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Abstract

We introduce a novel technique to detect anomalies in
images. The notion of normalcy is given by a baseline of im-
ages, under the assumption that the majority of such images
is normal. The key of our approach is a featureless proba-
bilistic representation of images, based on the length of the
codeword necessary to represent each image. Such code-
word’s lengths are then used for anomaly detection based
on statistical testing. Our techniques were tested on syn-
thetic and real data sets. The results show that our ap-
proach can achieve high true positive and low false positive
rates.

1 Introduction

Surveillance applications are becoming commonplace.
However, having to browse through a large number of
frames in search of worthy images is a labor-intensive and
error-prone task. A technique that could highlight which
images are worth a deeper and closer look would be of
outmost importance. Additionally, such a technique could
highlight crucial information that is otherwise missed. Al-
though video and image surveillance have received a lot of
attention in the computer vision community, the issue of de-
tecting anomalous images is largely ignored.

In this paper, we introduce the design of a novel tech-
nique that achieves this goal. The method is capable of
flagging anomalous images, where anomalies are defined as
situations that are not encountered in a baseline of images
used to train the technique. Our implementation uses stan-
dard techniques for foreground and background object de-
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tection in images (which can be substituted for other meth-
ods), but its novelty resides in the way it compares images
to find those that contain anomalies.

A common approach for anomaly detection is to repre-
sent entities as vectors in a given feature space, and com-
pute distances therein. However, defining a meaningful set
of features, and a proper distance measure between images
is a challenging problem. Inevitably, the selected features
will bias the kind of anomalies we are able to detect. To
address this issue, we introduce an anomaly detection ap-
proach based on a featureless probabilistic representation of
images. The underlying principle is rooted in information
theory and code design. Optimal codes are built so that the
most common words receive shorter descriptions. We ap-
ply a similar concept to images, where words are replaced
by the detected objects. The collection of objects in an im-
age (along with their probabilities) contributes to the length
of the codeword used to represent that image. Such code-
words’ lengths become the key information for anomaly de-
tection based on statistical testing.

Our approach to the problem has many desirable prop-
erties. The methodology does not employ a model to de-
fine normalcy (or abnormal behavior). This characteristic is
highly desirable, since techniques that utilize models (either
learned through data or manually built) tend to be brittle and
produce a large number of false positives. We assume that
baseline images, against which anomalies will be flagged,
are available. The size of the baseline sample is related to
the confidence level at which one wishes to operate. As a
rule of thumb, if the sample has N images, the maximum
confidence at which we can operate is 1 − 1

N (for instance,
with 20 images one can utilize a confidence of 95%). The
baseline set itself provides the definition of normality, as we
shall explain later. Furthermore, our approach does not re-
quire the recognition of specific objects (e.g., cars, people).



Rather, we represent objects as geometric shapes that can be
compared without attempting to recognize them. This as-
sumption increases the robustness of the overall technique,
as object recognition is a difficult task prone to misclassi-
fications. As a result, our methodology can be applied in-
dependently of the image context, of which we make no
assumptions.

The paper is organized as follows. In Section 2, we de-
scribe our anomaly detection approach, how to obtain a fea-
tureless probabilistic description of images, and the image
processing techniques used for object detection. In Sec-
tion 3, we describe how the individual components are in-
tegrated together in the overall approach. Specifically, we
describe two different methods. Experiments and results are
discussed in Section 4, and conclusions are given in Section
5.

2 Technical Description

2.1 Anomaly Detection

In anomaly detection, the goal is to find entities that are
different from most other entities. These entities, called out-
liers, are defined by Hawkins [5] as “an observation that de-
viates so much from other observations that arouse the sus-
picion that it was generated by another mechanism.” This
definition leaves the concept of deviation unexplained, and
therefore is general enough to apply to many different situa-
tions. In our application, we are looking for images that can
be identified as outliers. Using the definition above, that
means images that capture events generated by a “mecha-
nism” other than the one that generates the images we con-
sider normal.

Many anomaly detection algorithms (see for example [7,
8]) find outliers by measuring the distance between entities,
where the entities are vectors of attributes. However, defin-
ing distances between two images is a difficult problem.
Some researchers have attempted to solve it by describing
an image as a vector of features (e.g., [3]). This approach
detects anomalies based on the extracted features: for in-
stance, an image with predominantly blue color (where
color is one of the features) would be an outlier among im-
ages that do not have a lot of blue in them. Clearly, these
are not the kinds of anomalies we are interested in. Instead,
we utilize an anomaly detection technique we have recently
developed presented in [1]. The approach, called StrOUD
(for Strangeness-based Outlier Detection algorithm) com-
pares the entity that we wish to diagnose to a sample of
entities, and uses statistical testing to decide if the entity
in question is an outlier. The comparison is made by us-
ing a measure, called strangeness (α), that represents how
“strange” the entity is. Strangeness is defined as a function,

and can take many forms, a characteristic that makes the
method adaptable to many different scenarios.

Once a strangeness function has been chosen, the next
step is to compute the strangeness for a sample of data.
This sample of data, called baseline, will “represent” what
normalcy is. Notice that since anomalies are strange, it is
reasonable to assume that most of the data in that sam-
ple will be normal, and therefore the strangeness values
of that data will approximate what the normal distribution
of strangeness would look like. (If an abnormal data ob-
servation would occur too often, it would cease to be an
anomaly.) Following the paradigm of transduction [11, 4],
the computation of the α for each of the observations in
the baseline data is done by taking out that observation
from the sample, and computing the function that defines
its strangeness. This mechanism is called transduction in
the literature [11, 4]. After this step, a sample distribution
of α values becomes available and we are ready to diagnose
new entities.

To diagnose an entity using the available distribution of
α values, we make use of a test of randomness. The most
widely applied test is called hypothesis testing and it in-
volves the calculation of the p-value. A p-value is the small-
est level at which we can reject the null hypothesis. Infor-
mally, is the measure of evidence against the hypothesis:
the smaller the p-value the greater the evidence against the
null hypothesis. In our case, the p-value is calculated as fol-
lows. If the entity we are trying to diagnose has strangeness
αn and the distribution of α values in the baseline data is
α1, α2, . . . , αn−1 the p-value can be calculated as:

p−value =
#{i = 1, . . . , n, αi ≥ αn}

n
(1)

The symbol # in Eq. 1 indicates the cardinality of the set of
α values that are greater than or equal to the α value of the
test entity. In other words, the p-value is calculated as the
fraction of entities that exhibit strangeness at least as large
as the strangeness of the test entity.

The null hypothesis is H0: The entity is not an outlier.
For the application we are describing, it translates as ”The
image is drawn from the same distribution that ‘generated’
the images we use as a baseline.” With the help of a confi-
dence level δ we can use the p-value to accept or reject this
hypothesis. If the p-value is less than 1−δ, the null hypoth-
esis is rejected. Otherwise, the alternative hypothesis H1:
The entity is an outlier is accepted.

For the problem under consideration, the entities are
images, and we need to define a suitable function for α.
As mentioned before, functions that measure the distance
between two images typically do not capture meaningful
anomalies. To avoid this problem, we rely on the length of
the description of the image in probabilistic terms to mea-
sure its strangeness. The principle is deeply rooted in infor-
mation theory and code design [2]. Optimal codes are built



in such a way that the most common words receive shorter
descriptions. A similar concept can be applied to images,
replacing words with the objects in the image. In the next
section we explain how to achieve this.

2.2 Probabilistic Description of Images

In this section we explain our choice of strangeness func-
tion and its relationship with information theory and code
design. An image can be considered to be composed of a
series of geometrical objects (later on we will explain how
we recover these objects in practice). One can argue that,
over all the possible normal images of a given area, each ob-
ject follows a spatial distribution (which is unknown). This
spatial distribution indicates the probability of the object be-
ing located at a specific location (x, y) within the image. It
is easy to represent the whole set of possible objects as a
dictionary of “words.” A particular arrangement of objects
constitutes an image and it is akin to a code composed of
symbols in a given dictionary.

In the field of Information Theory [2], it is well known
that data compression can be achieved by the assignment of
short descriptions to the most frequent symbols in the vo-
cabulary. In the Morse code, for instance, the most frequent
symbol is represented by a single dot. One can prove that a
lower bound for optimal codes assigns a codeword of length
− log pi to the symbol i if its probability of occurrence is pi.

Similarly, we could describe each image as a codeword
composed of symbols, one for each object in the image. The
length assigned to a symbol representing an object in a par-
ticular position would be a function (− log pi) of the like-
lihood of the object being in that location. This likelihood
is given by the (unknown) spatial probability density of the
object. While the spatial density of all the objects over all
the possible normal images is unknown, we can estimate it
from the baseline sample of images. The problem becomes
a density estimation problem [10].

Equipped with estimates of the spatial density functions
for the objects we observe in an image, we can compute
the length of the image by adding the contributions − log pi

for each of the objects. The quantity (−
∑

i log pi), which
we call the size of the image codeword, is what we use as
strangeness measure for the image. Notice that, if an object
is located in an unlikely position in the image, its contribu-
tion to the codeword size is going to be large, potentially
making the image abnormal. This is precisely what we are
trying to achieve: images with objects in unlikely positions,
or with objects that have rarely or never been seen in the
baseline collection, are going to have large strangeness, and
most likely will be diagnosed as outliers.

There are many methods available for density estima-
tion, from parametric methods that assume that the data
is drawn from a known parametric family of distributions

(e.g., Gaussian), to non-parametric methods such as his-
tograms. We will later describe the density estimation meth-
ods we used.

2.3 Image processing and object detection

2.3.1 Background Subtraction

We assume that the camera observes a scene in which the
background changes slowly relative to the motion of the
people and the objects in the scene. The resulting pictures
are registered. This allows to utilize background subtrac-
tion to identify foreground and background objects. These
techniques have been successfully employed before (see
[9]). (Alternatively, other techniques to obtain object de-
scriptions from images, such as image segmentation, can be
used.) The result of this process is a a series of objects,
each characterized as a set of connected edges. For each
pixel in the edges of the object, we use a standard computer
vision ([9]) technique to compute the color image gradient
of the pixel. Without going into too many details, we use
finite differences to compute partial derivatives in the x and
y directions for the red, green, and blue channels. We form
a Jacobian with the derivatives J = (rx, ry; gx, gy; bx, by)
(rx, ry is the first row; gx, gy is the second row and bx, by

is the third row). We form S = J ′J (transposed J times J).
The larger eigenvalue of S is the edge strength squared and
the corresponding eigenvector is the edge orientation. The
exact direction (+/-) is determined by comparing the eigen-
vector and the rows of J . The color gradient is the edge
orientation vector times the edge strength (square root of
the larger eigenvalue).

With the color gradient values for each pixel computed,
we can sort the pixels and select the n pixels with largest
gradient. The n points are then placed in a histogram com-
posed of thirty-six bins. Each pixel belonging to an edge
contributes to one of the bins, according to the edge orien-
tation. When the bin index is determined the bin count is
incremented.

This histogram can be converted into a probability den-
sity function (pdf) by normalizing the sum of the histogram
counts to unity. Two pdfs p1 and p2 can be compared using
Kullback-Leibler divergence given by:

D(p1|p2) =
36∑

i=1

p1(i) log
p1(i)
p2(i)

Therefore, using KL over histograms of two different ob-
jects, one can compute the distance between the objects and
therefore their similarity.



3 The overall approach

We have implemented two alternative methods of
anomaly detection. The difference between the methods re-
sides on the way the density estimation is performed. In
method 1 (M1), the density estimation is done over the en-
tire image. For that, objects are clustered in similar groups
and a probability density function is estimated per cluster.
This estimation is performed off-line, using the baseline
data, before images can be diagnosed. Given an object in
a new image, its cluster membership is determined and the
corresponding density function is used to compute its prob-
ability of being seen in the location where it is found. In
method 2 (M2), the image is divided by using a grid. When
an object is found in a given block of the grid, the probabil-
ity of the object being in the observed position is computed
on the spot, using a non-parametric model that utilizes dis-
tances to objects that have been seen in the same block in
the baseline data. A more detailed explanation of the meth-
ods follows.

3.1 Method 1 (M1)

The first step consists in clustering the objects extracted
from the training set (i.e., baseline data). Clustering is per-
formed by means of a three level divisive clustering that
uses a different distance function at each level. The three
distance functions are based on: (1) dimension of the object
(pixel count); (2) matching of the orientation and the size
of the bounding box; and (3) edge gradient. At each level,
each cluster obtained in the previous level is split (divisive
clustering) by re-clustering its objects using an agglomera-
tive approach (based on the Ward method [6]) according to
the distance function of that level.

First, objects are clustered using the pixel count. This
allows early separation of objects having different sizes. At
the second level, objects are grouped based on the orienta-
tion and the size of the bounding box. This is useful, for
instance, to separate pedestrians located close to the cam-
era from horizontally oriented cars positioned farther away
from the camera. Bounding boxes are normalized to have
the same length of the longest edge, and they are positioned
so that their centers overlap. The difference in orientation
between two bounding boxes is captured by the smallest
rotation angle alpha (ranging from 0 to 90 degrees) neces-
sary to align the two boxes (see Fig. 1). The distance be-
tween two bounding boxes is then defined as the maximum
of the two distances d1 and d2 as shown in Fig. 1. Finally,
at level three, objects are clustered using the similarity be-
tween edge histograms.

Once the training objects are clustered, it is possible to
estimate the probability density for a specific cluster. To
do so, we divide the image with a grid and have each ob-

Figure 1. Bounding boxes and the second
distance function.

ject found in the baseline image set contribute with a Gaus-
sian distribution to the density. The standard deviation of
the Gaussian for each object i is estimated as: γ 1

n

∑
i

√
ci

2
where ci is the pixel count of object i, and n is the number
of objects in the same cluster as object i. The user can set
γ, to let the density estimation have the desired sparseness.
For more than three standard deviations, the contribution is
set to zero. Each training object is assigned to the element
of the grid where it belongs. The contribution is computed
only for the centers of the blocks of the grid. At the end of
this process, each cluster (at the lowest level) has a density
function associated with it, which will permit the calcula-
tion of the likelihood of seeing an object belonging to that
cluster in a particular block of the grid.

The objects extracted from test images are assigned to
the clusters of training objects as follows. For each distance
level, StrOUD is first used against all the clusters. If the
object does not fit any cluster for at least one distance level,
it is declared an outlier; otherwise, we determine its clus-
ter by using majority voting among the k closest clusters’
members. Cluster refinements are performed at each level.
This means that a test object is first assigned to one cluster
based on its size. At the second level, the test object is com-
pared only with the training objects within the same cluster,
and so on. Finally, once the final cluster of a test object is
determined, we estimate the probability associated to their
position, using the density function previously calculated
for the cluster. In the grid method, a test object takes the
probability associated to the grid element it belongs to. (If
the probability is zero, it is set to 10−100, since the proba-
bility of outlier objects is set to 10−100.)

For each image we compute the size of the codeword de-
scribing the image as (−

∑
i log pi), where the summation

is over objects i detected in an image. This also represents
the strangeness of an image. Running StrOUD using the
size of the codeword as strangeness, it is possible to flag
each image as normal or outlier with different confidence



levels.

3.2 Method 2 (M2)

Method 2 partitions a given image into blocks. It then
estimates the probability for an object to appear in a given
position of a specific block by utilizing only objects seen
within the same block (in the baseline data). Thus, this ap-
proach performs local estimations of probabilities, where
locality is defined by the size of the blocks, without cluster-
ing objects into groups.

A grid of fixed size (for the entire process) is used, and
every image is divided according to such grid. For the base-
line images, the representations of objects found in each
block are saved.

To compute the codeword sizes for the baseline images,
we proceed as follows. For every object in an image, lo-
cated in block B, we compute the probability of being in its
current position using a non-parametric model of the form:

pi = 1 − mini,o∈B,i %=o d(i, o)
maxi,o∈B,i %=o d(i, o)

where o represents an object (different from i) seen in B in
any of the baseline images. The model computes the proba-
bility as the complement of the ratio between the minimum
distance of the object in consideration from any object in
B, and the maximum distance of the object in consideration
from any object in B. Notice that the two extremes of this
function are 0, when the minimum and maximum distances
are the same, and 1, when the minimum distance is 0. The
first case corresponds to an object that has no close neigh-
bors, the second to an object that has an identical copy in
the block.

Using the probability so obtained, it is simple to compute
the contribution of the object to the codeword size, and ul-
timately to compute the codeword size of the image. In this
way, the distribution of strangeness for the baseline images
can be obtained.

For a new image that needs to be diagnosed, the pro-
cess is similar. For every object of the image, the non-
parametric model above allows to compute its probability.
The strangeness of the image is then computed. Finally,
StrOUD provides a diagnosis of the image.

4 Empirical Evaluation

4.1 Data

We conducted experiments with three datasets. Two
were “synthetically” created by taking digital photographs
of a controlled scene consisting of a few objects on a table.
We moved the objects in certain restricted patterns first to

Detected Detected
as Normal as Outlier

M1 M2 M1 M2
Normal (34) 32 29 2 5

94.12% 85.29% 5.88% FP 14.71% FP
Outlier (34) 1 9 33 25

2.94% 26.47% 97.06% TP 73.53% TP

Table 1. Confusion matrix for dataset 1.

Detected Detected
as Normal as Outlier

M1 M2 M1 M2
Normal (24) 23 24 1 0

95.83% 100% 4.17% FP 0% FP
Outlier (22) 1 1 21 21

4.54% 4.54% 95.46% TP 95.46% TP

Table 2. Confusion matrix for dataset 2.

create a baseline of normal images. Later we moved the
objects to areas in the image where they had never been be-
fore (in the baseline set) and introduced new objects to the
scene. We also made objects (including background objects
that had never moved before) disappear and background ob-
jects change their positions to create anomalies. These two
datasets were designed to have a proper account of normal
and outlier frames, so we could do a quantitative evaluation
of the techniques. These two sets were shot with a Sigma
SD9 SLR digital camera with the FOVEON R©X3TMimage
sensor that has three layers of Pixel Sensors (each pixel cap-
tures 3 colors as opposed to the standard 1 color-pixel), us-
ing high resolution (2263x1512 pixels). Details are pro-
vided below.

In each of the experiments the results are reported for
the best selection of parameters. The value of γ is kept to 1
(variations over this parameter did not exhibit a significant
change of the results). The confidence utilized is 95%. In
method M1 a value of k = 1 neighbors is used to determine
the best cluster fit.

Dataset 1. A sample frame is shown in Fig. 2. Most of
the pictures contain five objects: two toy cars, a toy plane,
a toy train, and a small chest that serves as part of the back-
ground. The cars, plane, and train move in specific patterns
throughout the baseline set of frames as shown in the same
figure (Fig 2(Lower)) the plane moves on a strip on the up-
per left corner of the image; the cars on a strip in the middle
part of the image; the train on a strip in the right side of
the image). The baseline part of the set is composed by
90 images, each with the foreground objects located in their
“normal” positions (somewhere along the strips indicated in
Fig 2(Lower)). The test part of the set consists of 68 images:



34 of them are normal (similar to those in the baseline), and
34 of the images contain at least one anomaly. Anomalies
consist of foreground objects placed in parts of the image
where they have never been before (e.g., a car in the plane’s
strip), background objects (i.e., the chest) disappearing or
being moved to other places in the image, or new objects
(e.g., a remote control device) appearing in the image. Ex-
amples of the outliers can be seen in Fig. 3. The clustering
of the objects in the baseline set was set at 30 clusters.

Dataset 2. This set is similar to the first. It is composed
by a series of frames shot over a controlled scene with ob-
jects following normal patterns of movement in the base-
line part of the set and being moved to anomalous spots in
the test part. Fig. 4 shows a sample frame for training. In
the 82 baseline images, the foreground objects – the small
chest and the grey remote control – are seen in the middle
part of the image. In the test images, we have 24 normal
frames (similar to the baseline frames) and 22 outliers with
foreground objects misplaced, background objects moved
or disappearing and new objects that have not been seen in
the baseline. The clustering of the objects in the baseline
data was set at 9 clusters. (Fig. 5 shows two examples.)

Dataset 3. This data was obtained by placing a camera
close to an office window in a building on campus. The
camera was pointing at a traffic intersection on campus and
shooting a video of on-going activities. The camera used for
this last set is an IQEye 511. The images were taken at 30
frames per second, 704x480, all of the other features (white
balance, etc.) where disabled. A frame of the baseline data
is shown in Fig. 6. The original set has 7680 images. The
first 3680 are considered training and the remaining 4000 as
test. The number of clusters of objects for the baseline data
is set at 45.

4.2 Results

4.2.1 Basic results

In this section we show the confusion matrices (false pos-
itives and true positives) for the best results obtained on
datasets 1 and 2 using the two methods described in Sec-
tion 2, along with examples of outliers found for dataset 3
(we do not have the ground truth for that set, so quantita-
tive analysis of the results are not available). The results
reported in this section are obtained using the best settings
for the two methods. The confidence level used in the ex-
periments is 95%.

Table 1 shows the results obtained for dataset 1, using
90 images as baseline and with a test set composed of 34
normal images and 34 outliers.Table 2 shows the results on
dataset 2 with a test set of 24 normal images and 22 out-
liers. M1 performs well on both datasets, with high true
positive and low false positive rates. M2 does specially well

Figure 2. (Upper) A frame from dataset 1;
(Lower) Normal patterns of movement for
foreground objects in dataset 1.

on dataset 2 with 0% false positives and a high (95.46%)
true positive rate.

For dataset 3, Fig. 7 shows examples of images that were
flagged as outliers by our techniques. In all these images,
foreground objects (or people) were detected in unlikely po-
sitions, and therefore caused a large increase in codeword
sizes. Image (c) is an exception: it contains no foreground
objects. It is flagged as an outlier because our statistical
testing procedure considers both tails of the distribution of
the α values. In this case, the strangeness (or p-value) (see
eq. (1)) of the image is too small (smaller than the values
for the baseline).

4.2.2 Baseline set size

Fig. 8 shows false positive and true positive rates as a func-
tion of the size of the baseline. For M1, as fewer baseline
data is available, clusters contain fewer objects, and test ob-
jects are flagged as strange more often. As a result, we have
more false positives and also an increased number of true
detections. The trend for true positives is less marked in
dataset 2, since the detection rate is quite high to begin with.
For M2, as fewer data is available, each grid block gets pop-



(a) (b)

(c) (d)

(e) (f)

Figure 7. Images detected as outliers in dataset 3. (a) Three jaywalkers on the access road (i.e.,
pedestrians in a location they have not been seen in the baseline set); (b) Big truck on the access
road (that object was never present there in the baseline set); (c) Lack of foreground objects; (d)
Jaywalker in the main road; (e) Pedestrian on the right (no sidewalk); (f) Green truck on the sidewalk



Figure 3. Examples of outliers of dataset 1.

Figure 4. Example of a baseline image of
dataset 2.

ulated very sparsely. Each object receives low probability
(even the training ones); therefore, the size of the codewords
is larger. As a result, more objects are considered as normal.
Hence, as the training set gets smaller, we observe less false
positives and less true positives. The trend for false posi-
tives is not noticeable in dataset 2, since the rate is 0 from
the start.

Figure 5. Examples of outliers of dataset 2.

Figure 6. Example of a baseline image of
dataset 3.

4.2.3 Scale of the objects

We tested the effect of changing the scale of the images on
TP and FP rates. The objective was to test the sensitivity of
our approach to the quality of the images (smaller frames
corresponds to less quality). Fig. 9 summarize the results.
For both methods, decreasing the size of the image reduces
the number of true positives. In M1, this is due to the fact



Figure 8. False positive and true positive
rates as a function of the size of the baseline
set. (Upper) dataset 1; (Lower) dataset 2

that all objects start appearing more similar to each other.
This results in less clusters, and an estimation of density
functions closer to uniform distributions that cover the en-
tire image. Thus, objects that should be detected as “out of
place” or “never seen” are not identified as such. In M2, the
effect in individual blocks is the same. Objects appear simi-
lar to each other and therefore do not get flagged as strange.
The trend is less marked in dataset 2, because there are less
foreground objects in that set.

4.2.4 Grid Size

The grid size affects the two methods differently. In M1,
the grid size has an impact on the density estimation. In
M2, however, the impact is on the objects that we will find
in a particular block, and therefore, on the probability given
by the non-parametric model. For this reason, we decided
to conduct separate experiments for the two methods and
report them in separate figures. Fig. 10 shows the effect of
the grid size on M1. The x-axis reports the number of divi-
sions made in each dimension of the image (e.g., the value
three corresponds to nine blocks). In general, the method
is quite robust with respect to grid sizes, maintaining sim-
ilar values of TP and FP rates throughout the tested range.
Fig. 11 shows the effect of the grid size on M2. The x-axis
in this case represents the size (in pixels) of one block (the
smaller the size the larger the number of blocks in the im-
age). The trend in dataset 1 is a decrease of the true positive

Figure 9. TP and FP rates for different scales
of the frames in a) dataset 1; b) dataset 2.

rate as the blocks get very small. This is due to the fact that
at those sizes only partial objects are included in the blocks
and they all look similar. The trends of TP and FP for a
large range of grid sizes are quite stable.

5 Conclusions and future work

We have introduced a technique that flags anomalies in
images, with high true positive and low false positive de-
tection rates. Two methods were investigated. M1 makes
use of clustering and density estimation to define compact
and probabilistic representations of images. In this context,
clustering can be interpreted as a compression technique
useful to handling noise. M2 avoids clustering by storing
the objects observed in the baseline (organized by grid cell).
Local comparisons are carried out between new objects and
the baseline, where locality is defined by the cell of the grid.
M2 resembles “lazy learning” paradigms, where no training
is carried on off-line: all the computation is performed once
a test image is presented to the technique. Since objects
are stored by grid cell position, their retrieval and compar-
isons with test objects can be carried out quite efficiently.
On average, the on-line computational complexity of M2 is
similar to that of M1. Nevertheless, M2 has larger memory
requirements, as it needs to store the objects of the baseline
(M1 discards them after performing clustering and density
estimation). In the future, we plan to aid the computation of
density functions with the use of domain knowledge. Fur-



Figure 10. M1’s TP and FP rates for differ-
ent grid sizes in (Upper) dataset 1; (Lower)
dataset 2.

thermore, we plan to improve the process of discovering
anomalies by using additional information such as sound,
and to deal with situations where images are poorly regis-
tered.
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