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Abstract—Data clustering is a highly used knowledge extrac-
tion technique and is applied in more and more application
domains. Over the last years, a lot of algorithms have been
proposed that are often complicated and/or tailored to specific
scenarios. As a result, clustering has become a hardly accessible
domain for non-expert users, who face major difficulties like al-
gorithm selection and parameterization. To overcome this issue,
we develop a novel feedback-driven clustering process using a
new perspective of clustering. By substituting parameterization
with user-friendly feedback and providing support for result
interpretation, clustering becomes accessible and allows the
step-by-step construction of a satisfying result through iterative
refinement.
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I. INTRODUCTION

Clustering is described as the problem of partitioning a
set of objects into groups, called clusters, so that objects
in the same cluster are similar, while objects in different
clusters are dissimilar [1]. Despite the multitude of available
algorithms, data clustering remains a very challenging task,
especially from the end user’s perspective. The core problem
is to select an optimal algorithm and parameterization for
the particular task at hand, whereas it is not guaranteed that
either of them exists[1], [2], [3]. So, in practice, the user
has to complete the three steps: (i) algorithm selection, (ii)
algorithm parameterization and execution, and (iii) result in-
terpretation. If the result is interpreted as not satisfying, it is
completely discarded. Thus, the three-step cycle is repeated
over and over again, until the result is finally accepted.
During these iterations, algorithms and/or parameter values
are varied, for which the user has to rely on experience and
intuition, since support for these actions is scarce. All this
makes the derivation of a user-satisfying clustering result
tedious work, since the unassessable number of necessary
iterations and the perpetual re-computation of clusterings for
the data waste a lot of time and resources.

In addition to the single-algorithm clustering described
above, ensemble-clustering has established itself as an alter-
native clustering approach [4], [5]. This concept generates
multiple clusterings for a dataset—the cluster-ensemble—
and aggregates them to construct a final result. This pro-
cedure offers several benefits: aggregation results are more
robust and show higher quality when compared to single-

algorithm clustering [4], [5], [6], while algorithm selection
and parameterization are eased since the focusing on one
optimal algorithm-parameter combination is relaxed. Despite
these differences, the overall process of ensemble-clustering
still remains unchanged: algorithms and parameters are
selected, the cluster-ensemble is generated, and the aggre-
gation result is interpreted. Again, unsatisfying results are
completely discarded and the process cycle is repeated with
a modified cluster-ensemble.

In our opinion, the adherence to this established process
restricts the opportunities of the ensemble-clustering con-
cept. Therefore, we want to evolve this concept and describe
a novel feedback-driven ensemble-clustering process. Our
novel process exploits the capabilities of ensemble-clustering
better, to support and involve the user during analysis.
Moreover, it allows the construction of satisfying results
through guided iterative refinement.

Our contributions are presented as follows: In Sec. II, we
describe our modified perspective of clustering to which we
align our process. Subsequently, the employed algorithmic
platform is introduced in Sec. III, which is based on our
ensemble-clustering approach [3]. Using this platform as
a foundation, we define the necessary components of our
process in Sec. IV: First, we derive the feedback necessary to
navigate through our process from our aggregation method
[3], which features an intuitive effect-oriented parameteri-
zation(Sec. IV-A). To enable the user to interpret obtained
clustering solutions, we propose specific visual resources for
that purpose in Sec. IV-B. The paper concludes with a short
summary. Due to space limitation, evaluation and related
work can be found in an extended version [7].

II. OUR PERSPECTIVE OF CLUSTERING

A multitude of clustering algorithms already exist, of
which many claim to generate clusterings with a higher
quality than other methods. At the moment, result quality
probably is the major focus and evaluation criteria in the
development of clustering algorithms. While this orientation
is obvious and reasonable at first sight, it shows a substantial
problem: There is no universally valid definition for clus-
tering quality. Many methods for clustering validation have
been developed, of which we will name a few examples in
the following. An often used approach is the comparison
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of a clustering result with a known optimal solution. If
the optimal clustering solution is not known—which is the
regular case—statistical tests based on the null hypothesis
can be employed[8]. In addition, a wide range of indices
measuring compactness and/or separation of clusters exist,
e.g., Dunn’s index or the Davies-Bouldin index[8]. Another
way is relative validation, where the best result is chosen
from a set of generated clusterings according to a pre-
specified criterion[8].

While validation techniques can be very different, they
share the one characteristic that their significance depends
on the data that is clustered, the employed algorithm(-class)
and its parameters. Thus, the selection of an appropriate val-
idation method can be effectively considered as an additional
parameter of cluster analysis.

In this paper, we introduce a different perspective to
the problem; thus we evade some of the mentioned issues.
When interpreting/evaluating the clustering result, we do not
regard result quality. Using our obtained clustering scheme,
we evaluate how ”good” the underlying dataset fits to the
scheme according to the constraints dictated by the applied
algorithm(-class). In other words, we look at how ”good” the
data was clustered from the clustering algorithm’s point of
view. At this point, the concept of ”fit” may seem vague and
generic. Therefore, we provide more detailed explanations
in the following sections and show the benefits of our
perspective.

III. ALGORITHMIC PLATFORM

In this section, we introduce our ensemble cluster-
ing approach—Flexible Clustering Aggregation (FCA) [3].
This approach represents the algorithmic platform of our
feedback-driven ensemble-clustering process.

The basic concept of FCA is clustering aggregation, which
combines different clusterings of a dataset into one result to
increase quality and robustness [3], [4]. Different aggrega-
tion approaches are known, where the pairwise assignment
approach is considered as the most capable one. This ap-
proach evaluates each object pair of a dataset, determining
whether it is assigned (i) to the same cluster or (ii) to
different clusters. The aggregate is constructed by selecting
the most frequent of these two pairwise assignments for
each object pair and setting it in the result clustering. All
existing aggregation techniques lack controllability, thus an
aggregation result can only be adjusted through modification
and re-computation of the input clusterings.

Our Flexible Clustering Aggregation (FCA) [3] tackles
this issue. The key approach of our technique is to change
the aggregation input from hard to soft clusterings [9]. These
assign to each object its relative degree of similarity with all
clusters instead of a hard assignment to just one cluster. Such
assignments can be (i)generated by specific algorithms like
fuzzy c-means [9] or (ii) calculated from arbitrary clustering
results, using refinement techniques like a-posteriori [6]. In

this paper, we will only use fuzzy c-means to generate the
clusterings for our ensembles.

In a soft clustering, each datapoint xi|(1 ≤ i ≤ n) of
a dataset D is assigned to all k clusters cj |(1 ≤ j ≤ k)
of a clustering C to a certain degree. Thus, the assignment
information of xi in C is denoted as a vector #»vi with the
components vip(1 ≤ p ≤ k)|0 < vip < 1 and

∑k
p=1 vip =

1 describing the relation between xi and the p-th cluster of
C. This fine-grained information allows, e.g., the identifica-
tion of undecidable cluster assignments given when objects
have identical maximal similarities with multiple clusters.
Assume a clustering with k = 3, and an object xi with
#»vi
> = (0.4, 0.4, 0.2). Using this assignment, we cannot

decide whether xi belongs to c1 or c2, although c3 can be
excluded. Based on this, it is easy to see that the worst
case regarding decidability is given for assignments with
∀vip(1 ≤ p ≤ k) = 1/k, since they do not even allow
the exclusion of clusters when it comes to clear cluster
affiliations. Of these two kinds of undecidable assignments,
we name the first balanced and the second fully balanced
[3].

To incorporate this additional information, we expanded
the pairwise assignment cases for the aggregation by adding
an undecidable case that is valid for object pairs containing
undecidable assignments. Furthermore, we derived a sig-
nificance measure for pairwise assignments on that basis.
This measure incorporates the intra-pair similarity of soft
assignments and their decidability. The lower bound for
decidability is defined as 0 or as an impossible decision and
is given for the mentioned undecidable cluster assignments.
The upper bound of 1 is given for objects with a single
degree of similarity vip approaching 1 while all others
approach 0. Basically, decidability shows the distance of #»vi

to the fully balanced assignment.
With this significance score, pairwise assignments are

filtered and classified as undecidable if they do not exceed a
certain significance threshold. Aggregation control or result
adjustment, respectively, is exercised by this filtering and the
handling of undecidable pairwise assignments during aggre-
gation. Since undecidable is no valid option for a final object
assignment, two handling strategies exist: one assumes that
undecidable pairs are part of the same cluster, while the
other assumes the opposite. These strategies and the filtering
threshold act as parameters, allowing the merging or splitting
of clusters without modifying the input clusterings[3]. In
general, the relation between parameters and the clustering
result is one of cause and effect. Parameters like k for
k-means or ε for DBSCAN cause different effects in the
clustering result, e.g., the fusion of clusters or changes in
their size. To achieve a certain effect, it is crucial to know
its associated cause, which is quite challenging. The FCA
method overcomes this by allowing the direct specification
of desired effects, namely: merge for fewer clusters or split
for more clusters. In our original work [3], these effects
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Figure 1. Toy Example

could only be applied to the whole clustering and were
thus mutually exclusive. For this paper, we modified the
algorithm so that effects can be applied to individual clusters.

IV. THE FEEDBACK-DRIVEN ENSEMBLE-CLUSTERING
PROCESS

In this section, we describe the idea of our feedback-
driven ensemble-clustering process in detail and introduce
the components necessary for its realisation. The main idea
of our process is to present an initial clustering of the data to
the user and enable him to optimize it in an iterative fashion
by giving feedback to the process. The initial clustering
is generated by our algorithmic platform in the form of
a clustering aggregate, which provides an advantageous
starting point due to the robustness of aggregation results.
As criterion for optimization we use the concept of fit as
outlined in Section II. In order to execute our feedback-
driven ensemble-clustering process, we have to develop a
way to communicate the fit between the data and the current
clustering schema, define the feedback itself and describe
how feedback should be used to optimze the clustering
result. During the following discussion of these three topics,
we use the toy example depicted in Fig. 1 for exemplifica-
tion. This initial clustering result for a synthetic dataset was
generated using FCA without adjustments.

A. Defining Feedback

Our algorithmic platform offers two reasonable options
for feedback realisation: (i) parameterization of the cluster
ensemble and (ii) parameterization of FCA. The first option
is discarded for the following reasons: On the one hand,
the user needs to determine multiple sets of algorithm-
specific technical parameters; on the other hand, the size of
the ensemble and its composition must be specified, which
is especially complicated if different clustering algorithms
are employed in one ensemble. In contrast, the second
option features a single point of parameterization and user-
friendly effect parameters. Thereby, FCA can act as a kind of
abstraction layer, since its parameters are independent from
the algorithms used in the ensemble. On the algorithm level,

FCA has two parameters: the handling strategy (effect) for
undecidable pairs and the significance threshold. Based on
these, we define the feedback for our ensemble-clustering
process as a set of feedback operations.

A feedback operation normally consists of: the effect a
user wants to achieve in the clustering and the intensity with
which this effect should occur. The intensity matches the
threshold for the significance filtering. A higher intensity
leads to more pairs being filtered and becoming undecidable,
meaning that more pairs are affected by the selected handling
strategy/effect. We define the following feedback operations:

1) merge: This operation fuses clusters, selected by the
user, into a single new cluster. During FCA, objects with
undecidable pairwise assignments are treated as if they
belong to the same cluster for this operation.

2) split: Using this operation, a cluster can be split
into multiple clusters. The resulting number of clusters
depends on the underlying cluster ensemble and the applied
intensity. During the FCA, objects with undecidable pairwise
assignments are treated as if they belong to different clusters.
A split operation can result in the emergence of noise. This
noise consists of singleton clusters, containing objects whose
assignments are so weak that, with the applied filtering, no
relation to an existing cluster can be determined.

3) refine: This operation removes weakly assigned
objects—possible outliers—from a cluster and classifies
them as noise. For this operation, objects with undecidable
pairwise assignments are treated as if they belong to different
clusters during FCA.

4) restructure: Up to now, our proposed feedback op-
erations have modified clusters. The restructure operation
is special since it does not directly change the cluster it is
applied to but its underlying cluster ensemble. In some cases,
it may happen that a cluster cannot be adjusted as intended,
because the underlying cluster ensemble does not permit it.
An example for such a case is cluster 2 in our toy example
(see Fig. 1). To tackle this issue, the restructure operation
takes the objects of the selected cluster and generates a new
cluster ensemble for this data-subset that builds a new basis
for cluster adjustment.

In one iteration of our feedback-driven ensemble-
clustering process, the user can assign one of these opera-
tions to each cluster and then trigger the next iteration, where
the specified adjustments are implemented. In the following
iteration, the adjusted clusters are evaluated and further ad-
justments are applied if necessary. In the case that an applied
feedback operation did not have the desired effect, the user
can execute an undo that reverts the respective cluster to the
state before the feedback operation was applied.

B. Resources for Interpretation

For the application of feedback operations it is essential
to decide whether a cluster needs adjustments or not and, if
the former case is given, what adjustments are appropriate.
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This decision is made by the user and takes place during the
interpretation of the clustering result. Therefore, to enable
the user to make decisions in the first place, it is necessary to
provide resources for the interpretation of clustering results.

The most basic form of an interpretation resource is a
scatterplot of the respective clustering. However, for datasets
with high volume and high dimensionality this visualization
is not sufficient. The validation measures mentioned in
Sec. II form interpretation resources that can be applied to
datasets of arbitrary scale. But due to the issues and our
perspective on clustering described in Sec. II we do not use
them.

Our goal is to optimize the clusters in reference to
the algorithm(-class)-specified fit of clustering and dataset.
Therefore, our resource for interpretation (RFI) must express
how satisfying a certain cluster is, from the point of view
of the employed clustering algorithm(-class). This makes it
necessary to provide the user with algorithm(-class)-specific
RFIs. Despite the mandatory adaption to certain algorithm-
classes, we believe that a general template for RFIs can be
derived from the abstract core objective of clustering. This
objective is the partitioning of data into clusters, so that
each cluster has high internal similarity, while all clusters
can be clearly separated from each other. Although different
algorithms implement these two conditions in different ways,
they can be found in almost every method. Therefore, to
specify an RFI, we need to include information about the
composition of clusters and the relations between them. In
our paper, we limit ourselves to the application of fuzzy
c-means, thus, in the following, we describe the specific
RFI constructed according to our template. To guarantee
comprehensibility, we will construct our RFI using only
simple visual components.

Composition: The fuzzy c-means is a partitioning algo-
rithm, that assigns each data-object to the nearest of a
set of predefined cluster prototypes(centroids). Therefore, a
straightforward way to get information about the internal
similarity of a cluster is to look at the distances between
all cluster members and their respective centroid. In our
scenario, this information is included in the soft assignments.
All objects are assigned to the cluster to which they have
the maximal soft assignment. These maxima are collected
for each cluster and displayed as histogram. A second
view on cluster composition is obtained by calculating the
significance score for pairwise assignments (see Sec.III)
for all object-pairs in a cluster. This information is again
displayed as histogram. From the view of fuzzy c-means,
a cluster has a high internal similarity if most of its ob-
jects/pairs are located near the centroid. For our RFI this
means that the bulk of objects/pairs should be placed in
the high assignment/significance bins of the two histograms.
Examples are illustrated in Fig. 2(b),(c),(d) for our running
example (upper part of the figures).

Additional information about the cluster composition are
obtained by examining the distribution of the data in differ-
ent dimensions. On the cluster level, it is desirable that all
dimensions show unimodal data distributions (denoted as Φ),
since this indicates intra-cluster homogeneity. In contrast,
a multimodal distribution implies that the cluster could be
further separated in the respective dimension. Therefore, we
want to know the similarity of each cluster dimension to
Φ. For this, histograms for each dimension of the dataset
are generated per cluster and their local maximal bins are
selected. Starting from each maximum, we iterate over the
neighboring bins. If a bin contains a smaller or equal number
of objects than the respective maximum, it is counted and
the next bin is examined. This examination stops if the said
condition is not fulfilled. With this method, we determine
the maximum percentage of objects and bins (range) of
a dimension that can be fitted under Φ. The higher this
percentage, the more homogeneous is the cluster in this
dimension. An example for this is shown in Fig. 2(c) (right
part; dimensions x and y). The semicircle diagram shows
the percentage of objects (left quadrant) and range (right
quadrant) that cannot be fitted under Φ. More color in
this scale shows less cluster homogeneity in the respective
dimension. The example diagrams for Cluster 4 of our
running example indicate that this cluster has a low internal
similarity (see Fig. 1).

Relations: The most obvious way to express relations
between clusters is their distance to each other. There
are several approaches to measure the distances between
groups/clusters of objects. Since we use fuzzy c-means, we
compute the distance between centroids on the one hand and
the minimal distance between the members of different clus-
ters on the other hand. The centroids are only representatives
of groups, so the second distance measurement provides
more local details. The inter-centroid distances are displayed
as a distance graph like the one depicted in the right part of
Fig. 2(a), where each numbered circle represents a cluster
centroid. Additionally, these centroid-to-centroid distances
are combined with the minimal-object-distances and form
the distance indicators shown in Fig. 2(b),(c),(d). Each pair
of opposing columns illustrates the ratio of both mentioned
distance types, between a fixed selected cluster and one of
the remaining clusters. If such a pair of columns nearly
”touches”, both associated clusters also nearly ”touch”,
meaning that they are not very well separated. The left
part of Fig. 2(a) illustrates the number of clusters and
the corresponding cluster sizes in a circle diagram. We
already used soft assignments to get information about a
cluster’s composition. Since these assignments contain the
similarity/relation of an object with all clusters, they are
natural candidates for relation-based measures. For our RFI,
we derive two measures from them: (i) self-assignment and
(ii) foreign-assignment, which are defined as:
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(a) Clustering Overview (b) Cluster 3 Statistics

(c) Cluster 4 Statistics (d) Cluster 5 Statistics

Figure 2. Information Source for the Initial Clustering Result

Aself (p) =
∑

vi∈cp

vip; Aforeign(p, q) =
∑

vi∈cp

viq|q 6= p

(1)
The self-assignment Aself (p) of a cluster cp sums up the
degrees of similarity of all cluster members to the cluster
itself. In contrast, the foreign-assignment Aforeign(p, q) of
a cluster cp to a cluster cq shows the influence cq has on the
objects of cp. These sums are normalized to get a percental
score. Both values are depicted as bars in the lower parts
of Fig. 2(b),(c),(d). Reduced self-assignment of a cluster
implies that other clusters are nearby and thus indicate an
unclear separability of clusters. Actually, self-assignment has
a hybrid character: since it is based on the assignments of
cluster members and cluster representatives, it also provides
information about cluster composition.

The measures described so far constitute our RFI for fuzzy
c-means, allowing the user a visual evaluation of cluster
conditions and the determination of appropriate feedback
operations.

C. Selecting appropriate Feedback

With the RFI defined, the user is able to identify clus-
ters that need adjustments and select appropriate feedback
operations. In the following, we describe which feedback op-
eration should be employed if certain cluster characteristics
occur.

1) merge: Identification of this feedback operation is
relatively easy. Clusters that should be merged show (i)
close proximity in the inter-centroid distances and distance
indicators, (ii) an accumulation of objects and pairs in the
medium to lower bins of the soft assignment and pair sig-
nificance histograms, and (iii) a reduced self-assignment in

combination with a very strong foreign assignment towards
the merge partner. If we look at Fig. 2(b) and (c), we observe
that these properties hold, hence Cluster 3 and Cluster 5 of
our running example should be merged.

2) split: In contrast to merge, split operations are harder
to identify. A typical split candidate shows a clear separation
from other clusters in distance indicators and in inter-
centroid distances. It also features a reduced self-assignment,
but its foreign assignments are mostly balanced over the
remaining clusters. To decide whether or not a split should
be applied, the dimension diagrams must be consulted
additionally. If these show a significant percentage of ob-
jects/bins that cannot be fit under a unimodal distribution, a
split should be applied. Figure 2(c) represents such a case
and Cluster 4 should be split into several clusters.

3) refine: This operation should be applied to make final
adjustments to nearly perfect fitting clusters. These feature
a very high self-assignment, while nearly all of their objects
and object pairs are located in the highest assignment or
significance bins. In addition, the inter-centroid distances
show that they are well separated from other centroids. With
refine, outliers can be removed from these clusters. Outliers
can manifest themselves as barely populated bins in the soft
assignment and pair significance histograms. They can also
lead to distance indicators, showing close proximity to a
neighboring cluster even if all other measures contradict this.

4) restructure: This operation is applied to clusters where
adjustments have failed, although all feedback operations
were used to their full extent. A restructure can also be
applied if the identification of a feedback operation is very
ambiguous for a particular cluster. With this, it is possible to
get a new starting point for the adjustment of the respective
cluster that potentially allows clearer decision making.
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Figure 3. Clustering after the First Iteration

V. PROCESS APPLICATION

All single components of our feedback-driven clustering
approach have been introduced. Now, we are able to illus-
trate the complete process in the form of a hands-on report
using our running example, which is given in this section.
Since this example covers multiple iterations, we use the
notation citeration

id when refering to a certain cluster in a certain
iteration.

Initial Clustering: Figure 1 depicts the clustering result
at iteration 0 of our feedback-driven clustering. By visual
interpretation of the scatterplot or the illustrated part of the
RFI in Fig. 2, we determine that all clusters are poorly
constructed according to the principles of the employed
fuzzy c-means. That means the fit between clustering schema
and data is not very good; therefore, adjustments to the
schema are necessary. Using the RFI, we derive the follow-
ing appropriate feedback options: split is chosen for c0

1, c
0
2

and c0
4 since these clusters have weak compositions, i.e.,

a low internal similarity. In addition, merge is applied for
clusters c0

3 and c0
5. Both clusters have a strong relation

to each other, thus violating the separation criteria. The
intensity of each operation can be derived from the pair
significance histogram. For merge operations, the intensity
can be very low since transitive effects allow the fusion
of clusters by few object pairs. For the merge of c0

3 and
c0
5, we choose an intensity of 0.3 resembling the upper

bound of the lowest populated pair significance bin. During
previous experiments on FCA, we have discovered that split
operations generally require a higher intensity; thus, for c0

4,
we set the intensity to 0.6.

After the assignment of feedback operations, we start
the first iteration of our ensemble-clustering process where
the specified adjustments are realized. Feedback operations
are assigned to individual clusters; we have to assure this
locality during aggregation. The original FCA [3] always
evaluates all pairs of the dataset and thus allows no cluster-
specific aggregation and handling strategy. To overcome this,
we extended FCA, so that for each feedback operation, only
the object pairs in the cluster(s) linked to the particular
operation are processed. For example, to merge c0

3 and c0
5,

only object pairs from these clusters are evaluated by FCA.
Using this approach, we can localize handling strategies in
FCA and also reduce the number of pairs needed to be
processed.

Iteration 1: The result of the first iteration is shown in
Fig. 3. We observe that the merge and two split operations
were successful. The split of c0

4 results in two clusters c1
1 and

c1
2, while the merge of c0

3 and c0
5 generated c1

5. The statistics
for c1

1 and c1
5 are illustrated in Fig. 4(b) and (d), showing high

internal homogeneity as well as strong separation from other
clusters. Therefore, both clusters now fit the data according
to our definition.

This also applies for the clusters c1
2, c

1
3 and c1

6. These
clusters require no further adjustment, but a user may
still apply the refine operation to remove possible outliers.
In comparison to the initial clustering result, iteration 1
features noise. Noise is generated by split operations and
actually consists of singleton clusters. As described, the
split operation handles undecidable pairs as being assigned
to different clusters. It can happen that all pairs a certain
object is part of become undecidable. Thus, this object is
not in a cluster with any other object of the dataset, which
means that it forms a (singleton) cluster itself. The amount
of noise generally corresponds to the intensity of the split.
In our scatterplots, noise is depicted as non-colored dots.

Regarding Fig. 3, we observe that the small bridge that
connected c1

1 and c1
2 in the initial clustering has turned into

noise as well as objects at some cluster borders. This is also
the case for c1

4, which we examine in detail. The left part
of Fig. 4(a) shows that more than a quarter of the dataset is
classified as noise (marked by the segment labeled with N).
The composition of noise is determined by calculating the
closest centroid for each noise object, revealing that half of
the noise is located in the proximity of c1

4 and was thus part
of the cluster in the previous iteration. From this and the
statistics for c1

4 depicted in Fig. 4(c), we derive that the split
of c0

4 failed to produce multiple new clusters and transformed
a major part of its members into noise. The resulting c1

4 is
still well separated and shows a slightly increased soft- and
self-assignment. But despite this apparent increase, pairwise
significance is not maximized and dimension y still indicates
a split. With this in mind, the success of a subsequent split
with increased intensity seems unlikely, thus leaving the
conclusion that this cluster cannot be fitted to the data, using
the underlying example. Therefore, undo is used to revert the
cluster to the state before split was applied. Afterwards the
restructure operation is assigned to the restored cluster c0

4

and executed, which leads to the next iteration.
Iteration 2: During this iteration, the restructure operation

generates a new cluster ensemble for c0
4. For the new

ensemble for this subset of data, a number of fuzzy c-means
results are computed, where the cluster numbers range from
2 to 5. Subsequently, the aggregation result using FCA
is computed and depicted in Fig. 5(a). We observe that
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(a) Clustering Overview (b) Cluster 1 Statistics

(c) Cluster 4 Statistics (d) Cluster 5 Statistics

Figure 4. Information Source for the Clustering Result after Iteration 1

four clusters have formed that again do not fit the data.
The RFI for c2

1 and c2
3—depicted in Fig. 5(b) and (c)—

shows familiar characteristics indicating a merge operation
for both clusters. Because the remaining clusters c2

2 and c2
4

show similar behavior, a merge operation is issued for them.
The necessary intensities are again derived from the pair
significance histograms.

Iteration 3: Both executed merge operations were suc-
cessful and only two clusters remain. At this point, we
decide that no further adjustments are necessary and re-
integrate the generated clusters into the whole clustering.
This reintegration represents iteration 4, whose result is
depicted in Fig. 5(d). The plot shows that this result is
quite the optimal clustering for this dataset. Restructuring
and subsequent merge produced the clusters c4

6 and c4
7 that

accurately segment the data in this part of the dataset.
Looking at the scatterplot, we can visually determine that
both clusters fit the data. In contrast, our RFI in Fig. 6
shows a rather unclear picture. Regarding the details of c4

6

and c4
7 (see Fig. 6), we observe reduced internal similarity

and strong foreign assignments between both clusters, which
would indicate a merge. But this assumption is contradicted
by the firm separation shown by inter-centroid distances
and distance indicators. From the user’s perspective, this
situation is ambiguous, since the clusters apparently do
not fit the data and appropriate feedback cannot be cleary
identified. The reason for this behaviour lies in the structure
of the respective parts of the dataset. The clusters in this
region are not spherical and can thus not be separated by
centroid-based algorithms like fuzzy c-means, and exactly
this is shown by our RFI. Basically, this means that this
region of the dataset cannot be clustered effectively using
fuzzy c-means. Based on this knowledge, there are two

options to handle the situation.
The first one is compromise: The user has to evaluate the

available options. An application of refine is obviously out
of the question. Merging of both clusters would lead back
to the cluster c0

4 that clearly indicated a split, while further
splitting of c4

6 and c4
7 would yield a result similar to iteration

2, where merge operations were explicitly identified. This
only leaves another application of restructure, whereas an
improvement of the situation is questionable since this
operation has already been applied. A possible restructure
of c4

6 would, for example, most likely result in a number of
clusters, showing clear merge characteristics. In summary,
all feedback operations the user issues to get out of this
unclear situation would lead to situations clearly indicating
the return to the former unclear situation. So, in this setting,
the user would accept the current result as best compromise
even if the RFI contradicts this. Actually, this solution to
the problem would be good in our example. The clusters in
question show the optimal separation for the data, although
the used algorithm could not provide this result without the
benefits of our FCA.

Nonetheless, the compromise is an impure solution re-
garding our fit paradigm. A consistent solution approach in-
corporates the reasoning: With the given feedback operations
the clustering cannot be fitted to the data. Since the definition
of fit is dictated by the employed algorithm through the RFI,
this means that the respective area of the dataset cannot
be clustered with the algorithm currently employed. This
shows another benefit of our ensemble-clustering process.
While feedback operations ease algorithm parameterization
and RFI supports interpretation, the character of the fit
paradigm provides information concerning the selection of
clustering algorithms. Let us regard the running example:
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(a) Cluster 1 Statistics (b) Cluster 1 Statistics (c) Cluster 3 Statistics (d) Final Clustering

Figure 5. Information Source for the Restructured Cluster 4

(a) Overview (b) Cluster 6 Statistics (c) Cluster 7 Statistics

Figure 6. Information Source for the final Clustering

Facing the described ambiguous setting and after exploiting
all feedback options, the user would change the employed
algorithm(-class) for the respective region of the dataset.
With that, fit can be achieved under the point of view of the
new algorithm(-class). In this paper, we limited ourselves
to the use of fuzzy c-means to describe a first version of
our ensemble-clustering process. The mentioned change of
algorithm(class) and its particular consequences will be part
of our future research.

VI. CONCLUSION

In this paper, we introduced our novel feedback-driven
ensemble-clustering process. In contrast to the established
clustering procedure, that perpetually repeats algorithm exe-
cution and completely discards results that are not satisfying,
our proposed process allows the iterative refinement of a
clustering. This means that satisfying parts of the result are
kept, while the remainder is adjusted. During the process
flow, support is offered for all three necessary clustering
steps: algorithm selection, algorithm execution and result
interpretation. Our enhanced aggregation approach [3] was
utilized to develop a compact set of easy-to-understand
feedback operations that ease parameterization. By intro-
ducing the concept of fit between clustering and dataset
we presented an alternative perspective and optimization
criterion for clustering in general. Based on this concept
we described resources for interpretation that support the
user in the evaluation of an obtained clustering. In addition
the concept of fit allows to determine whether an applied
algorithm is appropriate for certain parts of the dataset or
not, which can be used as advice regarding the selection of
clustering algorithms.
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