
Publisher’s version  /   Version de l'éditeur: 

2010 IEEE International Conference on Data Mining Workshops, pp. 458-465, 
2010-12-17

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la 

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez 

pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at 

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the 

first page of the publication for their contact information. 

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / 

La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version 

acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien 

DOI ci-dessous.

https://doi.org/10.1109/ICDMW.2010.33

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

Identifying and Preventing Data Leakage in Multi-relational 

Classification
Guo, Hongyu; Viktor, Herna L.; Paquet, Eric

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:
https://nrc-publications.canada.ca/eng/view/object/?id=886ff751-891b-46e4-aead-bd81dbf5df2e

https://publications-cnrc.canada.ca/fra/voir/objet/?id=886ff751-891b-46e4-aead-bd81dbf5df2e



Identifying and Preventing Data Leakage in Multi-relational Classification

Hongyu Guo∗, Herna L. Viktor†, and Eric Paquet∗†

∗Institute for Information Technology, National Research Council Canada

Email: {hongyu.guo,eric.paquet}@nrc-cnrc.gc.ca
†School of Information Technology and Engineering, University of Ottawa, Canada

Email: hlviktor@site.uottawa.ca

Abstract—Relational database mining, where data are mined
across multiple relations, is increasingly commonplace. When
considering a complex database schema, it becomes difficult
to identify all possible relationships between attributes from
the different relations. That is, seemingly harmless attributes
may be linked to confidential information, leading to data
leaks when building a model. In this way, we are at risk of
disclosing unwanted knowledge when publishing the results
of a data mining exercise. For instance, consider a financial
database classification task to determine whether a loan is
considered to be high risk. Suppose that we are aware that
the database contains another confidential attribute, such as
income level, which should not be divulged. In order to prevent
potential privacy leakage, one may thus choose to eliminate,
or distort, the income level from the database. However, even
after distortion, a learning model against the modified database
may accurately determine the income level values. It follows
that the database is still unsafe and may be compromised. This
paper demonstrates this potential for privacy leakage in multi-
relational classification and illustrates how such potential leaks
may be detected. We propose a method to generate a ranked
list of subschemas which maintains the predictive performance
on the class attribute, while limiting the disclosure risk, and
predictive accuracy, of confidential attributes. We illustrate our
method against a financial database.

I. INTRODUCTION

The number of commercial relational databases, which

store vast amounts of real-world data, is growing exponen-

tially. Increasingly, concerns regarding potential data privacy

breaches are emerging. One of the main issues organizations

face is identifying, avoiding or limiting the inference of

attribute values. For relational databases, it is difficult to

be able to identify all attribute interrelationships, due to the

complexities of the database schemas that contain multiple

relations.

Would it, then, not be enough to eliminate, distort, or

limit access to confidential data? Our analysis shows that

this is not the case. We show that, when following such

an approach, there may still be a disclosure of data during

multi-relational classification. We demonstrate that, through

using publicly available information and insider knowledge,

one may still be able to inject an attack which accurately

predicts the values of confidential, or so-called sensitive,

attributes.

To address the above-mentioned potential privacy

breaches, we propose a method which limits the predictive

accuracy against previously identified confidential attributes.

To this end, the paper introduces a method which generates a

ranked list of subschemas of a database. Each subschema has

a different balance between the two prediction accuracies,

namely the target variables and the confidential attributes.

The objective here is to create subschemas which maintain

the predictive performance on the target class label, but limit

the prediction accuracy on confidential attributes. We show

the effectiveness of our strategy against a financial database.

This paper is organized as follows. Section II presents the

background and problem formulation. Next, in Section III,

we introduce our method for privacy protection. This is fol-

lowed, in Section IV, by the discussion of our experimental

studies. Finally, Section V concludes the paper and outlines

our future work.

II. BACKGROUND AND PROBLEM FORMULATION

Privacy leakage protection in data mining strives to pre-

vent revealing sensitive data without invalidating the data

mining results [1], [2], [3]. Often data anonymization oper-

ations are applied [4].

Current approaches for privacy preserving data mining

aim at distorting individual data values, but enabling recon-

struction of the original distributions of the values of the

confidential attributes [1], [5], [6], [7], [8]. For example, the

k-anonymity model [7] and the perturbing method [8] are

two techniques for achieving this goal.

Recent research deals with correlation and association

between attributes to prevent the inference of sensitive

data [9], [10], [11], [12], [13], [14]. For example, Associa-

tion Rule Hiding (ARH) methods sanitize datasets in order

to prevent disclosing sensitive association rules from the

modified data [9], [12], [14]. Zhu and Du [13] incorporate k-

anonymity into the association rule hiding process. Tao et al.

propose a method to distort data in order to hide correlations

between non-sensitive attributes [10]. Data leakage preven-

tion in releasing multiple views from databases has also

been intensively studied [15]. In addition, privacy leakage

in multi-party environment has been investigated [16].

Our method does not distort the original data in order to

protect sensitive information. Rather, we select a subset of

data from the original database. The selected attributes are

able to maintain high accuracies against the target variables,



while lowering the predictive capability against confidential

attributes, thus alleviating the risk of probabilistic (belief)

attacks of sensitive attributes [4]. This stands in contrast

to the above-mentioned anonymization techniques, such as

generalization, suppression, anatomization, permutation, and

perturbation.

Furthermore, it follows that our approach is not tied to

a specific data mining technique, since there is no need to

learn from masked data.

A. Multirelational Database Classification

In this paper, a relational database ℜ is described by a

set of tables {R1,· · ·,Rn}. Each table Ri consists of a set of

tuples TRi
, a primary key, and a set of foreign keys. Foreign

key attributes link to primary keys of other tables. This type

of linkage defines a join between the two tables involved. A

set of joins with n tables R1 ⊲⊳ · · · ⊲⊳ Rn describes a join

path, where the length of it is defined as the number of joins

it contains.

A multirelational classification task involves a relational

database ℜ which consists of a target relation Rt, a set of

background relations {Rb}, and a set of joins {J} [17]. Each

tuple in this target relation, i.e. x ∈ TRt
, is associated with

a class label which belongs to Y (target classes). Typically,

the task here is to find a function F (x) which maps each

tuple x from the target table Rt to the category Y . That is,

Y = F (x, Rt, {Rb}, {J}), x ∈ TRt

B. Privacy Leakage in Multirelational Classification

We formalize the problem of privacy leakage in multire-

lational classification as follows.

Given is a relational database ℜ = (Rt, {Rb}) with target

attribute Y in Rt. Together with this information, we have

an attribute C that is to be protected. C ∈ {Rb}
1, and C has

either to be removed from the database or the values have to

be distorted. However, C may potentially be predicted using

ℜ with high accuracy.

Our objective is to find a subschema that accurately

predict the target variable, but yields a poor prediction for the

confidential attribute. To this end, we generate a ranked list

of subschemas of ℜ. Each subschema ℜ
′

(ℜ
′

⊂ ℜ) predict

the target variable Y with high accuracy, but has limited

predictive capability against the confidential attribute C. To

this end, we construct a number of different subschemas

of ℜ. For each subschema ℜ
′

, we determine how well it

predicts the target variable Y and we calculate its degree of

sensitivity in terms of predicting the confidential attribute C.

Finally, we rank the subschemas based on this information.

In the next sections, we discuss our approach.

1in cases where both Y and C reside in the Rt table, one may create
two views from Rt which separates the two variables into two relations

III. TARGET SHIFTING MULTIRELATIONAL

CLASSIFICATION

Our Target Shifting Multirelational Classification (TSMC)

approach aims to prevent the prediction of confidential

attributes, while maintain the predictive performance of the

target variable. To this end, as described in Algorithm 1, the

TSMC method consists of the following four (4) steps.

Firstly, the attributes that are correlated with a confidential

attribute, are identified. Note that, following Tao et. al, [10]

we here use the term correlation to denote the associations,

interrelationships or links between attributes in our database.

It follows that such correlated attributes may reside in re-

lations other than the confidential attribute. Secondly, based

on the correlation computed from the first step, the degrees

of sensitivity for different subschemas of the database are

calculated. Next, subschemas consisting of different tables

of the database are constructed. Finally, for each subschema,

its performance when predicting the target variable, along

with its privacy sensitivity level, is computed. As a result, a

ranked list of subschemas is provided. These four steps are

discussed next.

A. Identify Correlated Attributes Across Interlinked Tables

In the first phase of the TSMC method, the aim is to

identify the attributes that are correlated with the confidential

attribute C. That is, this step aims to find attributes which

may be used to predict C. To find correlated attributes,

one needs to compute the correlation between attribute sets

across the multiple tables of the database. To address the

above issue, the TSMC method learns a set of high quality

rules against the confidential attribute C. That is, it searches

attributes (attribute sets) across multiple tables to find a set

of rules which predict the values of C well. To this end, we

employ the CrossMine algorithm, which is able to accurately

and efficiently construct a set of conjunctive rules using

features across multiple relations in a database [18]. For

example, a rule may have the following form:

Loan.status = good ←− (Loan.account-id ⊲⊳

Account.account-id)

(Account.frequency = monthly) (Account.client-id

⊲⊳ Client.client-id)

(Client.birth date < 01/01/1970)

This rule says a monthly loan where the borrower was

born before 1970 is classified as being of low risk. In this

rule, the attributes frequency in the Account table and birth

date from the Client table work together to predict the loan

status in the Loan table. In other words, such a rule is able

to capture the interplay between attributes across multiple

tables.

In summary, we use CrossMine to learn which other

attributes are correlated, or have a relationship with, the

confidential attributes.

That is, our approach uses a set of rules as created by

this classifier, to identify the most relevant attributes. It



follows that an implicit assumption is that an informative

classification model is constructed by CrossMine.

The TSMC method ranks the constructed rules based on

their tuple coverages and then selects the first n rules which

cover more than 50% of the training tuples. That is, the

algorithm considers the set of rules which can predict the

confidential attributes better than random guessing.

Algorithm 1 The TSMC Approach

Input: a relational database ℜ = (Rt, {Rb}); Y ∈ Rt is

the target variable and C ∈ {Rb} is a confidential attribute

Output: a ranked list of subschemas of ℜ. Each subschema

ℜ
′

can predict Y with high accuracy, but has limited

predictive capability against C

1: using C (instead of Y ) as the classification target,

construct a set of high quality rules using ℜ
2: derive the subschema privacy sensitivity P from the set

of rules learned

3: convert schema ℜ into undirected graph G(V , E), there

Rt and Rb as nodes V and joins J as edges E
4: construct a set of subgraphs from G ⇒ subgraphs set

{Gs1
, · · · ,Gsn

}
5: for each subset ∈ {Gs1

, · · · ,Gsn
} do

6: compute the PI (with respect to the target variable Y )

of the subgraph subset (namely, subschema ℜ
′

∈ ℜ)

7: end for

8: rank the {ℜ
′

} based on their PI values

9: return the ranked {ℜ
′

}

B. Assign Privacy Sensitivity to Subschemas

After obtaining a set of rules which find the other

attributes that are relevant when learning the confidential

attributes, the TSMC method estimates the predictive capa-

bility of the subschemas.

Consider the following rule which predicts an order’s

payment type in the Order table with 70% accuracy.

Order.payment type = house payment ←
(Order.amount >= 1833)

(Order.account id ⊲⊳ Disposition.account id)

(Disposition.client id ⊲⊳ Client.client id)

(Client.birth date <= 31/10/1937)

Thus, if our published subschema includes tables Order,

Disposition, and Client, one may use this subschema to

build a classification model and then to determine an order’s

payment type with 70% accuracy.

The previous observation suggests that, by using the set

of high quality rules learned, we can estimate the degree

of sensitivity (denoted as P) of a subschema, in terms of

its predictive capability on the confidential attribute. P for

a subschema is calculated as follows. Firstly, we identify

the set of m (m ⊆ n) rules whose conjunctive features

are covered by some or all of the tables in the subschema.

Next, we sum the number of tuples covered by each one of

these rules (denoted as NCi). Finally, we divide the sum

by the total number of tuples (noted as NS) containing

the confidential attributes. Formally, the value P for a

subschema is calculated as follows.

P =

∑m

i=1
(NCi)

NS
(1)

For example, as the above-mentioned rule covers 70% of

the total number of tuples, we will assign 0.7 as the degree of

sensitivity for the subschema {Order, Disposition, Client}.

Note that, there may be another rule against this subschema,

such as

Order.payment type = house payment ←
(Order.amount >= 1833)

(Order.account id ⊲⊳ Disposi-

tion.account id)(Disposition.type = owner)

In this case, the sensitivity of subschema {Loan, Account,

Client} should be calculated using all tuples covered by

the two rules. This is due to the fact that CrossMine is a

sequential covering method. The next step of the TSMC

method, as described in Algorithm 1, is to construct a set

of subschemas and evaluate their contained information,

in terms of predicting both the target variable Y and the

confidential attribute C.

C. Subschema Evaluation

The TSMC method adopts the subschema construction

approach presented by Guo and Viktor in [17]. That is,

in the TSMC method, each subschema consists of a set of

subgraphs, each corresponds to a unique join path in the

relational database. The subgraph construction procedure is

discussed, next.

1) Subgraph Construction: The subgraph construction

process aims to build a set of subgraphs given a relational

database schema where each subgraph corresponds to a

unique join path. The construction process initially converts

the relational database schema into an undirected graph,

using the relations as the nodes and the joins as edges.

Two heuristic constraints are imposed on each constructed

subgraph. The first is that each subgraph must start at the

target relation. This constraint ensures that each subgraph

contains the target relation and, therefore, is able to construct

a classification model. The second constraint is for relations

to be unique for each candidate subgraph. Typically in a

relational domain, the number of possible join paths given a

large number of relations is very large, making it too costly

to exhaustively search all join paths [18]. Also, join paths

with many relations may decrease the number of entities

related to the target tuples. Therefore, this restriction was

introduced for a trade off between accuracy and efficiency.

Using these constraints, the subgraph construction process

proceeds initially by finding unique join paths with two



relations, i.e. join paths with a length of one. These join

paths are progressively lengthened, one relation at a time.

The length of the join path is introduced as the stopping

criterion. The construction process prefers subgraphs with

shorter length. The reason for preferring shorter subgraphs

is that semantic links with too many joins are usually very

weak in a relational database [18]. Thus the algorithm speci-

fies a maximum length for the join paths. When this number

is reached, the join path extraction process terminates.

After constructing a set of subgraphs, the TSMC al-

gorithm is then able to form different subschemas and

evaluate their predictive capabilities on both the target and

confidential attributes.

2) SubInfo of Subgraph: Recall that each subschema

consists of a set of subgraphs. To have better predictive

capability for the target variables, we prefer to have a set

of subgraphs which are (a) strongly correlated to the target

variables, but (b) uncorrelated with one another. The first

condition ensures that the subgraphs can be useful for pre-

dicting the target variables. The second condition guarantees

that information in each subgraph does not overlapped, when

predicting the class. That is, we conduct a form of pruning,

in order to identify diverse subgraphs. It follows that all new

subschemas which are subsumed by, or highly correlated to,

a high risk subschema also poses a risk. To enhance privacy,

all subschemas should thus be tested before releasing them

to the users.

In order to estimate the correlation between subgraphs,

we adopted the SubInfo calculation as presented by Guo

and Viktor in [17]. In their approach, SubInfo is used to

describe the knowledge held by a subgraph with respect to

the target classes in the target relation. Following the same

line of thought, the class probabilistic predictions generated

by a given subgraph classifier is used as its corresponding

subgraph’s SubInfo. Through generating relational (aggre-

gated) features, each subgraph may separately be ”flattened”

into a set of attribute-based training instances. Learning

algorithms such as decision trees [19] or support vector

machines [20] may subsequently be applied to learn the

relational target concept, forming a number of subgraph

classifiers. Accordingly, the subgraph classifiers are able to

generate corresponding SubInfo variables.

After generating the SubInfo variable for each subgraph,

we are ready to compute the correlation among different

subgraph subsets, which is discussed next.

3) Subschema Informativeness: Following the idea pre-

sented in [21], a heuristic measurement has been used to

evaluate the ”goodness” of a subschema (i.e., a set of

subgraphs), for building an accurate classification model.

The ”goodness” of a subschema I is calculated as follows.

I =
kRcf

√

k + k(k − 1)Rff

(2)

Here, K is the number of SubInfo variables in the subset

(i.e., subschema), Rcf is the average SubInfo variable-to-

target variable correlation, and Rff represents the average

SubInfo variable-to-SubInfo variable dependence. This for-

mula has previously been applied in test theory to estimate

an external variable of interest [22], [23], [24]. Hall has

adapted it into the CFS feature selection strategy [25], where

this measurement aims to discover a subset of features which

are highly correlated to the class. Also, Guo and Viktor [21]

utilized this formula to select a subset of useful views for

multirelational classification.

The Symmetrical Uncertainty (U) [26] is used to measure

the degree of correlation between SubInfo variables and

the target class (Rcf ) as well as the correlations between

the SubInfo variables themselves (Rff ). This score is a

variation of the Information Gain (InfoGain) measure [19]. It

compensates for InfoGain’s bias toward attributes with more

values, and has been used by Ghiselli [22] and Hall [25].

Symmetrical Uncertainty is defined as follows:

Given variables W and Z ,

U = 2.0 ×

[

InfoGain

H(Z) + H(W )

]

where H(W ) and H(Z) are the entropies of the random

variables W and Z , respectively. The entropy of a random

variable Z is defined as

H(Z) = −
∑

z∈Z

p(z) log
2
(p(z))

And the InfoGain is given by

InfoGain = −
∑

z∈Z

p(z) log
2
(p(z)))

+
∑

w∈W

p(w)
∑

z∈Z

p(z|w) log
2
(p(z|w))

Note that, these measures need all of the variables to be

nominal, so SubInfo values are first discretized.

4) Subschema Privacy-Informativeness: To protect pri-

vacy leakage, we need to consider the predictive capabilities

against both the target variable (represented by I) and the

confidential variable (represented by P) when a database

subschema is published. Based on this observation, the

TSMC method uses a subschema’s PI value to reflect its

performance when predicting the target variables as well as

its degree of sensitivity in terms of predicting the sensitive

attributes.

The PI value of a subschema is computed using Equa-

tions 1 and 2, as follows.

PI = I ∗ (1 − P)

=
kRcf(1 − Pk)

√

k + k(k − 1)Rff

(3)



This formulation suggests that a subschema with more

information for predicting the target variable, but with very

limited predictive capability on the confidential variable,

is preferred. That is, for privacy protection, a subschema

should have a larger I value and a small P value.

5) Subschema Searching and Ranking: In order to iden-

tify a subschema, i.e., a set of uncorrelated subgraphs, which

has a large I value but a small P value, the evaluation

procedure searches all of the possible SubInfo variable

subsets, compute their PI values, and then constructs a

ranking of them.

To search the SubInfo variable space, the STMC method

uses a best-first search strategy [27]. The method starts with

an empty set of SubInfo variables, and keeps expanding,

one variable at a time. In each round of the expansion, the

best variable subset, namely the subset with the highest PI
value is chosen. In addition, the algorithm terminates the

search if a preset number of consecutive non-improvement

expansions occurs.

As a result, the method generates a ranked list of sub-

schemas with different PI values. As described in Algo-

rithm 1, the TSMC method calculates such a list. Accord-

ingly, one may select a subschema based on the requirements

for the predictive capabilities on both the target variable and

the confidential attributes.

IV. EXPERIMENTAL EVALUATION

In this section, we demonstrate the information leakage

in multirelational classification with experiments against a

financial database. Also, we discuss the outputs resulting

from the TSMC method to show its effectiveness for privacy

leakage prevention in multirelational classification.

A. Data Set Used

In our experiment, we used the financial database pub-

lished for the PKDD 1999 discovery challenge [28]. The

database was offered by a Czech bank and contains typical

business data. Figure 1 shows the database. The multirela-

tional classification task aims to predict a new customer’s

risk level for a personal loan. The database consists of eight

tables. Tables Account, Demographic, Disposition, Credit

Card, Transaction, Client, and Order are the background

relations and Loan is the target relation. The class attribute

(target attribute) is the loan status in the Loan table (high-

lighted in red in Figure 1), which indicates the status of the

loan, namely A (finished and good), B (finished but bad),

C (good but not finished), or D (bad and not finished). Our

experiment used the data prepared by Yin et al. in [18].

B. Experimental Setup

In this experiment, we consider the payment type in

the Order table as being confidential and it follows that

it should be protected. We assume that the payment type

information will either be eliminated from the database,

Figure 1. PKDD1999 Financial Database

or distorted, prior to being published 2. The Order table

contains the details of an order to pay a loan. It includes

the account information, bank of the recipient, account of

the recipient, debited amount, and the previously introduced

payment type. The payment type attribute indicates one of

four types of payments, namely for insurance, home loans,

leases or personal loans. In this scenario, more than half of

the payments are home loan repayment, i.e. there are 3502

home loan payment and 2969 other payment orders. We are

interested in protecting the confidential information whether,

or not, a client is paying a home loan.

C. Experimental Results

1) Potential Privacy Leakage: As a first step, we shifted

our target variable from the loan status in the Loan table

to the payment type in the Order table (highlighted in red

in Figure 1). We used CrossMine to build a classification

model [18]. Our experimental results show that we are

able to build a set of rules to predict if an order is a

household payment, or not, with an accuracy of 72.3%. In

other words, even if we eliminate the payment type from the

Order table, we can still use the remainder of the database

to predict the values of payment type well. That is, there

is still a potential for privacy leakage in such database,

even if the sensitive attributes are eliminated or distorted

in multirelational classification.

A possible solution here would be to prevent the predic-

tion of the type of payment from the Order table with high

confidence, but still maintain the predictive performance

against the loan status in the Loan table. The TSMC method

is designed to achieve this goal. Next, the execution of the

TSMC method against this database is discussed.

2It follows that confidential attributes are removed or distorted after the
application of the TSMC method, since the algorithm first needs to build
rules against these attributes.



Table I
SAMPLE RULES LEARNED

Order.payment type = house payment ←
(Order.amount >= 1833) (Order.account id ⊲⊳ Disposition.account id)
(Disposition.client id ⊲⊳ Client.client id) (Client.birth date <= 31/10/1937)

Order.payment type = house payment ←
(Order.amount >= 1947) (Order.account id ⊲⊳ Transaction.account id)(Transaction.type == house)
(Order.account id ⊲⊳ Account.account id)(Account.district id ⊲⊳ Demographic.district id)
(Demographic.unemploy95 >= 339) (Demographic.num lt 10000 >= 3)

Order.payment type = non house payment ←
(Order.account id ⊲⊳ Disposition.account id) (Disposition.client id ⊲⊳ Client.client id)
(Client.birth date>=27/11/1936)(Client.birth date<=04/07/1951)
(Order.amount<=3849)(Order.account id ⊲⊳ Transaction.account id)(Transaction.amount>=8155)
(Client.district id ⊲⊳ Demographic.district id)(Demographic.unemploy96<=539)

Table II
THE NUMBER OF TUPLES COVERED BY THE SET OF SELECTED RULES

Subschemas # tuples covered

{Order,Disposition,Client} 896

{Order,Disposition,Client,Demographic} 1154

{Order,Disposition,Client,Demographic,
1394

Transaction}
{Order,Disposition,Client,Demographic,

3562
Transaction,Account}
{Order,Disposition,Client,Demographic,

1800
Account}
{Order,Disposition,Client,Account} 1103

{Order,Demographic,Account} 404

{Order,Demographic,Transaction,Account} 1130

{Order,Transaction,Account} 497

{Order,Transaction} 160

Table III
PRIVACY SENSITIVITY OF SUBSCHEMAS

Subschemas Privacy sensitivity

{Order,Disposition,Client} 0.25

{Order,Disposition,Client,Demographic} 0.32

{Order,Disposition,Client,Demographic,
0.39

Transaction}
{Order,Disposition,Client,Demographic,

1.0
Transaction,Account}
{Order,Disposition,Client,Demographic,

0.51
Account}
{Order,Disposition,Client,Account} 0.31

{Order,Demographic,Account} 0.11

{Order,Demographic,Transaction,Account} 0.32

{Order,Transaction,Account} 0.14

{Order,Transaction} 0.04

2) Subschema Privacy Sensitivity: The first step of the

TSMC method aims to identify attributes that predict the

sensitive attributes, through searching features across multi-

ple tables in the database. From the rules built for predicting

the payment type in the Order table, 12 high coverage rules

were selected. These rules cover 3341 instances in the Order

table. That is, over 50% of the examples have been covered

by the set of rules selected. The aim for the rule selection

is to identify attributes (across tables) which are useful for

predicting the sensitive attributes payment type in the Order

table.

For example, Table I lists three (3) of the 12 rules

learned. The first rule, as described in Table I, indicates

that if a payment with an amount larger than 1833 in the

Order table, and the client, linked through the Disposition

table, was born no later than Oct 31, 1937, then it was a

home loan payment. This rule involves two attributes which

come from different tables. Similarly, the second rule shows

that the amount attribute in the Order table works together

with the type attribute in the Transaction table. The rule

also indicates that the level of unemployment in 1995 and

the number of municipalities with between 2000 and 9999

inhabitants in the Demographic table are of importance to

categorize the values for the payment type in the Order table.

The same idea was demonstrated by the third rule, which

includes attributes birth date in the Client table, amount

in the Order table, amount in the Transaction table, and

the level of unemployment in 1996 from the Demographic

table. Importantly, these rules indicate that publicly known

statistical data, such as unemployment rates and the number

of households in a municipality, may be used to inject

attacks when aiming to target individuals. That is, through

the combination of public and insider knowledge, an attacker

Table IV
CONSTRUCTED SUBGRAPHS

Loan

Loan ⊲⊳ Account

Loan ⊲⊳ Order

Loan ⊲⊳ Transaction

Loan ⊲⊳ Account ⊲⊳ Disposition

Loan ⊲⊳ Account ⊲⊳ Demographic

Loan ⊲⊳ Account ⊲⊳ Disposition ⊲⊳ Credit Card

Loan ⊲⊳ Account ⊲⊳ Disposition ⊲⊳ Client

Loan ⊲⊳ Account ⊲⊳ Demographic ⊲⊳ Client

Loan ⊲⊳ Account ⊲⊳ Demographic ⊲⊳ Client ⊲⊳ Disposition

Loan ⊲⊳ Account ⊲⊳ Demographic ⊲⊳ Client ⊲⊳ Disposition
⊲⊳ Credit Card



Table V
THE TOP 10 RANKED SUBSCHEMAS AND THEIR ACCURACIES OBTAINED AGAINST THE TARGET AND SENSITIVE VARIABLES

Subschemas Selected For Release Acc. Target Acc. Sensi.

{Loan, Order, Transaction, Account, Disposition, Credit Card} 85.0% 66.9%

{Loan, Transaction, Account, Disposition} 82.5% 54.9%

{Loan, Account, Transaction} 87.5% 61.4%

{Loan, Account, Transaction, Order} 87.5% 72.0%

{Loan, Order, Transaction, Account, Disposition} 82.5% 64.7%

{Loan, Transaction, Account, Disposition, Client} 82.5% 59.3%

{Loan, Transaction, Account, Disposition, Client, Order} 85.0% 68.9%

{Loan, Transaction, Account, Demographic} 87.5% 62.2%

{Loan, Transaction, Account, Demographic, Client} 87.5% 60.8%

{Loan, Transaction, Account, Demographic, Client, Order} 87.5% 72.1%

ALL TABLES IN THE DATABASE 87.5% 72.3%

may be able to infer confidential information from the data

mining results.

These rules show how attributes across tables work to-

gether to predict the confidential attributes. In other words,

these rules were able to capture the correlation and their pre-

dictive capability among multiple attributes across multiple

tables, regardless the attribute types.

As described in Algorithm 1, the second step of the TSMC

method is to identify the privacy sensitivity of different

subschemas. Let us reconsider the first conjunction rule

as shown in Table I. If we evaluate this rule at the table

level, we may conclude that the subschema which consists

of the tables {Order, Disposition, Client} has attributes for

constructing this rule. Thus, we may want to avoid using

this subschema or, at least, restrict access to it.

The privacy sensitivity of a subschema is computed using

Equation 1, as described in Section III-B. Accordingly, from

the tuple coverage of Table II, we calculate the degree

of sensitivity for each subschema using Equation 1, and

present the results in Table III. As shown in Table III,

different subschemas have various privacy sensitivities, in

terms of predicting the confidential attribute payment type

in the Order table. For example, the subschema which

consists of tables {Order, Disposition, Client, Demographic,

Transaction, Account} has the highest privacy sensitivity.

That is, this subschema may be used to build an accurate

classification model for determining the value of an order’s

payment type.

Having the degrees of privacy sensitivity of different

subschemas of the provided database, we are able to con-

struct and select different subschemas with various privacy

sensitivities against the confidential attributes and predictive

capability for the target variables. We will discussed these

two elements in detail, next.

3) Subschema Evaluation: Following the strategy as de-

scribed in Section III-C, we construct the set of subgraphs

from the provided database. Each subgraph corresponds to a

join path starting with the target table. Eleven (11) subgraphs

were constructed by the TSMC method. The subgraphs are

presented in Table IV.

After constructing the subgraphs, the search algorithm

computes different combinations of subgraphs, resulting in

different subschemas. Consequently, each subschema has

a PI value which reflects information about the target

variable classification as well as the predictive capability

against the confidential attributes. In other words, a ranked

list of subschemas, each with a measurement describing

the trade-off in between the predictive capability against

the target variable and confidential attribute, is created.

Table V presents the top ten (10) subschemas generated

from the financial database. In this table, we show the tested

results against the target label (i.e., the loan status) as well

as confidential attribute (namely, the payment type). For

comparison purpose, we provide the accuracy as obtained

against the full database schema at the bottom of the table.

From Table V, one can see that the TSMC method

has created a list of subschemas with different predictive

capability against the target variable and the confidential

attribute. The experimental results, as shown in Table V,

suggest that one can select a subschema with a good trade-

off between the two predictive capabilities.

Specifically, one is able to identify the dangerous sub-

schemas, that pose a high data leakage risk. For example, in

Table V, consider the subschema containing tables {Loan,

Transaction, Account, Demographic, Client}. In this case,

the accuracy against the target variable remains the same as

against the full database schema. However, for the confiden-

tial attribute, the accuracy drops from 72.3% to 60.8%. It

follows that it is up to the owner of the database, to decide

if this potentially high level of leakage is acceptable, or not.

On the other hand, in order to have more confidence on

protecting the sensitive attribute, one may prefer to publish

the subschema with tables {Loan, Transaction, Account,

Disposition}. Using this subschema, one is able to predict

the confidential payment type in the Order table with an

accuracy of 54.9%. It follows that this value is only slightly

better than random guessing. However, this subschema still

predicts the target variable, namely the loan status from the



Loan table with an accuracy of 82.5%, slightly lower than

the 87.5% against the original, full database. In summary, the

experimental results show that the TSMC method generates

a ranked list of subschemas with different trade-off between

the multirelational classification accuracy and the predictive

capability against the confidential attributes.

V. CONCLUSIONS AND DISCUSSIONS

Multirelational classification discovers patterns across in-

terlinked tables in a relational database [29]. For complex

databases, it is becoming more difficult to detect, avoid and

limit the inference capabilities between attributes, especially

during data mining. This is due to the complexity of the

database schema, the involvement of multiple interconnected

tables and various foreign key joins, thus resulting in poten-

tial privacy leakage. For example, as shown in this paper,

one may use the published database to target confidential

attributes through shifting the classification target.

To address the above-mentioned challenge, the paper pro-

poses a method to generate a ranked list of subschemas for

publishing. These subschemas aim to maintain the predictive

performance on the target variable, but limit the prediction

accuracy against the confidential attributes. In this way, the

owner of the database may decide to rather publish one of

the generated subschemas which has an acceptable trade-

off between sensitive attribute protection and target variable

prediction, instead of the entire database. We conducted

experiments on a financial database to show the effective-

ness of the strategy. Our experimental results show that

our approach generates subschemas which maintain high

accuracies against the target variables, while lowering the

predictive capability against confidential attributes.

Our future work will include experiments on more

databases with complex schemas and a very large number of

tuples. As stated earlier, our approach uses a set of rules built

by a classifier to detect those attributes that are correlated

with a sensitive attribute. We aim to investigate other ways

to detect such correlations. Furthermore, it follows that a

database may contain many confidential attributes, and we

will investigate new methods to address this issue.
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