, if no response was received from a router between
routersA andB, its placeholder node will be labeledA-
1?1-B. A placeholder is unique per immediate neighbor
pair. As most routers are part of several routes, they may
have different pairs of immediate neighbors when measur-
ing different paths. The result is that most unresponsive
routers are represented by multiple copies in the placeholder
graph.

The next step towards obtaining a distance matrix is to
define a distance measure on the edges of the placeholder
graph. The distance metric in many cases, as in ours, is
based on time delays from the measurement origin. We
definedelay(A,B) as the measured round-trip time of the
pathA B, (the measured time for a packet to traverse
from A to B and back). The unary formdelay(A) is some-
times used to denote the delay between the source of the
measurement andA. We construct an edge in the graph
for every pair of nodesA andB that are adjacent in some
measured path. If a path was measured in which a response
was received fromA followed by a response fromB, then
the edge(A,B) is added to the graph. The time difference
between these two responses can serve as an estimation of
delay(A,B), or the distance betweenA andB, and is set
to be the value of the edge that connects them. Note that
this value is only an estimation of the edge’s true delay. As

mentioned in [5], using round-trip path delays in order to
estimate one-way edge delays can be difficult. In [4] the
authors present a method of calculating a good estimation
efficiently. However, our experimental results empirically
show that the difference in round-trip delays serves as a
good enough estimation for our purposes. Thus, a distance
matrixD can be defined, where

Dij =

 min {delay(i, j), delay(j, i)}, edge(i, j) or
(j, i) exists;

∞, otherwise.
(1)

and

for any edge(j, i) : delay(j, i) = delay(i)−delay(j) (2)

In other words, for any two nodesi, j that are neighbors
in some measured route, the distance between them is de-
fined as the delay estimation. Nodes that are not connected
are signified to be so by a distance value of∞. Note that
we regard the distances as symmetrical in this work, even
though the actual delays are not.

Distances of unknown nodes need to be defined differ-
ently. These nodes are an exception as they each have two
neighbors, but the distance between them and their neigh-
bors is unknown. Nevertheless, this distance has to be de-
fined, as it will be needed in the embedding process. The
unknown distances are actually estimated when building the
map from measurements in the following manner. Suppose
pathS, . . . , A, A-?-B, B is measured. Then

DA, A-?-B = DA-?-B, B =
(delay(S, B)− delay(S, A))

2
(3)

This distance matrix is the input to our algorithm — from it
we build the affinity matrix that is the input of the embed-
ding.

3. Semi-Supervised Spectral Clustering

The problem we are dealing with can be described as a
clustering problem. However, it does not fit any of the three
categories: unsupervised, supervised, or semi-supervised,
usually used to differentiate learning tasks. Most of the
nodes in our problem have labels (IP addresses), and the
edges adjacent to them have a known value (delay). The
rest of the nodes are unknown: they are missing a label,
and the values of their adjacent edges are missing as well.
Using all the information, we need to cluster only the un-
known nodes. Since the problem calls for clustering based
both on labeled and unlabeled data, it seems to fit the semi-
supervised category. However, it differs in two important
ways from common semi-supervised tasks: first, we use all

the information prior to clustering, but the clustering itself
works only on the unknown (unlabeled) nodes. In typical
semi-supervised tasks, the algorithm would have to cluster
labeled data correctly as well, whereas here it clusters only
the unlabeled data. Second, in most semi-supervised prob-
lems there is no difference in the distance calculation of la-
beled and unlabeled nodes. In our problem, since the edges
adjacent to the unlabeled nodes have unknown values, their
values need to be estimated, while other edges have a given
value. These differences, and others, make this problem
unique in the way it uses labeled and unlabeled data.

We used thespectral clusteringmethod described by Ng,
Jordan, and Weiss [8], and modified it to fit the unique re-
quirements of our clustering task. The original method is a
variant ofkernel PCAfollowed byk-means; for details see
[8]. In the following sections we describe the specific is-
sues and modifications to this algorithm that arise from the
uniqueness of our problem.

3.1. Spectral Embedding

There are several works that have suggested embedding
the Internet AS and address prefix graphs in metric spaces
[9, 12, 13]. These levels of abstraction, unlike the IP level,
do not suffer from the problems we set to solve in this paper.

The nodes of the Internet graph reside in a non-metric
space, due to the fact that the triangle inequality does not
hold with distances defined as the delays. For this reason,
clustering the data per se is not a viable option. Our intu-
ition was that embedding the data into a multi-dimensional
metric space would preserve the affinity relations of the data
— in other words, that Euclidian distances of the embedded
data in the new space would be meaningful, and would be
an indication of the true distance between nodes in the ori-
gin space. This indeed proved to be the case, as we will
show later on in the results.

The first part of our algorithm, then, embeds the data
into multi-dimensional space, using the spectral embedding
method described in steps 1–4 of the algorithm in [8]. That
is, it takes as input the distance matrixD described in equa-
tions (1)–(3), builds the required affinity matrixA from it,
and uses it in the embedding process:

1. Form the affinity matrixA defined by

Aij = exp

(
−D2

ij

2λ2

)

2. Define B to be the diagonal matrix whose
(i, i)-element is the sum ofA’s i-th row, and
construct the matrixL

L = B− 1
2 AB− 1

2

3. Find thek largest eigenvectors ofL and form the ma-
trix X by stacking the eigenvectors in columns.

4. Form the matrixY from X by renormalizing each of
X ’s rows to have unit length.

Matrix Y is then the input to the clustering part (see section
3.2).

An important issue wasdeciding which part of the
data to embed. We looked at three options: embedding
only unknowns, embedding all nodes, or embedding only
known nodes. As the only nodes we want to cluster are
the unknowns, it seems logical that we only need to embed
them. Obviously, though, most of the information would
not have been utilized. Although we are only interested
in a small group of nodes, it is clear that embedding the
entire map will yield a much more accurate picture of all
nodes, and specifically of the unknown nodes. Moreover,
there is hardly any useful information about the unknown
nodes themselves: the weight of the edges adjacent to them
is also unknown; and their number, compared to all nodes,
is very small. Everything we know about these unknowns
is derived from their location in the graph, and hence from
their neighbors.

This leads to the conclusion that all the nodes should be
embedded. However this idea is also problematic, due to the
missing edge values adjacent to the unknown nodes. Em-
bedding the unknown nodes requires an estimation of these
edge values, and there is no good way to do this. However,
as we found in our experimentation, estimation of these
edges is good enough, or at least, there are not enough of
these unknown edges to damage the layout of the graph in
the embedded space.

The third option is to embed only the known nodes,
which form the majority of the nodes in the graph, and place
the unknown nodes manually in the embedded space. The
only real information we have about an unknown node is its
neighbor pair (an unknown always has exactly two neigh-
bors). This is easy to maintain in the embedded graph by
simply placing the unknown node in the embedded space
between the nodes which were its neighbors in the origin
space.

In the end, examination of all options led us to use the
second option - estimate the missing edge values in the ori-
gin space, and embed all nodes, including unknowns. It is
clear that the first option is the worst. It is less clear why the
second option should be better than the third, even though
it was experimentally found to be. Apparently, errors added
when estimating the missing edge values in the origin space
are negligible most of the times, and the extra topological
information is very helpful. This is similar to other semi-
supervised tasks, where using the unlabeled data during the
training stage improves the resulting classifier.

3.2. Clustering

The second part of our algorithm runs a simplek-means
algorithm over the embedded data, as in steps 5–6 of the
algorithm in [8]. The main difference is that we only cluster
a small portion of the embedded data - only the unknown
nodes. The known nodes (and edges), which are most of
the graph, are just used in the embedding process, as there
is no need to label them.
The original algorithm requiresk, the number of clusters,
as a parameter. In the general case of an Internet graph,
as in most real-world clustering problems, this number is
also unknown. Thus, to be able to run the algorithm on real
data, we added a part that determines the correct number of
clusters.

The size of the graphs on which we perform k-means
is usually quite small, since we cluster only the unknowns.
Therefore it is possible to search over different values of
k, and choose the best one. Also, as our original graphs
are also not very large, we assume that the number of un-
known roots does not exceed 5, and can limit our search
to k between 1 and 5. This search range can easily be ex-
panded, and without a heavy time penalty. It is natural to
use the distortion of the k-means algorithm as a goodness
measure. However, distortion decreases monotonously with
the number of clusters - the more clusters, the better. In ac-
tual clustering problems, and specifically in ours, this is not
the case. While minimizing the distortion, one still needs
to avoid over-fitting. The solution is to find the number
of clusters after which the distortion decreases less swiftly.
That is, find the “knee” (the inflexion point) in the distor-
tion vs. number of clusters graph, (see Fig. 9). We define
the “knee” of the graph using the slope of the curve: the
point where the slope first decreases to less than 45◦. Based
on this definition, the algorithm successfully chooses the
correct number of clusters most of the times. What is even
more interesting, is that in some of the cases in which the
algorithm chooses thewrong number of clusters, the result-
ing clustering is actuallybetter than the one in whichk is
known. That is, the algorithm manages to select the number
of clusters that are separable. We will elaborate on this in
section 5.

3.3. Algorithm

As input we are given a set of nodes, most of which are
labeled, (the known nodes), and the rest of which are unla-
beled, (the unknown nodes). We are also given an unnec-
essary full distance matrix that contains inter-distances of
the labeled nodes, and estimations of distances between the
unlabeled nodes and their neighbors. Creation of the dis-
tance matrix is described in equations (1)–(3). Our goal is
to cluster the unlabeled nodes.

1. Embedall nodes, (both labeled and unlabeled nodes),
into a metric space, by using thespectral embedding
algorithm described in section 3.1.

2. In the new projected space, cluster only theunlabeled
nodes usingk-means.

3. Merge all nodes from each cluster to a single unknown
root.

4. Data Description and Preprocessing

Our data were taken from the DIMES[11] database. This
DB is based ontraceroutemeasurements performed rou-
tinely by hundreds of agents. The raw data obtained from
these measurements is aggregated to yield topologies at dif-
ferent levels - the IP, router, and autonomous system lev-
els. We query tables of the IP-level topology for nodes and
edges. The value of an edge is taken to be the minimal
that exists for it in the DB. We aim to apply our algorithm
to data of complete networks, but obviously not of the en-
tire Internet map as a whole. Note that for our tests, rather
than acquiring a complete network from the database, we
build maps of smaller subsets the network (the number of
nodes is on the order of hundreds and up to a few thou-
sands). This same process of dividing a map into several
smaller maps and working on each separately could also be
used when working with complete network maps. This is
possible since unknown nodes stemming from a single root
should all be in a fairly tight neighborhood. Also, running
our algorithm on maps of this size is fast, thus avoiding the
complexity issue mentioned in [5].

Data in the DIMES DB, which are real aggregated data,
naturally contain many unknown nodes. Since these are ac-
tual unknown nodes, there is no known labeling for them,
rendering them useless for our tests. We could cluster them,
but we would not be able to verify the resulting clusterings.
Therefore, we build graphs which contain no unknowns at
first, and simulate unresponsive nodes in order to get graphs
which also contain unknowns.

For our tests we needed a large number of maps, each
of which is a tiny part of the internet map represented in
the DIMES DB data. There are different ways to slice a
random piece of a graph, and perhaps other methods could
be examined in future work. We did the following: first
we randomly choose a node (an IP) that met the criteria we
defined for a simulated unknown root. We added the entire
ball of a certain radius around this node to the map. The
number of unknown roots in the graph was also a parameter.
If more than one unknown root was required, the remainder
were chosen out of the nodes of the graph. We added a ball
of the same radius around each new unknown root to the
map , so that there would be no difference in the depth of the
environment around each unknown root, which could lead

to bias. After building a graph with the required number of
unknown roots, we split each root into unknowns. This was
done by treating each root as an unresponsive router. When
there was an unresponsive router in a trace, we placed a
node in the gap and named it according to its neighbors in
the path of the trace. Doing the same in an existing graph
means replacing each unknown root (unresponsive router)
by nodes matching each possible pair of incoming/outgoing
neighbors. See Fig. 1 for an illustration of how an unknown
root is split into unknowns. See Fig. 8 for an example of a
network before and after splitting unknown roots.

Figure 1. Illustration of how an unresponsive router
is split into unknown nodes.

Criteria for potential unknown roots There are several
criteria for selecting nodes to be unknown roots, some of
which simplify the graphs, while others are there to ensure
there is enough information in the graph.
The first criterion is the distance from other unknown roots.
A node will not be chosen to be an unknown root if it shares
two or more neighbors with an unknown root. Nodes that
share two or more neighbors are usually very close to each
other, and it is difficult to distinguish between them even
manually. After splitting them into unknowns, these nodes
will have at least one common unknown node. This makes
the task of cleanly separating the unknowns impossible.
The second criterion is the degree of the node. In order to
have enough information for the clustering, each unknown
root must be split into enough unknowns. As described
above, the number of unknowns is determined by the num-
ber of incoming and outgoing neighbors of the root. There-
fore we require a minimum degree from potential roots.
Likewise, they cannot be leaves, we need to have at least
one incoming and one outgoing neighbor. We also limited
the maximum degree of potential roots. This was done as a

convenience, and is not a real limitation. In fact, it is very
likely that roots with a higher degree would have been uni-
fied even more successfully.

Preprocessing The graph is represented as a distance ma-
trix. The distances are taken to be symmetrical, even though
in Internet graphs this is often not the case. However, this is
a requirement for the embedding and clustering processes,
and empirically does not affect the results. Thus the dis-
tance between two nodes is taken to be the minimum known
distance between them, as described in equation (1).

We tested two methods of embedding: embedding all
nodes of the graph, and embedding only the known nodes.
When embedding all nodes, we used the estimated value
of the unlabeled edges (edges adjacent to unknown nodes),
that is calculated as described in equation (3). When em-
bedding only known nodes, we removed from the distance
matrix the unlabeled edges. Also, for each unknown node,
we added an edge connecting its two neighbors, with a de-
lay corresponding to the sum of our estimation of the two
original edges (those that were removed).

Another preprocessing step was developed for negative
edges, as the distance metric cannot have a negative value.
Negative delays with a large magnitude are classified as er-
rors, and the relevant edges are discarded. If the magnitude
was small, we assumed it was a small drift due to noise, and
the relevant edges were given the value 0. After this step,
the graph can become disconnected. We checked it for iso-
lated nodes1, and removed any that were present. We also
removed self loops, if present, since these are clearly errors
in the context of Internet graphs as well.

The last preprocessing step was trimming the graph.
That is, we removed all the leaves of the graph, because
they do not contribute to the embedding process.

5. Experimental Results

In the previous section we described how we created the
graphs which are the input to our algorithm. In this sec-
tion, we describe the results of different experiments we
performed using datasets which contained graphs of differ-
ent configurations.

5.1. Which Nodes to Embed

We found experimentally that embedding all nodes gave
better results than embedding only the known nodes. This
coincides with the transductive learning paradigm that unla-
beled data can contribute additional information in the train-
ing phase. In our case both unlabeled and labeled nodes

1An isolated node is a single node that is not connected to the rest of
the graph.

were used to get a better view of the manifold that contains
the internet routers.

A standard non-parametric measure of clustering quality
is the Rand index [10]. Several variants of the Rand in-
dex were recently suggested for measuring clustering qual-
ity. For the sake of completeness, the variant of the Rand
matching score that we used is as follows: LetC1 stand for
the true clustering of the unknown nodes andC2 stand for
the clustering in question of those points. Then:

Rand Score:=
N0,0 + N1,1

N0,0 + N1,1 + N1,0 + N0,1

where

• N0,0 is the number of pairs of points that belong to
different clusters in bothC1 andC2.

• N1,1 is the number of pairs of points that belong to the
same cluster both inC1 andC2.

• N0,1 is the number of pairs of points which belong to
different clusters inC1, but belong to the same cluster
in C2.

• N1,0 is the number of pairs of points which belong to
the same cluster inC1, but belong to different clusters
in C2.

The following (Fig. 2) are results of a run over 49 graphs
with two unknown roots, withλ = 50 and different dimen-
sions. The figure shows a comparison between the different
embedding approaches based on the Rand score. Clearly,
embedding also the unknown nodes significantly improves
the clustering results. Similar results were achieved using
other datasets and different parameter values.

5.2. Parameter Tuning

Most of our experiments were performed with maps
from which real unknowns were filtered, and in which un-
known roots were simulated. These maps allowed us to ex-
amine the effect of different values of the parameters on the
results. There are two parameters in the spectral embedding
algorithm; namely, the scale parameterλ and the dimen-
sionality of the projected space. We next present a sensitiv-
ity analysis. We tested our algorithm over a shuffled set of
graphs - graphs with different numbers of unknown roots.
The set contained 22 graphs with two unknown roots, 22
with three, and 22 with four. It is quite clear when looking
at the results that when using dimensions as high as 13, and
actually even with dimension 7, theλ value does not make
a big difference, if any and stays in a reasonable range (see
Figure 3). We hence used dimension= 13 andλ = 100 as
the best parameter values.

Figure 2. Comparison between the two methods for
embedding unknowns in a run over 49 graphs with
two unknown roots.

Figure 3. Average Rand score of graphs with 2,3 and
4 unknown roots perλ and dimension.

We further tested our algorithm on larger datasets, which
yielded similar results. Following are examples of the re-
sults of two such large homogenous datasets — the first
(Fig. 4) contains 92 graphs with two unknown roots in each,
and the second contains 128 graphs with three unknown
roots in each (Fig. 7).

Fig. 5 demonstrates the embedding and clustering of
nodes in a graph with four unknown roots. The embedding
used the best parameter values.

5.3. Finding the number of clusters

We ran the algorithm with the best parameter values over
the mixed set of graphs (graphs with differentk values). We

Figure 4. Average Rand score of graphs with two
unknown roots perλ and dimension.

Figure 5. Clustering of a graph with four unknown
roots in the projected space. Marker colors signify
the real clusters: green, cyan, red, and purple. Marker
shapes signify the algorithm clusterings: triangle, cir-
cle, plus sign, square. The blue dots are the known
nodes in the projected space.

ran it once with a knownk, and once the algorithm selected
k automatically. See Fig. 6 for the scatter graphs of the
graph scores whenk is unknown.

The scores were not very far apart, even in cases where
the algorithm made a mistake. It is likely that the reason
is that some graphs were not clustered correctly even when
the real number of clusters was known, and a better, (though
not perfect), clustering is possible when the value ofk is
not coerced. This may be the case when there are clusters
that are not separable in the space with the number of di-
mensions used. Knowing the value ofk, the algorithm may

Figure 6. Results of data graphs (with 2,3 and 4 un-
known roots) using the best parameter values. The
value ofk is unknown. Green circles are graphs for
which the algorithm chose a wrong number of clus-
ters.

Figure 7. Results of data graphs with three unknown
roots using the best parameter values. The value of
k is unknown. Green circles are graphs for which the
algorithm chose a wrong number of clusters.

separate some other set of points that should not necessarily
be separated.

5.4. A Complete Example

The figures below show the stages on a single map. The
first stage, as seen in Fig. 8, is building a map and choos-
ing unknown roots. After choosing the roots, we split them
into unknowns, according to the different paths they are a
part of. Following the preprocessing steps, we run our al-

gorithm on the map. We embed all points and cluster them
using k-means. The algorithm is capable of choosingk au-
tomatically, using the distortion graph seen in Fig. 9. Fig. 10
shows the unknowns in the embedded space, and their clus-
tering.

Figure 8. A map with three unknown roots: the red,
green, and cyan nodes in the top figure are split into
unknowns in the bottom figure. These figures were
created usingPajek[1],

6. Conclusions

We presented a new method for dealing with unrespon-
sive routers in the IP-level Internet graph. By adapting a
spectral clustering algorithm to the unique semi-supervised
nature of our task, we achieved surprisingly good results.
This approach is an excellent step towards resolution of the
real data. Below we highlight a number of extensions for
future work.

Figure 9. The distortion graph of the unknowns from
Fig. 8 when running k-means with different values of
k. k was correctly chosen to be three.

Figure 10. The clustering of the unknowns from
Fig. 8 with k = 3. Marker colors signify the real
clusters: green, cyan, and red. Marker shapes signify
the algorithm clusterings: triangle, circle, plus sign.

Running on data with real unknown nodes and unifying
them to the unknown roots they resulted from, was the pur-
pose of this work. Obviously, though, not much can be said
about the goodness of the solution, when only unlabeled
data are used. For this reason, the process of creating la-
beled maps which contain unknowns, and which represent
the real data, is crucial. Several assumptions were made in
this process, which should be relaxed in order to reach the
general case. On the other hand, this could lead to some dif-
ficult problems. For instance, unknown roots with low de-

grees may not be easy to unify, as they would be represented
by a small, perhaps overly small, number of unknowns. The
problem of several close unknown roots is also an interest-
ing and challenging one. In many of these cases, it is not
even clear to a human evaluator what the correct answer is.

Another open question regarding the generalization of
the solution, has to do with the way a section of the graph
is cut from the complete Internet topology. The algorithm
works on a local environment. In the simulated data, we
just crawl from some random node, and after we have a
graph we choose more unknown roots from it. This guaran-
tees that all unknown nodes belonging to the roots we are
trying to find will be included in our graph, (the roots are
included in the original graph, and the unknowns are split
from them). In real unlabeled data, there is no way to de-
termine which unknown was derived from which root, so
it is not so straightforward to make sure the graph indeed
contains all the unknown nodes that need to be unified.

An important question in regard to generalization is the
question of finding k. This problem of finding the correct
number of clusters is by no means unique - it has been dealt
with using various approaches in many different works. We
applied a very simple approach, that was relatively success-
ful. However, there is room for improvement of this fea-
ture of our algorithm, which could be achieved by consider-
ing problem-specific requirements. For instance, we prefer
the algorithm to produce more clusters than the true value
rather than fewer. Unifying two unknown nodes that did not
emerge from the same root may create an arbitrary change
in the graph, e.g., may shorten the distance between two
nodes significantly. On the other hand, if several instances
of the same root node are unified into two nodes instead
of into one, we have nevertheless improved the current sit-
uation, and proceeded towards a better presentation of the
network.

References

[1] Pajek - Program for Large Network Analysis.
http://pajek.imfm.si.

[2] A. Broido and K. Claffy. Internet topology: connectivity
of IP graphs. InSPIE International symposium on Con-
vergence of IT and Communication ’01, Denver, CO, USA,
Aug. 2001.

[3] CAIDA Macroscopic Topology Project Team. Caida
archipelago, next generation active measurement infrastruc-
ture.

[4] D. Feldman and Y. Shavitt. An Optimal Median Calculation
Algorithm for Estimating Internet Link Delays from Active
Measurements. InIEEE E2EMON, May 2007.

[5] M. H. Gunes and K. Sarac. Resolving anonymous routers
in internet topology measurement studies. InIEEE INFO-
COM, Apr. 2008.

[6] X. Jin, W.-P. K. Yiu, S.-H. G. Chan, and Y. Wang. Net-
work topology inference based on end-to-end measure-
ments.IEEE Journal on Selected Areas in Communications,
24(12):2182–2195, Dec. 2006.

[7] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. E. An-
derson, A. Krishnamurthy, and A. Venkataramani. iPlane:
An information plane for distributed services. InOSDI,
pages 367–380, 2006.

[8] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering:
Analysis and an algorithm. InNIPS, 2001.

[9] T. Ng and H. Zhang. Predicting internet network distance
with coordinates based approaches. InInfocom, June 2002.

[10] W. Rand. Objective criteria for the evaluation of clustering
methods. Journal of the American Statistical Association,
66(366):846–850, 1971.

[11] Y. Shavitt and E. Shir. DIMES: Let the internet measure
itself. ACM SIGCOMM Computer Communications Review,
35(5):71–74, 2005.

[12] Y. Shavitt and T. Tankel. Big-Bang simulation for em-
bedding network distances in Euclidean space.IEEE/ACM
Transactions on Networking, 12(6):993–1006, Dec. 2004.
An earlier version appeared in Infocom 2003.

[13] Y. Shavitt and T. Tankel. On internet embedding in hyper-
bolic spaces for overlay construction and distance estima-
tion. IEEE/ACM Transactions on Networking, 16(1), Feb.
2008. An earlier version appeared in Infocom 2004.

[14] B. Yao, R. Viswanathan, F. Chang, and D. Waddington.
Topology Inference in the Presence of Anonymous Routers.
In IEEE INFOCOM, Mar. 2003.

