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Abstract—We apply spectral clustering and multislice mod-
ularity optimization to a Los Angeles Police Department field
interview card data set. To detect communities (i.e., cohesive
groups of vertices), we use both geographic and social information
about stops involving street gang members in the LAPD district
of Hollenbeck. We then compare the algorithmically detected
communities with known gang identifications and argue that
discrepancies are due to sparsity of social connections in the
data as well as complex underlying sociological factors that blur
distinctions between communities.

Index Terms—Clustering algorithms, network theory (graphs)

I. INTRODUCTION

Many networks can be partitioned into communities, such
that they consist of cohesive (and often dense) groups of
vertices with sparse connections between distinct groups [1].
In this paper, we algorithmically detect communities in a social
network based on sparse geosocial information. The data come
from the policing district Hollenbeck (see Fig. 1) in Los
Angeles and were collected using Field Interview cards (FI
cards) from 2009, which the Los Angeles Police Department
(LAPD) collected when interacting with the public. The vast
majority of these stops are noncriminal, and the data include
both the location of the stops and the individuals involved
in them. Using this information, we perform unsupervised
clustering on 748 known gang members to produce groups that
we subsequently compare with known gang affiliations. We
consider two graph-based community-detection techniques:
spectral clustering and multislice modularity optimization.

II. METHODS

To apply spectral clustering or modularity optimization, we
represent the data as a graph. We construct the graph using
a normalized adjacency matrix D−1W , where the matrix W
has edge weights

Wi,j = αSi,j + (1− α)e−d
2
i,j/σ

2

, (1)

and D is a diagonal matrix whose ith nonzero entry Di,i =∑
jWi,j is the strength (i.e., weighted degree) of vertex i. The

matrix S captures social interactions of individuals: Si,j = 1
if i and j met and Si,j = 0 otherwise. The second term in (1)
uses the Euclidean distance di,j between the mean locations
of individuals i and j to describe geographic similarity. The
scale parameter σ is chosen to be the length which is one
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26. State Street
27. The Mob Crew
28.Tiny Boys
29. Vicky's Town
30. VNE
31. White Fence

City of Vernon

Figure 1. Map of gang territories in the Hollenbeck area of Los Angeles.
[Figure courtesy of Matthew Valasik, UC Irvine.]

standard deviation larger than the mean distance between two
individuals who have been stopped together (but most results
are fairly robust to small changes in its value). The parameter
α ∈ [0, 1] allows us to control the relative contributions of the
social and geographic information in the construction of the
graph.

Spectral clustering [2], [3] uses the eigenvectors of a
graph’s adjacency matrix to cluster the vertices. The first k
eigenvectors of D−1W are approximate indicator functions
for the clustering that solves the NP-complete normalized
cut minimization problem [2], [4], [5]. Consequently, each
data point is given coordinates matching the corresponding
entries of the first k eigenvectors of the normalized geosocial
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adjacency matrix D−1W . Thus the jth data point (out of n
points) is given coordinates (v1j , . . . , v

k
j ), where the eigen-

vectors are vi, i, j = 1, . . . , k, with entries vij , j = 1, . . . n.
The network can subsequently be partitioned using k-means
clustering [6] on the new coordinates. Because the data set
contains members of 31 gangs, we prescribe 31 clusters for
the k-means algorithm. The geo-social data presented in this
paper is high-dimensional and contains a complex overlapping
cluster structure. The complex nature of the data, the simplicity
of the method’s construction, and the existence of efficient
solvers makes spectral clustering appropriate for this problem.

Modularity optimization [1], [7] is a community-detection
method that does not require prior knowledge of the number of
desired communities. It finds cohesive groups within a network
by comparing the network with a null model. One seeks a
partition that maximizes the quality function

Q =
1

2m

∑
i,j

[
(D−1W )i,j − γPi,j

]
δi,j , (2)

which measures the aggregate strength of edges within com-
munities compared to the aggregate strength obtained using
a random null-model network with entries Pi,j . We use
Pi,j =

didj∑
i
di

, which preserves the network’s expected strength

distribution but otherwise randomizes the data. We use a
resolution parameter γ to examine communities at multiple
scales [8], [9] (the canonical value for modularity optimization
is γ = 1), and we use the Kronecker delta δi,j to indicate the
event that vertices i and j belong to the same community.
By maximizing the modularity Q in (2), which we do using
a (locally greedy) Louvain method [10], we aim to algorith-
mically detect communities with significantly stronger intra-
community connections than expected by chance. Modularity
was generalized by Mucha et. al [11] to “multislice” networks,
which consist of layers of ordinary networks in which vertex i
in one slice is connected to the corresponding vertex in other
slices, via a coupling constant ω. For our example, each slice
is a copy of the graph in which we wish to consider a different
value of the resolution parameter γ, and we connect each
vertex in every slice to the corresponding vertex in neighboring
slices (with the slices ordered according to the values of γ)
using interslice edges. This allows us to detect communities
simultaneously over a range of resolution parameters, while
still enforcing some consistency in clustering identical vertices
similarly across slices. We subsequently examine the output
of multislice modularity optimization using network diagnos-
tics such as the number of clusters, purity, and z-scores of
Rand coefficients. This application of multislice modularity
optimization to the FI card data set is an extension of what
was done in [12].

We investigate whether the geosocial information from the
LAPD FI card data suffices to detect community structures that
match the LAPD’s notion of the gang communities in Hol-
lenbeck. Both methods perform well in finding communities,
but we find that two factors conspire to make some clusters
inhomogeneous in their gang composition. First, the social

connections between gang members are very sparse in the data.
Second, sociological reality suggests that gang boundaries are
not as rigorous as is often believed. Just like other people,
gang members are known to play multiple social roles (only
one of which is being a fellow gang member) [13], as they
can also be fathers, sisters, colleagues, teammates, etc. Hence,
although 88.7% (423 out of 477) of all social connections in
our data are intra-gang contacts, inter-gang contact is not a
rare occurrence.

III. RESULTS
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Figure 2. Pie charts made using the network visualization code from Ref. [14]
for spectral clustering and α = 0.4. Each pie represents a community, and
its size indicates the number of gang members in it. The coloring, which
we obtain from the gang colors in Fig. 1, indicates the gang composition
of the communities (see the legend). Each pie is centered at the centroid
of the mean locations of the individuals in its corresponding cluster. The
numbering in the axes uses an arbitrary but fixed origin. For aesthetic reasons,
the units on each axes are approximately 435.42 meters. The connections
drawn between different pies indicate inter-community social connections (i.e.,
nonzero elements of S).

We compare the partition into gangs provided by the LAPD
with the communities that we obtained using spectral cluster-
ing and multislice modularity optimization using purity and
z-Rand scores. To compute purity, see for example [15], we
assign to all vertices in a given community the label of the
gang that appears the most often in that group (in case of a tie
between two or more gangs, the label of one of these gangs
is arbitrarily chosen for all the vertices in that group). The
purity is then given by the fraction of the correctly labeled
individuals in the whole data set. To obtain the z-Rand score,
we compute the number of pairs w of individuals who belong
to the same gang and who are placed in the same community



by a clustering algorithm. We then compare this number to its
expected value under a hypergeometric distribution with the
same number and sizes of communities. The z-Rand score,
which is normalized by the standard deviation from the mean,
indicates how far the actual w value lies in the tail of a
distribution [16].

For spectral clustering, we compute the mean purity and
z-Rand scores, with error margins given by the standard
deviations, over 10 runs of k-means clustering. The mean
purity is about 0.55 within error margins independent of α,
unless α = 1 (i.e., when we only use social information),
for which the purity plummets to about 0.25. We see a
similar trend in the z-Rand scores, which fluctuate within error
margins around 140 for all values of α except near α = 1,
for which z-Rand is about 6. In Fig. 2 we show the resulting
clustering from a run of k-means clustering with α = 0.4.
Note that the z-Rand score of the partition into true gangs is
about 405.
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Figure 3. Number of communities, purity, and z-Rand scores (vertical axes)
as a function of resolution parameter γ (horizontal axes) for three values of
α and an interslice coupling constant of ω = 1.

Multislice modularity optimization determines the number
of clusters as part of its output. We plot this number, together
with the purity and z-Rand scores for the resulting network
partitions, as a function of the resolution parameter and for
different values of α in Fig. 3. We use an interslice coupling
constant of ω = 1. Small variations in the value of ω did
not qualitatively change the result. We seek plateaus in the
number of clusters that are near a local maximum of the z-
Rand score. The details differ slightly for different α, but the
general picture that arises is that the optimal number of clusters
for our data lies around 18 clusters with a resulting z-Rand
score of about 180. Purity is again roughly constant and again
near 0.5. Note, however, that comparing the purity scores of
two different partitions with different numbers of clusters is
not very meaningful, as purity is biased to favor partitions with
more communities.

For both of the clustering methods that we considered,

changing the value of α (as long as it is strictly less than
1) does not have a big influence on the resulting purity and
z-Rand scores. This suggests that the social component of
our data set is too sparse to significantly improve algorith-
mic clustering. To test whether an improvement might be
expected at all if more information on social interactions
becomes available in the future, we construct a ground-truth
derived social matrix GT (p, q) and run the spectral clustering
algorithm using GT (p, q) as our social matrix (and the same
geographical matrix as before).

The matrix GT (p, q) contains a fraction p of the possible
intra-gang connections (true positives), a fraction q of which
we change from true positives to false positives to simulate
noise. In a sense, p indicates how many connections are
observed and q can be construed as approximating how many
of those are between members of different gangs. The matrix
GT (1, 0) is the full intra-gang matrix; it contains nonzero
entries (of value 1) only for each pair of individuals from
the same gang. Sampling a fraction p of these connections
(uniformly at random) from the strictly upper triangular part
of the matrix, setting the others to 0, and then symmetrizing the
matrix, gives GT (p, 0). Finally, in GT (p, q), we set a fraction
q (again sampled uniformly at random) of all of the nonzero
entries from the strictly upper triangular part to 0, and we
set the same number of 0 entries to 1, and symmetrize again.
In this process, we preserve the diagonal entries at 1 and the
symmetry of the matrix.
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Figure 4. Plots of the purity using S = GT (p, q) in the spectral clustering
algorithm for different values of q (the different plots) and α (the different
curves in each plot) as a function of p. For each set of parameter values, we
compute a purity score from an average over 10 runs of k-means clustering,
and the error bars give the standard deviation over these runs. The dotted
vertical lines indicate the values of p for which the number of true positives
in GT (p, q) is equal to the number of true positives in S.

In Fig. 4, we show the mean purity scores over 10 runs
of k-means clustering as a function of p for various values
of q. The empirical values of p and q for our data set are
p ≈ 0.266 and q ≈ 0.1132 (see the dotted line in the lower
left panel of the figure). We see that increasing p, which can be



interpreted as collecting more field data about the intra-gang
social connections, has a bigger impact on purity than lowering
q. Using these dotted lines as guidance, we also see that we
cannot expect our current data set to yield network partitions
of significantly higher purity than those we obtained.

We also apply a simple Gaussian mixture model and k-
means algorithm to compare with our spectral clustering and
multislice modularity results.

For the Gaussian mixture model [17], we run the MATLAB
function gmdistribution.fit on the mean location vec-
tors of the individuals in our data set. (It was not possible to
include the social data in the simple model that we used.) This
function uses an expectation maximization (EM) algorithm to
fit 31 two-dimensional Gaussians to the data. This results in
a set of 31 means and 31 standard deviations. To divide the
individuals over 31 different clusters, we assign each point to
its nearest mean using a normalized distance. (We normalized
the distance to each mean by the corresponding variance.)
Using this technique, we again find a purity of about 0.55,
which again demonstrates that geography alone does indeed
account for most of the purity. The z-Rand score is about
100, which is worse than the results that we get with spectral
clustering. Clearly, the inclusion of social data (even sparse
social data) improves the z-Rand score. In this context, it is
noteworthy that the z-Rand score for spectral clustering for
α = 0 is about 120, with a standard deviation of about 19.
Hence, the z-Rand score for the Gaussian mixture model is
only slightly more than one standard deviation removed from
the α = 0 spectral clustering score. It is not trivial to include
the social data in the Gaussian mixture model, so spectral
clustering seems preferable for situations like the present that
combine different types of data.

To implement k-means directly, we run the MATLAB
function kmeans on the columns of the matrix D−1W . We
compute averages over 10 k-means runs, and we find mean
purity scores of about 0.56, which is again comparable (within
about one standard deviation) to the spectral clustering results,
for all α up to about α = 0.8. Among these α-values, the mean
z-Rand scores vary quite a bit, but again they typically lie
within one standard deviation (usually with a somewhat higher
value) of their spectral clustering counterpart. Interestingly,
however, for larger values of α, k-means clustering by itself
performs quite a bit worse than spectral clustering (using the
same α values). Clearly, the embedding using the eigenvectors
of D−1W which spectral clustering uses, is needed to make
the complicated geosocial data structure amenable to k-means
clustering. Our results from Fig. 4 demonstrate that, while for
the current sparse social data the added benefit of incorporating
this data into our method is limited, if the social data were
slightly less sparse (i.e., if the value of p were higher), there
would be a clear benefit from including it, especially when α is
large. The results using the k-means algorithm by itself show
that, exactly for these high α values, k-means performs worse
than spectral clustering, suggesting that spectral clustering
is preferable to k-means clustering by itself, if less sparse
social data become available. Because optimization of multi-

slice modularity performed at a comparable level to spectral
clustering on the data that we studied, we can also draw
similar conclusions when comparing Gaussian mixture model,
k-means algorithm, and optimization of multislice modularity.

IV. CONCLUSIONS

We study communities among gang members in the LAPD
division Hollenbeck by applying spectral clustering and mul-
tislice modularity optimization to an LAPD FI card data set
from 2009. Using only information about where and with
whom the gang members were stopped by the police, we par-
tition a network representation of this data into communities
that correspond to their actual gang affiliations with a purity of
about 0.5. We demonstrated, however, that this lack of purity
seems to arise from the sparsity of intra-gang connections in
the data. It is an interesting question whether this sparsity
is due to the data collecting methods—that is, whether or
not there are many additional unrecorded and/or unobserved
intra-gang social interactions in public—or whether it is an
inherent property of the system (e.g., perhaps members of
the same gang do not interact with each other particularly
often in public). The additional fact that each individual in
the data set is on average connected to only 1.2754 ± 1.8946
(with the number always nonnegative, of course) other people
suggests that the former explanation might play a dominant
role. Indeed, the maximum number of connections for an
individual in the data set is 23, but 315 of the 748 gang
members (42%) are not connected to any other individual,
and it seems all but inconceivable that such a high percentage
of gang members truly never interact with any other gang
members in public.

It has been documented that gangs can vary substantially
in their extent of internal organization [18]. The large mixed-
gang community that we observe in Fig. 2 near the coordinates
(4549, 1287) is located in an area of a housing project where
several gangs claimed turf. At the time the data were collected,
this project had been recently reconstructed and had displaced
resident gang members. However, even with these individuals
scattered across the city, they seemed to remain tethered to
their social spaces in their established territories. [19], [20]

Further studies of mathematical, data analytical, and so-
ciological nature will hopefully shed additional light on the
question whether gangs are sharply delineated social groups.
In the current study, we have attempted to illuminate one piece
of this puzzle.
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