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Abstract—During the past years the first tools for visual
analysis of trajectory data appeared. Considering the growing
sizes of trajectory collections, one important task is to ensure
user interactivity during data analysis. In this paper we present
a fast, model-based visualization approach for the analysis of
location dependencies in large trajectory collections.

Existing approaches are not suitable for visual dependency
analysis as the size and complexity of trajectory data constrain
ad hoc and advance computations. Also recent developments in
the area of trajectory data warehouses cannot be applied be-
cause the spatial correlations are lost during trajectory aggre-
gation. Our approach builds a compact model which represents
the dependency structures of the data. The visualisation toolkit
then interacts only with the model and is thus independent of
the size of the underlying trajectory database. More precisely,
we build a Bayesian Network model using the Scalable Sparse
Bayesian Network Learning (SSBNL) algorithm [1], which we
improve to represent also negative correlations. We implement
our approach into the GIS MapInfo using MapBasic scripts
for the user interface and an independent mediator script
to retrieve patterns from the model. We demonstrate our
approach using mobile phone data of the city of Milan, Italy.

Keywords-Spatial Bayesian Networks; SSBNL; trajectories;
visualisation

I. INTRODUCTION

Visualization is a natural approach to analyse spatial data.

Due to the truthful representation of geographic shapes and

relationships it allows, for example, an easy detection of

correlation patterns. Also trajectory data, as one charac-

teristic type of spatio-temporal data, has received notable

attention from the area of visual analytics recently [2]. In this

paper we consider the visualization of dependencies within

trajectory data.

Clearly, the easy availability of GPS and other tracking

technologies encourage a growing collection of trajectory

data. This data bears numerous information that can be used

in traffic management or location based services. However,

the growing amount of data also poses challenges with

respect to generalization and performance criteria. On one

side, generalization techniques such as aggregation, smooth-

ing or filtering are necessary to distil relevant information

and to cancel out background noise. On the other side, large

data collections easily outgrow the size of main memory

and need sophisticated caching, sampling or compression

techniques for ad hoc analysis. This is especially important

for online analytical processing (OLAP) and visual analytics

as both methods rely on user interaction.

In this paper we present a fast, model based visualization

approach for the analysis of location dependencies. Location

dependencies describe the co-occurrence of geographic lo-

cations within a trajectory. They occur naturally as personal

movement is purpose-driven and not a random walk through

a city. Location dependencies can be expressed as condi-

tional probability to visit an arbitrary location given that

another (set of) location(s) is visited within a trajectory as

well. More formally, given a finite universal set L of discrete

geographic locations, a set L+ ⊆ L containing locations

that are visited with certainty and a set L− ⊆ L \ L+

containing locations that are not visited with certainty within

a trajectory, we can specify the location dependency of an

arbitrary location l ∈ L by the probability P (l | L+,¬L−).
The sets L+ and L− are also called positive and negative

evidence, respectively.

The degree of dependency between two or more locations

can be calculated by simple counting statistics. However, as

each statistic requires a complete database scan, this method

is inefficient for ad hoc analysis of large datasets. What other

options exist to speed up visual analysis? First, we could

calculate all dependencies in advance and store the results.

Second, we could try to reduce the size of the trajectory set.

The first option is not practicable as exponentially many

combinations of locations exist. The second option can be

achieved by aggregation using trajectory data warehouses

(TDW) [3], [4]. However, TDW are not able to reconstruct

location dependencies because the identity of trajectories is

lost during compression.

We therefore combine visualisation of dependencies with

an approach introduced in previous work [1], which provides

an algorithm for the compact representation of location

dependencies using Bayesian Networks. We developed an

interface to guide the selection of evidence in the geographic

information system (GIS) MapInfo [5] and to control the in-

teraction with the Bayesian Network model. We demonstrate

the analysis process and visual interaction with Bayesian

Networks using mobile phone data of the city of Milan.

In Section II we review related work on visual analysis

techniques for large trajectory collections. Section III in-

troduces Spatial Bayesian Networks and Section IV sum-

marises the SSBNL algorithm of our previous work [1].
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In this section we also extend the algorithm to represent

negative correlations. Section V shows the integration of the

Bayesian model with MapInfo, and Section VI illustrates our

work using real-world mobile phone data.

II. RELATED WORK

A number of different research areas have contributed

to the analysis of geographic data. Next to geostatistics

and geographic information systems and science, database

technology and data mining play a major role in the de-

velopment of analysis methods for large spatial and spatio-

temporal data sets. While spatial database technology and

spatial data mining have become well-established parts in

their respective research areas, methods and tools for the

analysis of trajectory data are still in their infancy [6].

Recently, two approaches for aggregation and analysis

of large sets of trajectory data have been published. Both

approaches rely on a database-side aggregation of the data

prior to data analysis and use the tool CommonGIS for

visualization. CommonGIS [2] is a software system for inter-

active visual analysis of spatially and temporally referenced

data. The first approach by Andrienko and Andrienko [7]

relies on the user to perform aggregation using standard

database functions. CommonGIS provides a direct database

access, and the user can load tables with previously aggre-

gated data (see Figure 1, Appr. 1). Only if the data set is

small enough to fit into main memory, so-called dynamic

aggregators can be applied directly within CommonGIS. The

second approach by Leonardi et al. [8] performs aggregation

using a TDW. TDW [3], [4] have recently been developed

and are a first step into OLAP analysis of trajectory data. The

TDW stores aggregated data at a given level of resolution.

CommonGIS interacts with the TDW to allow for visually

aided OLAP, e.g. roll-up and drill-down operations for

graphically selected areas (see Figure 1, Appr. 2).

In contrast to the above approaches, our visual analysis

process is not based on aggregated data but on a model of

the data (see Figure 1, Appr. 3). The model is a compact

representation of trajectory dependency structures and is

extracted in a first data mining step. The visualisation toolkit

interacts only with the model and is thus independent of the

size of the underlying trajectory database.

The existing approaches are not suitable for visual de-

pendency analysis. First, the exponential number of location

subsets prohibits advance computation and ad hoc calcu-

lation of dependencies may take too long for large data

sets. Second, TDW naturally do not keep the identity of

trajectories during aggregation, which makes inference of

location dependencies impossible. However, our approach

is tailored to one specific analysis task as it extracts patterns

early within the analysis process. In contrast, approaches 1

and 2 are flexible with respect to possible analysis questions,

because the selection and control of analyses resides with

the user in the upper most level.

Figure 1. Aggregation and analysis approaches for trajectory data

III. SPATIAL BAYESIAN NETWORKS

Given a set of trajectory data (for example in form of

GPS logs), conditional dependencies between two or more

locations can be determined by counting co-occurences

within the data. The calculation of pairwise dependencies

results in a square matrix, and the addition of further

locations extends the dimension of the matrix respectively.

This representation becomes soon unmanageable and is

inappropriate in practice. Note, that pairwise dependencies

do not suffice to represent trajectory data, as the choice of

a person at a crossroad depends on his or her origin.

Bayesian Networks are intended to store multivariate

probability distributions of a set of random variables X =
(X1, X2, . . . , Xn). They are graphical models representing

each random variable by a vertex and dependency relations

among them by arrows, which results in a directed acyclic

graph G = (X, E ⊆ X ×X). Additionally, each vertex Xi

stores a probability table describing its own state depending

on its parents. Thus, the joint probability distribution p(X =
x) among the random variables X = (X1, X2, . . . , Xn) is

given by

p(X = x) = p(X1 = x1, X2 = x2, . . . , Xn = xn)

=
n∏

i=1

p(Xi = xi|parents(Xi))

where parents(Xi) is the set of all ancestors Xj having a

directed edge in G connecting Xj with Xi, i.e.

parents(Xi) :=
{
Xj |(Xj , Xi) ∈ E

}
.

The random variables X correspond to the discrete loca-

tion set L. For each positive evidence li ∈ L+ the corre-
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sponding random variable xi is TRUE and for each nega-

tive evidence lj ∈ L− variable xj is FALSE. Locations are

generally obtained from trajectories using a discretisation

operator. For example, GPS data can be matched to the

street network, and each street segment represents a location.

In our application, the target data are reconstructed GSM

trajectories, i.e. the discretisation is already provided by

the data collection technique. Each GSM-cell represents a

location which, in contrast to an arbitrary grid, can vary in

shape and size, overlap and also depend on the weather [9].

The application of Bayesian Networks for spatial data

mining and knowledge discovery was introduced by Huang

and Yuan [10]. They give a brief overview on the promising

possibilities of such a probabilistic model and its construc-

tion. Nevertheless, Bayesian Networks are seldom applied

in spatial data mining because the structure learning of

Bayesian Networks is proven to be NP-complete [11] and

spatial data sets are usually of high complexity. Therefore,

approximation algorithms which reduce the Bayesian Net-

work search space according to a heuristic are necessary.

In previous work [1], we developed an algorithm which is

able to handle the demands of spatial data sets and can be

applied to large trajectory collections. We will briefly review

this algorithm in the next section.

IV. SCALABLE SPARSE BAYESIAN NETWORK LEARNING

The Scalable Sparse Bayesian Network Learning

(SSBNL) algorithm [1] combines the advantages of the

Sparse Candidate [12] and the Screen Based Network

Search [13]. It bounds the number of possible ancestors

similar to [12] by pre-sampling a given sparseness in

the database, and bounds the edgeset to most significant

dependencies by only processing frequent itemsets similar

to [13]. This is done in a two-step algorithm: First, we

pre-sample within each route a set of maximal k distinct

locations uniformly distributed among the trajectory.

Afterwards, we enumerate frequent variable sets on this

pre-sampled data with threshold t and maximal length

ml. The result is a bounded number of location-subsets

adjustable in their size. For each of these sets a local

Bayesian Network is determined in a second step that

fits the original data best and the involved edges become

collected on a stack. Next, this stack is sorted according

to the score of the local networks. In a third step, edges

are drawn from the ordered stack to construct a global

Bayesian Network. Constraints for this selection are that

every chosen edge must not create any cycle in the network

but increase the score of the final network. Afterwards,

a final database scan of the original trajectory dataset is

required to recompute the common probability tables for

each vertex in the global Bayesian Network.

The whole Scalable Sparse Bayesian Network Learning

(SSBNL) algorithm uses pre-sampling to transform an ar-

bitrary dataset to a processable one with adjustable size

and density. Although being an approximation algorithm,

the guaranteed output is one of its main advantages. It

gives a reasonable approximation for positive correlations

[1], because the most significant dependencies persist the

pre-selection of variables.

However, in order to answer queries correctly in our

visual trajectory analysis, the model needs also the ability

to represent negative correlations. Otherwise we are unable

to express exclusive or (XOR) relations among locations in

a trajectory, e.g. “If a car passes location A it is unlikely

to pass location B within the same trajectory”. Including

edges to a Bayesian Network is always possible, if it does

not create directed cycles in the network structure. Thus we

sample multiple pairs of variables. In case both variables

of a pair correlate negative and an edge would be valid

and increases the network score, we insert an edge into the

network (see lines 18 to 27 in Algorithm 1). This pairwise

approach is reasonable as shown in [14]. The complete

network learning Algorithm is summarized in algorithm 1.

V. INTEGRATION IN MAPINFO

After the dependencies among the locations are extracted

utilizing Spatial Bayesian Networks, a query tool is required

to inspect the correlations of different locations within the

underlying trajectory set. Our approach is to embed this user

interface directly into the geographic information system

(GIS) MapInfo [5]. It is then possible to set positive and

negative location evidence in a user-friendly way by simply

selecting the discrete spatial object (points, shapes or lines)

from a map.

Our extension for MapInfo consists of two parts: a user

interface and a mediator script. The user interface offers

tool buttons, dialogs, error messages and user guidance. It

also visualises the result of a query as thematic layer within

the current map window. This part of our query tool is

implemented in MapBasic [15], a scripting language shipped

with MapInfo. Each user query needs to execute Bayesian

inference on the Spatial Bayesian Network according to the

given evidence. In order to keep this part independent of

the currently used GIS, we create a separate mediator script

written in the language R [16]. Thus, we may easily use

other geographic information systems or access the learned

Spatial Bayesian Network from different applications written

in R script as well. An advantage of the scripting language

R is its large collection of statistical analysis packages and

references. In our case we use the Bayesian Network data

structure defined in the deal package [17].

The data exchange between the user interface and medi-

ator script is implemented using files. The control flow and

synchronization of the execution is solved calling a shell

execution command at each computation request sent by

MapInfo. This means, any computation cycle starts a single

R process that reads the evidence from a file and stores the

inference results in a different file. The MapBasic program
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Algorithm 1 SCALABLE SPARSE

BAYESIAN NETWORK LEARNING

Require: D , complete dataset

k , maximal frequent set size

ml , frequent set length

t , support threshold

n , number of random edges

g(·) , Bayesian Network score

Ensure: BN , a Bayesian Network

1: for all observations ω ∈ D do
2: ω′ := sample k locations from ω
3: add ω′ to D′

4: end for
5: FS := enumerate frequent sets (D′,t,ml)
6: for all fs ∈ FS do
7: BN∗ = arg maxBNonfs g(BN,D)
8: add edges of BN∗ to edgedump or if already in

edgedump increase their score

9: end for
10: sort edgedump decreasing

11: for all edge ∈ edgedump do
12: if BN ∪ edge contains no cycle then
13: if g(BN ∪ edge) > g(BN) then
14: add edge to BN
15: end if
16: end if
17: end for
18: for i = 1 to n do
19: sample 2 different locations X1, X2

20: if X1, X2 correlate negative then
21: if BN ∪ edge(X1, X2) contains no cycle then
22: if g(BN ∪ edge) > g(BN) then
23: add edge to BN
24: end if
25: end if
26: end if
27: end for
28: return BN

waits for the creation of this file and continues execution

afterwards. In order to prevent long import times of the

Spatial Bayesian Network every time a new R process is

created, we store the complete R workspace with all objects

(including the Bayesian Network) as the default workspace.

The workspace is read very fast at startup and written after

execution automatically.

Combining all parts, our fast query tool based on Bayesian

Networks consists of a layered structure as depicted in

picture 2. The architecture offers several possibilities for the

independent exchange of components, which is important for

future development and reusability. At the bottom in figure

2 is the Bayesian Network. The spatial dependency model

may be accessed by other tools and the Spatial Bayesian

Network may also be replaced by a more accurate one or

even a complete different dependency model.

Figure 2. Layered integration of Spatial Bayesian Network model into
GIS

VI. APPLICATION

Our data set consists of trajectories collected through

mobile communication technology. Every day mobile phone

service providers store great amounts of technical commu-

nication data that are used for billing purposes and resource

allocation. This data also contains valuable information

about the movements of mobile phone users, and their usage

is under discussion in many places as they may be provided

in large numbers at low cost. Typically, the data consists

of tag data and handover data. The tag data is used for

billing and states for every call an user id, the radio cells

in which the call started and ended as well as the start and

end time. A handover is a transfer of an ongoing call from

one cell to another. It occurs when people move between

areas that are covered by two different radio cells or when

a reassignment of users due to lack of capacity is required.

In our case the handover data are one-hour aggregates that

contain the number of people that pass from one cell to an

adjacent cell while making or receiving a call. Handover

data is used by network providers to optimise resource al-

location. Clearly, tag and handover data contain only partial

information about customer movement and do not have the

format of trajectories themselves. However, trajectories may

be reconstructed using current information about transition

behaviour. The aggregated handover information can be used

to derive the most likely route between start and end cell of
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a call. In addition, the call duration can be used to verify

the plausibility of a reconstructed route through the radio

network.

Our data set consists of reconstructed trajectories for the

city of Milan, that are spaced over a radio network with 69

cells. The data have been collected over one week in autumn

2008. In total, the data set consists of 98,994 records of

17,948 mobile phone users.

We applied the improved SSBNL algorithm (see Algo-

rithm 1) to the data set using the following parameterization.

As the data set is comparably small in its number of

variables for this algorithm, a first pre-sampling step within

the trajectories was not necessary. We computed frequent

location sets with maximal parity of 4 and a frequency

threshold of 5. The Bayesian Network scoring metric we

applied was BDeu [18]. In the end we drew 1000 edge

candidates and add negative correlations to the network. The

whole Bayesian Network learning took about 10 minutes on

a standard desktop computer (CPU 3GHz, RAM 3GB).

Figure 3 depicts the results of the Milan Bayesian Net-

work for five different queries. Red colors indicate a low

visit probability, green colors indicate a high probability.

The blue cells are not part of model because the input data

does not contain trajectories for these cells. The top middle

picture shows the unconditioned probability to be in some

cell during a phone call. The probabilities in this case are

in general low. The top right figure shows the probability

distribution after setting a positive evidence for one cell.

The cells included in a query are marked by dashes. If the

cells are green, a positive evidence has been set (i.e. certain

passage). If the cells are red, a negative evidence (i.e. no

passage with certainty) has been set.

The passage of the marked cell increases the passage

probabilities in the surrounding area, which clearly shows

the positive correlation between neighbouring cells. If fur-

ther positive evidence is added, the probabilities increase

in the direction of the new cells but show also a tendency

towards the city center. In the bottom right picture, two cells

with negative evidence are added in the northwest of Milan.

They prohibit the spread of mobility in the northern part of

Milan. Note that one cell in the very west of Milan shows

a high positive correlation although all neighbouring cells

contain low probabilities. This behavior is not unreasonable,

as connecting paths may lie outside of the network area.

Beware that the model represents not a general mobility

model of Milan. As phone calls are usually of short dura-

tion, predominantly local dependencies are expressed in the

Bayesian Network.

In future work we plan to add further variables that

contain semantic information to the trajectories and thus to

the learning process. Examples are type of contract, used

services (e.g. SMS, phone call) day of week or time of day

of a call. It is then possible to condition the network not only

on location information but also on qualitative variables. The

Bayesian network could then help the mobile phone service

provider to perform customer segmentation or to improve

resource allocation.

VII. CONCLUSION

In this paper we present a model-based approach for fast

visualization of dependency patterns in large collections of

trajectory data. Our approach applies the SSBNL algorithm

of [1] to generate a compact model of trajectory dependency

structures. This algorithm can be applied to arbitrarily large

collections of trajectory data and produces a model that is

independent of the size of the data set. Using only the model

for visualization has the advantage that neither large amounts

of aggregated data need to be stored nor that visualization

is restrained by long execution times of ad hoc queries.

We implemented our approach into the GIS MapInfo

using MapBasic scripts for the user interface and an inde-

pendent mediator script to retrieve patterns from the model.

We applied our approach to mobile phone data of the city

of Milan.
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vestri, “Trajectory data warehouses: Design and implementa-
tion issues,” Journal of Computing Science and Engineering,
vol. 1, no. 2, pp. 240–261, 2007.

[4] G. Marketos, E. Frentzos, I. Ntoutsi, N. Pelekis, A. Raffaetà,
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