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Abstract—In recent years, cross-domain learning algorithms
have attracted much attention to solve labeled data insufficient
problem. However, these cross-domain learning algorithms
cannot be applied for subspace learning, which plays a key role
in multimedia, e.g., web image annotation. This paper envisions
the cross-domain discriminative subspace learning and pro-
vides an effective solution to cross-domain subspace learning. In
particular, we propose the cross-domain discriminative Hessian
Eigenmaps or CDHE for short. CDHE connects the training
and the testing samples by minimizing the quadratic distance
between the distribution of the training samples and that
of the testing samples. Therefore, a common subspace for
data representation can be preserved. We basically expect
the discriminative information to separate the concepts in the
training set can be shared to separate the concepts in the
testing set as well and thus we have a chance to address
above cross-domain problem duly. The margin maximization
is duly adopted in CDHE so the discriminative information
for separating different classes can be well preserved. Finally,
CDHE encodes the local geometry of each training class in
the local tangent space which is locally isometric to the data
manifold and thus can locally preserve the intra-class local
geometry. Experimental evidence on real world image datasets
demonstrates the effectiveness of CDHE for cross-domain web
image annotation.

I. INTRODUCTION

With the rapid expansion of World Wide Web, the amount
of pictorial data has been growing enormously. Annotating
these images absolutely requires much expensive and time-
consuming human labor, leading to the rise of interest
in techniques relevant to image annotation [14]. However
typical learning-based image annotation techniques need a
large number of labeled training samples, and thus classifiers
trained with only a limited number of labeled samples (e.g.,
one labeled image for each concept) are usually not robust
for the real-world application. This critical problem can be
well solved by recently proposed cross-domain learning [2]
methods that has attracted more and more attentions for
data analysis problems in multimedia information processing
[13]. Cross-domain learning or transfer learning is specifi-
cally designed to deal with the situation where the labeled
data in the training set is insufficient but sufficient labeling
information can be obtained from other different but relevant
domain(s).

A dozen of practical problems fall in cross-domain setting,
because human annotation for obtaining training set is a very
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expensive and labor-intensive process. A natural concern is
the possibility of utilizing the discriminative information for
separating the training concepts to classify the concepts in
the testing domain. Although they are of different types, they
may share some common discriminative features. Therefore,
it is possible to apply some popular cross-domain learning
algorithms to solve the above problem.

A key role for image annotation is the distance or sim-
ilarity between samples which can be solved via subspace
learning [8][6], as subspace learning performs the annotation
by enlarging the similarity among the intra-class samples and
maximizing the difference among the inter-class samples in a
subspace rather than the original feature space. However, the
common assumption of the subspace learning algorithms is
that both the training and the testing samples are drawn from
an identical domain, or in a strict sense, they are indepen-
dent and identically distributed (i.i.d.). Therefore, existing
subspace learning algorithms cannot perform well when the
training and the testing samples are drawn from different
domains, and thus they can not utilize the information from
other auxiliary domains to assist annotation when the data
or information from the testing concept or class is limited.

In this paper, we tackle this problem by finding a shared
subspace wherein the training and the testing samples are
distributed in a similar way. In particular, the quadratic
distance between the distributions of the training and testing
domains is minimized in this subspace to solve the above
distribution bias problem. However, this subspace could not
be optimal for classifying samples from different classes.
This is because we consider neither the manifold structure
of intra-class samples nor the discriminative information of
inter-class samples.

Under the patch alignment framework [9], we can model
both conveniently. Specifically, for every sample associated
with a patch (the neighbours of the sample), the following
two aspects are taken into account: 1) to preserve the intra-
class manifold structure, a local tangent space which is
locally isometric to the manifold of the intra-class neighbour
samples in the patch will help to preserve the local geom-
etry information and thus can locally preserve the within
class manifold structure; and 2) to preserve the inter-class
discriminative information, the margin between the sample
and its neighbours from different classes are maximized
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wherein the margin is measured by the average difference
between the intra-class and inter-class distances. Because the
intuition used for local geometry modelling is identical to
that of the Hessian Eigenmaps, we term the proposed cross-
domain subspace learning algorithm as the cross-domain
discriminative Hessian Eigenmaps or CDHE for short.

The main contributions of this paper include: 1) To the
best of our knowledge, CDHE is the first semi-supervised
cross-domain subspace learning method. In contrast to the
prior subspace learning methods, CDHE does not assume
that the training and test data are drawn from the same
domain or same distribution; 2) Several cross-domain learn-
ing algorithms directly transfer classifiers or models, and
thus will heavily rely on the specific models whereas
CDHE is general and flexible as it can be applied with
any classification algorithms; 3) CDHE outperforms the
state-of-the-art subspace learning and cross-domain learning
methods on two real-world web image annotation databases:
MSRA-MM and NUS-WIDE, demonstrating promising per-
formance in real applications.

II. CROSS-DOMAIN DISCRIMINATIVE HESSIAN
EIGENMAPS

Conventional subspace learning algorithms assume the
training and the testing samples are drawn from an iden-
tical domain. In many practical applications, however, they
are actually from different domains. Therefore, these algo-
rithms cannot work well for these situations. This Section
presents the cross-domain discriminative Hessian Eigenmaps
or CDHE for short to solve the cross-domain classification
tasks.

A. Modified Hessian Eigenmaps

Hessian Eigenmaps [11] can recover the underlying pa-
rameterization of a manifold M embedded in a high-
dimensional space if the manifold M is locally isometric to
an open and connected subset of R?. Because the parameter
space is not essentially convex in Hessian Eigenmaps, it
can be applied to model a nonconvex manifold, e.g., a S-
curve surface with a hole. Therefore, we adapt Hessian
Eigenmaps in CDHE to preserve the local geometry for
subspace learning.

Hessian Eignmaps finds the d + 1 dimensional null-space
of H (f), wherein H (f) is the Hessian matrix of a smooth
mapping f, i.e., f : M — R%. This H (f) can be calculated
by using H (f) = [, |Hy (z;)||%dx wherein Hy (z;) is
the Hessian of f on the patch Xy = @4, 31, ..., T ]
wherein x;1,...,2;, i.e., the k1 nearest samples of z;
and the corresponding output in low dimensional space is
Yuey = Wis Yirs -+, Y ]. The tangent plane T, (M), a
Euclidean space tangential to M at x;, is an orthogonal
coordinate system. In order to estimate H (z;), we calculate
the local coordinate system of Xp(; and each sample in
X (s has its own local coordinate II; on the tangent plane
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Ty, (M). Afterwards, this Hy (x;) can be estimated by using
IT;.
However, Hessian Eigenmaps cannot be applied to many
practical applications, e.g., face recognition and image anno-
tation because it requires that k; > d where k; is the number
of the neighbouring samples and d is the dimension of the
subspace. It is difficult to guarantee this condition because
we have a limited number of samples. Alternatively, we
overcome this problem by performing PCA on M at z; and
orthnormalizing the d-dimensional representation to obtain
the tangent coordinate in T, (M). The rest steps for the
modified Hessian Eigenmaps are similar to those in Hessian
Eigenmaps.

Under the patch alignment framework [9], the objective
function for the modified Hessian Eigenmaps to preserve the
local geometry on a local patch Y (;) is given by

H (yl) =tr (YH(i)Hf (.I'l) H? (l'z) Yg(i)) (1)

=tr (YH(i)LH(i)Yg(i)) ’

where Ly = Hy (2;) H}F (x;) encodes the local geometry
of the patch Xp(;.

B. Margin maximization

Our main objective is the cross-domain classification,
so it is insufficient to only retain the local geometry of
intra-class samples. Therefore, the discriminative informa-
tion should be exploited in the obtained subspace as well.
Similar to the definition of the local geometry, we de-
fine a new margin maximization based scheme for dis-
criminative information preservation over patches. For a
patch Xy = [a:l-, T, .. . xikz} wherein
Tit, ..., Tk, 1.€., the ki nearest samples of xz;, are from
the same class as z;, and z;,,... s Tigy s i.e., the other ko
nearest samples of x;, are from different classes against x;,
the margin for the low dimensional corresponding patch
Yue = [yi, Yily ooy Yikrs Yigy - -5 yikz] is the average
difference between the intra-class and inter-class distances,
ie.,

<y Ljk1y Ligs -

k2

1
p; lvi —wll"y, @

In (2) we define Ly as

2
M) = e — vl -
j=1

_eT .
L]W(i) = Pt diag (wl) [_ek1+k2 oA, +k2] (3)
k1+ko
k1+k2 T
_ Z (w’L J —w;
j=1



k}l k2
Vky, . Uk, =1k, ...

where w; = —1/ky|
Ti 4k, s the (k1 + ko) X (k1 + ko) identity matrix;
Chyitky = [1y -cns 1]T € RFathz, L) encloses the local
discriminative information in Yj(;). M (y;) can be viewed
as the margin information representation.

C. Cross-domain parser

If samples from the training and the testing domains
are independent and identically distributed, both the local
geometry and the discriminative information can be well
parsed from the training domain to the testing domain.
However, in the cross-domain setting, the training and the
testing samples are distributed differently in the original
high dimensional space. Therefore, it is essential to find
a subspace so that 1) the training and the testing samples
are distributed similarly and 2) the local geometry and
the discriminative information obtained from the training
domain can be parsed to the testing domain.

The subspace can be obtained by minimizing a distance
between the distribution of the training samples P, and
that of the testing samples Py. Given a dataset X =
[x1, z2,..., %1, Ti41, - -, Titu], Suppose the first [ sam-
ples are from the training set and the rest w samples are
from the testing set. The corresponding low dimensional
representation is Y = [y1, Y2, -, YL, Yit1, - - - Yitu) TO
provide a computationally tractable method to measure the
distance between py, (y) the distribution of training samples
in the low dimensional subspace and py (y) the distribution
of testing samples in the low dimensional subspace, the
quadratic distance is applied here

Qu (P1]|Py) = / (p2() — pur(y))dy 4

= / (pL(W)? — 2pL(W)pu (y) + pu(y)*)dy.

We apply the kernel density estimation (KDE) tech-

nique to estimate py (y) and py (y), ie, p(y) =
(1/n) Y1 G~ (y — ;). Here, n is the number of sam-

ples, and GZ y) is the d-dimensional Gaussian kernel

with the covariance matrix ) . If we introduce estimated
distributions based on KDE to (4), we have

Qw (Pl||Py) = 2 ZZGZ (y+ — Ys) )
s=1t=1
1 I+1 l l+u
LS en w2y Y es
s,t=l+u s=1t=Il+1
where >0 =30 +> 0, Dy = Dt g and Yoy =

> 5+ >_5.The quadratic distance Qw (Pr||Py) serves as a
bridge to parse the local geometry and the discriminative
information from the training domain to the testing domain.

D. Optimization framework

By using the results obtained from the above subsections,
we can obtain the optimization framework to learn the pro-
jection matrix W, which can parse both the local geometry
and the discriminative information from the training domain
to the testing domain. Because the margin maximization
M (y;) and the local geometry representation H (y;) are
defined over patches, each patch has its own coordinate
system. The alignment strategy is adopted to build a global
coordinate for all patches defined for the training samples.
As a consequence, the objective function to solve the cross-
domain subspace learning is given by

= argmin Z

WeRDxd £
+ )\QW (Pr||Pv),

where )\ and 3 are two tuning parameters. If we define two
selection matrixes Sp(;) and Syy(;), which select samples
in the i*" patch from all the training samples Y; =
[y1,y2,- -,y for constructing M (y;) and H (y;), respec-
tively. Therefore, Yi(;) = YLSm) and Yy = YLSm )
According to (1) and (2) and letting Y7, = WT X, the first
part of objective function defined in (6) can be rewritten as

(yi) + BH (y:)) (©)

S7(M (y:) + BH (:)) %

=1

tr YLSM )LM (i) (YLSM 1)) )
P —l—ﬁtr YLSH(Z)LH (YLSH(Z)) )
:tr WTXLLXL

l
2 (5M<i>LM<i>5ﬁ<i> + BSH@)LH(z')SE(i))
is the alignméﬁt matrix [9]. X is the high-dimensional
representation of all the training samples.

As a consequence, based on (7), the objective function in
(6) can be further changed into

W = argmintr (W' X, LX] W) 8)
WeRDXd

+ AQw (PL||Pv) -

To solve the above optimization problem, in this paper, the
gradient descent technique is applied to obtain the optimal
linear projection matrix W.

where L =

III. EXPERIMENTS

In this Section, we apply the proposed CDHE on two real-
world web image annotation databases: MSRA-MM [12]
and NUS-WIDE [3] respectively. Because there are no
public web image databases for cross-domain annotation, we
design six datasets based on MSRA-MM and NUS-WIDE
databases. Because we are working on cross-domain setting,
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Figure 1. Recognition rates over INN and CDHE on six datasets, i.e.,
NUS-1, NUS-2, NUS-3, MSRA-1, MSRA-2, and MSRA-3, respectively.

it is essential to require the training and testing domains to
share some common properties. Otherwise there would be
nothing useful to transfer from the training domain to the
testing domain. As a consequence, the design strategy is that
we first select some relevant concepts from the database and
then split these concepts into two disjoint parts with different
concepts, one for training and the other for test. Because the
training and test data belong to different concepts, they are
from different domains. The composition of six datasets are
shown in Table I. To reduce the computational burden, we
sample 100 training and 100 test examples for each concept.

To demonstrate the effectiveness of CDHE, we compare
it against five popular subspace learning algorithms, which
are Fisher’s linear discriminant analysis (FLDA) [4], locality
preserving projections with supervised setting (LPP) [5], dis-
criminative locality alignment (DLA) [10], semi-supervised
discriminate analysis (SDA) [1], and the maximum mean
discrepancy embedding (MMDE) [7]. FLDA is a con-
ventional supervised learning method. DLA and LPP are
discriminative manifold learning based subspace learning.
Both achieve top level performance in many computer vision
tasks. SDA is a semi-supervised method and it assumes the
training and the testing samples are drawn from an identical
manifold. MMDE is a cross-domain learning method and
has been identified to be effective for cross-domain learn-
ing problems. All of these methods are subspace learning
algorithms with the same training and test data and testing
strategy, and thus the comparison is fair.

To further verify the effectiveness of CDHE as a subspace
learning algorithm, we compare CDHE(the subspace dimen-
sion is set to 50) with nearest-neighbour classifier (INN) by
Euclidean distance (i.e., without subspace learning) in six
datasets in Figure 1. Since both CDHE and INN use only
one labeling image from the test concepts, the comparison
is also fair. Figure 1 shows that CDHE can achieve more
satisfactory performance than INN, which reflects CDHE
can better discover the similarity between samples than 1NN.
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Table 1
THE COMPOSITION OF SIX DATA SETS.

[ Date Set || I Concept
Train six concepts from 12 animals: bear,..., zebra
NUS-1 . . .
Test the remaining six concepts from 12 animals
NUS-2 Train eight concepts from 16 locations: airport,..., town
Test the remaining eight concepts from 16 locations
Train seven concepts from 14 scenes: snow,...,rainbow
NUS-3 o
Test the remaining seven concepts from 14 scenes
MSRA-1 Train five concepts from 10 animals: cat,...,cow
Test the remaining five concepts from 10 animals
MSRA-2 Train tree, waterpark, baseball, party, and military
Test plant, hotel, football, medical, and war
Train boy, baby, flower, Disney, and earth
MSRA-3 Test cowboy, children, rose, cartoon, and star

A. MSRA-MM Test

MSRA-MM database [12] consists of 65,443 labeled
web images with 68 concepts (classes) collected from the
Internet by using Microsoft Live Search. Example web
images from the MSRA-MM database are shown in Figure
2. For representing images in the MSRA-MM, the dimension
of features is 899-D, including seven kinds of features, i.e.,
HSV color histogram and wavelet texture. In this exper-
iment, we evaluate the effectiveness of CDHE for cross-
domain image annotation on these three datasets: MSRA-1,
MSRA-2, and MSRA-3, respectively.

In the annotation stage, we select one reference image
from each concept and then apply the nearest-neighbour rule
to predict labels of the rest testing images in the selected
subspace W. In the training stage, the labelling information
from the reference images is blind to all the subspace
learning algorithms.

Figure 4 compares CDHE against the other five subspace
learning algorithms on MSRA-MM database under 4 differ-
ent dimensions. It uses the boxplot to describe the compar-
ison results. It has four groups, each of which stands for
one dimension, i.e., 5, 10, 20, and 50. Each group contains
six boxes, where boxes from left to right are the average
accuracies of FLDA, LPP, DLA, SDA, MMDE, and CDHE,
respectively. The figure shows that CDHE consistently and
significantly outperform other subspace learning algorithms.

B. NUS-WIDE Test

NUS-WIDE database [3] contains 269,648 well labelled
web images with 81 concepts (classes). The features used
in the experiment for NUS-WIDE are 500-D bag of visual
words. Example web images from the NUS-WIDE database
are shown in Figure 3. Analogy to MSRA-MM database,
NUS-WIDE database is also not intuitionally designed under
cross-domain setting, and thus in order to perform cross-
domain learning, we build three sub-databases (i.e., NUS-
1, NUS-2, and NUS-3) based on the concepts within it
as shown in Table I. In this experiment, we evaluate the
effectiveness of CDHE for cross-domain image annotation



Training Concepts Test Concepts

tree waterpark baseball party military plant hotel football medical war

Figure 2. Sample images under the MSRA-2 dataset.
The “Animal” Concept

bear bird cat cow dog elk fish fox horse tiger whale zebra

Figure 3. Sample images under the NUS-1 dataset.
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Figure 4. Recognition rates vs. different subspace learning algorithms under the 5, 10, 20, and 50 dimensions on six datasets, i.e., MSRA-1, MSRA-2,
MSRA-3, NUS-1, NUS-2, and NUS-3, respectively.
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