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Abstract—Utility-based learning is a key technique for ad-
dressing many real world data mining applications, where
the costs/benefits are not uniform across the domain of the
target variable. Still, most of the existing research has been
focused on classification problems. In this paper we address
a related problem. There are many relevant domains (e.g.
ecological, meteorological, finance) where decisions are based
on the forecast of a numeric quantity (i.e. the result of a
regression model). The goal of the work on this paper is to
present an evaluation framework for applications where the
numeric outcome of a regression model may lead to different
costs/benefits as a consequence of the actions it entails. The
new metric provides a more informed estimate of the utility of
any regression model, given the application-specific preference
biases, and hence makes more reliable the comparison and
selection between alternative regression models. We illustrate
the objective of our evaluation methodology on a real-life
application and also carry a set of experiments over a subset of
our target regression tasks: the prediction of rare and extreme
values. Results show the effectiveness of our proposed utility
metric for identifying the models that perform better on this
type of applications.

Keywords-Cost-sensitive learning, regression, utility-based
performance estimate.

I. INTRODUCTION

Many real-world applications are related to cost-sensitive
decision problems, where different predictions lead to differ-
ent decisions involving costs/benefits (e.g. credit approval,
insurance contracts, targeted marketing). In effect, these ap-
plications have motivated the work on cost-sensitive learning
(e.g. [1], [2]) and, more recently, on utility-based mining
(e.g. [3]). However, most of these studies focus on clas-
sification tasks even though similar problems arise within
regression tasks. This is the case of event-based applications
like ecological/meteorological catastrophes, fraud detection,
etc. Some ranges of values of the target numeric variable are
frequently associated with critical phenomena, which usually
triggers some sort of alarm or action. Thus, predictions
made for this subset of values should have a differentiated
cost/benefit to be in accordance with the application goals.

The majority of the work in regression assumes uniform
costs [4]. The estimated performance of a regression model
is given by an average statistic over the magnitude of all
the prediction errors that are given equal importance. To
overcome the limitations of this assumption several authors
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(e.g. [4], [5]) have proposed new loss functions for regres-
sion. Nevertheless, the proposed functions are only capable
of distinguishing under-predictions from over-predictions,
i.e. situations where the predicted values are below or above
the true values, respectively. Nevertheless, these loss func-
tions, as well as other alternative evaluation measures, do not
fully address our target applications, which are described by
regression tasks with non-uniform costs/benefits.

In this context, our goal is to address two main re-
search challenges: (i) express the preference bias of the
users of these applications; (ii) provide a reliable evalua-
tion/comparison/selection of models in this scenario.

This paper is organized as follows: in Section II we
introduce the problem of non-uniform costs in regression; in
Section III, we explain how different benefits/costs can be
embedded into a regression task; in Section IV we provide
an illustration of an utility surface for real-world regression
problem; in Section V we carry some experiments with the
proposed utility-based framework; and finish with the main
conclusions in Section VI.

II. NON-UNIFORM COSTS IN REGRESSION

Our goal is to address regression tasks, i.e. learn models
that are able to predict a continuous target variable Y based
on the values of predictor variables X, X, ..., X,,. Our tar-
get regression tasks differ from standard regression because
not all values of the target variable are equally relevant, as
for some values it is more important to be accurate, while
for other values the accuracy may be completely irrelevant.
Our objective is to handle such numeric prediction tasks with
differentiated costs/benefits of predictions.

Standard error measures, such as the Mean Squared Error,
MSE = 15" (yi— §:)%, or the Mean Absolute Devia-
tion, MAD = 13" | |y; — 4], are not suitable for this type
of regression tasks. The reasoning is that all standard error
estimates are based on additive measures of error and have
as objective to find the model that minimizes the expected
error within a uniform cost error framework. Nevertheless,
there are real-world applications where different ranges of
the target variable have different importance attached and
hence so should have the errors committed by the predictions
made at those ranges, as we will illustrate next.
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Figure 1. Two sets of predictions for outdoor air pollution registered
values, given by the log-transformed hourly concentration of NOo

Keeping the concentration of the pollutants at admissible
levels has been a major concern to the World Health Orga-
nization (WHO). To reduce the emission of the pollutants,
the air quality standards have been changing over the recent
years making the annual average concentrations stricter.
Nitrogen dioxide (NO-) is an important atmospheric gas,
not only because of its bad health effects but also because
it absorbs visible solar radiation and contributes to the
constitution of smog. In this context, it can also have a
potential role in global climate change if its concentration
becomes too high. Therefore, the control of concentration
values of NOs is a very important task. In Figure 1a we have
the probability density function (pdf) of log-transformed
concentration values of NOy measured in pg/m?® on each
hour, at Alnabru in Oslo, Norway, between October 2001
and August 2003 !. In the same figure we also have the
indication of the hourly average concentration value to
achieve in 2010 according to WHO directives. The higher
concentration values, are the most harmful to the public
health and, as so, the most important from the application
perspective. Nevertheless, these values are also the less
frequent ones and thus the harder to predict with standard
regression techniques. To better illustrate this fact, we have
produced two different sets of predictions, M; and Mo,
for LNO2 values (cf. Figure 1b). They both have the same
MSE (0.460) and M AD (0.402). Still, from the applica-
tion perspective they should considerably different. In this
context, it is perceptible that the relevance of the values of
the target variable LNO2 is not uniform. In effect, both My
and M; have exactly the same error amplitudes but these
occur in different ranges of the target variable, Mo having
the smaller errors on the most important cases. A cost-
sensitive classification approach (e.g. [2]) could have been
taken if the interest was only to make accurate predictions
between what is a harmful concentration level and an
acceptable concentration level. This approach, would have
the advantage of considering the location/class of true and

! Available on the StatLib
http://lib.stat.cmu.edu/datasets/

Datasets Archive:

180

predicted value and thus assign each prediction a cost or a
benefit. Still, this constitutes a discrete approach to inherent
continuous problem, and hence there will be always loss
of information. In regression, other alternatives could have
been taken to address this evaluation issue namely, assigning
higher powers to the errors, using case weights, asymmetric
loss functions [4]. Nevertheless, none of these hypothesis are
sensitive to the concrete values involved in the predictions
as they are, mostly, focus on the error amplitudes. This
may lead to some counter-intuitive indications concerning
the comparison of models for regression problems where the
application preference bias is not uniform across the domain
of the continuous target variable.

III. UTILITY IN REGRESSION

Research on cost-sensitive learning has traditionally been
formalized in terms of costs as opposed to benefits or
rewards. However, according to Elkan [2], evaluating a
model in terms of benefits is generally preferable because
there is a natural baseline from which to measure all benefits
whether positive (as real benefits of predictions) or negative
(as costs of the predictions). Some studies (e.g. [3], [6]) also
refer that performance measures should adopt the business’
objectives. According to these studies, driving the data-
mining process by these objectives is determinant to achieve
potentially useful results.

In standard regression setups, the usefulness of a predic-
tion is inversely proportional to its loss value, and thus to the
difference between true and predicted values. In this context,
one can define that in standard regression scenarios, utility
is a function of the error of the prediction. In this scenario,
having L as a loss function and U as an utility function, one
can derive two properties of utility in standard regression:
(a) equal accuracy predictions have the same utility, i.e.

L(91,y1) = L(92,y2) = U(91,91) = U(92,92);
(b) more accurate predictions are always preferable, i.e.
L(G1,y1) < L(92,y2) = U(91,91) > U(52, y2)-

For the applications we target with our proposal, these
otherwise reasonable properties, can be counter-intuitive.
According to the general framework of utility-based learning
as proposed by Elkan [2] and Zadrozny [7], the utility of a
prediction is the net balance between its benefits and costs
(i.e. negative benefits). Hence, in non-uniform benefits/costs
scenarios, utility is a function of both the error of the
prediction (i.e. L(7,y)) and the relevance (importance) of
both § and y. In this context, the properties of utility
in standard regression no longer hold. This means that,
considering again L as some loss function and U as an utility
function the following cases can occur:

(a) equal accuracy predictions do not have always equal
usefulness, that is,
L(91,y1) = L(§2,y2) ANU(G1,y1) # U2, y2);

(b) more accurate predictions are not always preferable, that

is, L(91,y1) < L(92,y2) AU (@1, y1) < U(92,42).



If we take the Outdoor Air Pollution prediction problem
presented in the previous section, we see that the notion
of usefulness in standard regression metrics, no longer
applies. For instance, with the set of predictions M; we get
L(2.68,2.71) = 0.03 and with the set of predictions My we
get L(6.37,6.40) = 0.03. Still, from the perspective of this
application, the usefulness of the first prediction should be
much lower (i.e. U(2.68,2.71) < U(6.37,6.40)). In effect,
the second situation forecasts a high NO, concentration
value that will probably trigger some alarm. On the contrary,
the first prediction forecasts an average NOs concentration
value and, in this sense, we can say that it is much less
useful. This small example contradicts the property of equal
accuracy predictions being equivalent as established in stan-
dard regression Another example can be found for M; where
L(2.68,2.71) < L(4.72,6.40) but, from the application
perspective, we should have U(2.69,2.71) < U(4.72,6.40).

A. Relevance of Target Values

Relevance is the crucial property that distinguishes non-
uniform benefit/cost regression problems from standard re-
gression problems. For our target applications, not all values
of the target variable are equally relevant for the user. There
may exist a range of so-called relevant values where it is
particularly useful to be accurate. It is the relevance of
the target variable that expresses the domain-specific biases
concerning the different importance of the values.

We propose a continuous relevance  function
¢: Y —[0,1] to express the application-specific bias
concerning the target variable domain ) by mapping it into
a [0,1] scale of relevance, where O represents the minimum
and 1 represents the maximum relevance.

As the objective of the relevance function is to represent
domain knowledge, we do not impose any particular shape
to the ¢ function. We assume that the specification is
provided by the end-user. Still, specifying such function in
an analytical way may not always be easy. It is also virtually
impossible to describe reasonable default relevance functions
for all non-uniform utility applications. Our proposal is
to use a smooth interpolation method, such as piecewise
cubic Hermite interpolation [8], at some user-defined points
to define the relevance function. There will be regions of
target variable where the end-user emphasizes the relevance
compared to neighbouring regions. These way it expresses
his interest on these regions, which might be associated with
some key actions/decisions regarding the target application.
At these ranges, the relevance function exhibits the shape of
a bump. Bumps correspond, in fact, to intervals of the target
variable where the relevance function is quasiconcave and
this leads to the notion of bumps of relevance.

Quasiconcave functions are widely used in many research
fields due to some of their interesting properties. Quasicon-
cave functions are characterized as single-peaked functions
like the probability density function of distributions such
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as uniform, normal, exponential, logistic, Weibull, Gamma,
among other distributions. Nevertheless, we should stress
that our goal is to address applications where the relevance
of the target variable may not be uniform, and, in particu-
lar, may not be single-peaked. Still, in many applications,
relevance is often associated with specific ranges or with
extremeness and rarity (e.g. highly profitable customers;
high variations on stock prices; extreme weather conditions).
Our proposal is to locally address these ranges as a way
to achieve the global applications’ objectives. Our ultimate
goal is to maximize utility, and that can only be achieved
by minimizing the error on the most relevant values. Some
of the properties of quasiconcave functions are at the partial
fulfillment of this goal, namely, the Local-Global Property of
the Maximum [9]. This property ensures the existence of an
unique maximum for these shape-like functions. This allow
us to give a more rigorous definition of bump of relevance.
Let JV C R be the domain of a continuous target
variable and ¢ be the continuous relevance function asso-
ciated to Y. A bump of relevance B; is an interval of )
defined by B; := (b; ,b;,b;, 1), with b; <bj <b;\; and
b, ,b;,b;, 1 €Y, such that:
(@) ¢ :[b; b 1[— [0,1] is quasiconcave;
(b) b7 is the average value at which the target variable
reaches the maximum relevance of the bump, that is
by = By, where By = {y € B; | argmax, ¢(y) }
b, is the average value at which the target vari-
able attains the left minimum relevance, i.e. before it
grows to its maximum, that is b; = B,,,, where

B, {y € B | argmin, - (;S(y)}
by, is the average value at which the target vari-

able attains the right minimum relevance, i.e. after it
grows to its maximum, that is b;,, = B, where

By = {y € B; | argmin, . ;. cb(y)}

From the above definition of bumps of relevance, we can
state that the family of all bumps of relevance, defined across
Y with respect to the relevance function ¢, is a bumps
partition of ), m(y). Figure 2 illustrates an example of
a bumps partition defined across the domain of the target
variable Y.

(©)

(d

B. From Prediction Errors to Utility Values

Our main motivation in the formulation of utility-based
regression is to address applications where the target predic-
tion variable has non-uniform relevance for the user. This
non-uniform relevance usually results from the fact that
predictions may be actionable. In such domains, taking the
right action results in positive benefits, while taking a wrong
action results in costs (i.e. negative benefits). As the set
of possible actions is limited, this could lead to a typical
classification setup. However, the other key distinction of
our target applications is that we are interested in degrees
of action and that is the key that takes us apart from
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Figure 2. Identification of bumps of relevance in the target variable Y

classification approaches. Thus, in order to calculate the
utility value of a prediction we must consider two aspects: (i)
does the predicted value leads to the correct action/decision?
- or equivalently, do y and g belong to the same bump? (ii)
what is the accuracy of the predicted value? - or equivalently,
what is the value of L(7,y)?

First notice that each bump may have different sensitive-
ness to the prediction errors. In particular, “narrow” bumps
are supposed to be more intolerant to prediction errors, while
“wider” bumps are supposed to accept larger prediction
errors. We established the maximum admissible loss in a
bump B5; as the double of its smallest half-amplitude, which
is given by the difference between each one of its bounds,
b; and b;_ |, and its maximum value b}, i.e.

- bz‘_+1‘}

The concrete value of utility results from the assessment of
benefits and costs to each prediction, as we describe next.

The first rationale for assessing a benefit is that we are
entailing a correct action. The resulting reward should then
be dependent on the accuracy of the predicted value and on
the relevance of the true value. In this sense, we define the
benefit of a prediction to be a proportion of the relevance
of the true value, i.e. ¢(y), which constitutes its maximum
value. The benefit function By is defined as follows,

b = 2% min{[b; — bj|, |b] (1)

(@)

where ['p is the bounded loss function for benefits. The
bounded loss function I'p asserts the proportion of the
maximum benefit a prediction should get. It should be O if
we have a perfect prediction thus leading to the maximum
benefits in the current situation, i.e. ¢(y). The function
should increase up to 1 as we move away from a perfect
prediction or if we cross the boundaries of the bump to
which y belongs.

Formally, the bounded loss of a prediction ¢ € Y for a
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true value y € ) is given by the following function:

L@ )/ Loy, i L@.y) < Lp(y)
1, if L(9,y) > Lp(9,y)-
3)
where L is a ”standard” loss function (e.g. absolute devia-
tion) and Ly is a benefit threshold function.

The benefit threshold function determines when the pre-
dicted value stops leading to a benefit. This may occur due
to two conditions: (i) overcoming the maximum admissible
loss of the bump; or (ii) being on a different bump. The
following function implements these criteria.

Lp(g,y)} @)

where bﬁ(y) is the maximum admissible loss established for

LB (:gv y) = mln{bﬁ(y)v

the bump of y, i.e. the bump index ~(y) * (cf. Equation 1),
and Lp is defined as follows,

Regards the behaviour of the proposed definition of ben-
efits (cf. Equation 2) we have that when L(g,y) = 0,
By(9,y) = ¢(y). This property follows from the definition
of the bounded loss used in the definition of benefits.
Moreover, when the loss value increases, our benefits will
reach zero as shown below.

Lemma 1: For sufficient large values of L(y,y), we have
By(9,y) = 0.

Proof: We want to prove that there exists an ¢, € [0, 1],
such that Vy,y L(§,y) > tr we have By(g,y) = 0. If we
assign t; = Lp(§,y), then by the boundary loss function
definition, we have I'g(9,y) = 1 and hence 1 —I'p(y,y) =
0. Therefore, By(y,y) = 0. u

Regarding costs, the first rationale behind them is that we
are making a too inaccurate prediction or/and entailing a
wrong action. Besides these two facts, to really assess the
cost of the made prediction, we must inspect how relevant
is the impact of such wrong action. While the benefits of a
prediction depend on the usefulness of its associated action
(i.e. ¢(y)), costs depend not only on the action associated
with the true value but also on the action of the predicted
value. This means that costs should be proportional to the
relevance of both the true and predicted values. The joint
relevance function (cf. Equation 6) captures this notion by
calculating a weighted average of these two factors.

o (G,y) = (1 —=p)o(H) + poly) (6)

where p € [0,1] is a factor differentiating the types of
errors. In this context of actionable predictions there are
three different types of incorrect actions: (i) false alarms
where the prediction leads the user to a relevant event/action

|y—b;(y)|, itg<y

s e @)
=gyl 120

2y(y) = {ily € BinB; CPs(V)}



when the true value is rather irrelevant (i.e. we act when
we should not); (ii) missed opportunities where the model
predicts an irrelevant value but the true value is highly
relevant (i.e. we did not do anything when we should have
acted); or (iii) confusing events where the prediction leads
to a wrong action (i.e. we ought to act but we carry out the
wrong action). The third scenario is the most serious type
of mistake.

We define the cost of a prediction to be a proportion of
the joint relevance of both true and predicted values, which
gives its maximum value. Hence, the cost function Cg is
defined as follows,

C?(§.y) = —¢*(§.y) T (§,y) %

where ¢P is the joint relevance function and T'¢ is the
bounded loss (cf. Equation 3) calculated using the cost
threshold function given below.

The cost threshold function determines when the costs
reach the maximum value. As with the benefit threshold
function this may occur due to two conditions: (i) over-
coming the maximum admissible loss of the bump; or (ii)
predicting a value that has the maximum relevance of a
different bump (i.e. a different action). The next function
implements these conditions.

The cost threshold of a prediction § € ) for a true value
y € ), is given by the following function:

where bﬁ(y) is the maximum admissible loss established for
the bump of 3 (cf. Equation 1) and L¢ is given by,

ly =01l 1f9 <y

Le(g,y) = { 9)

Y =0yl G2y
The first term in the min function is the maximum admissi-
ble error amplitude of the bump of the true value. The second
term in the min function checks if the predicted value has
reached the maximum relevance value of a neighbouring
bump. Regarding the proposed definition of the cost of a
prediction, we know that when L(g,y) = 0, C(g,y) =0
because ' (g, y) = 0, but when the loss value increases our
costs should be proportional to the relevance of the true and
predicted value.

Lemma 2: For sufficient large values of L(y,y), we have
Cg(?% y) = 7¢p(/g, y)

Proof: We want to prove that there exists an ¢y, € [0, 1],
such that Vg, y L(,y) > t1, we have C (3, y) = —¢P (3, y).
If we assign t; = Lg(§,y), then by the boundary loss
function definition, we have I'c(y,y) = 1. Therefore,
Cz(g7y> = 7¢p(y’y) u

Having defined how to obtain the benefits and costs asso-
ciated with any prediction we can now propose a method to
calculate the utility of a prediction. Our proposal implements
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the following general principle: “The utility of a prediction
is the net balance between its benefits and costs.”

Definition 1: The utility of a prediction y € ) for a true
value y € Y is given by:

Ug(9,y) By(i,y) + CL(3,y)
= oy) (1 -Ts(Hy) — ¢*@,y)Tc(y,v)

In the above setting, it is also possible to prove that for
any given prediction ¢ of a true value y there is only a
bounded range of utility values to assign.

Theorem 1: Let Ug: Y x Y — [—1,1] be an utility func-
tion defined for a continuous target variable with domain )/
and with a relevance function ¢: ) — [0, 1]. Then whatever
is the predicted value § € ) for a true value y € ), we
have:

(a) the maximum of UZ(§,y) is ¢(y);
(b) the minimum of UZ(9,y) is p (1 — ¢(y)) — 1.
Proof:

(a) According to our utility function formulation, for the
maximum value of utility to be achieved it is necessary
that the prediction matches the true value, ie. § = .
This means that the loss value is zero, i.e. L(g,y) =
0. From the definition of bounded loss function with
respect to benefits threshold function LB, we have
that if L(g,y) = 0 then I'p(g,y) = 0. Similarly,
regarding bounded loss function with respect to cost
threshold function L¢, we have that if L(3j,y) = 0 then
L'c(9,y) = 0. Thus, in these conditions and considering
that the relevance function ¢ only takes values in [0, 1],
it can be shown that,

UL (9,y) Ub(y,y)
o(y) (1 =T(y,y) — " (y,y) ey, y)
o(y)

(10)

From the zero loss prediction, the utility value decreases
according to benefits and cost criteria that rely on the
action that is implied by the prediction and on the
loss value. In this sense, the worst scenario is achieved
when the benefit is zero and the cost is maximum.
Lemma 1 and Lemma 2 have established this scenario.
When loss tends to infinity, i.e. L(g,y) — —+oo, we
have By(g,y) = 0 and C§(7,y) = —¢P(9,y). In
these conditions and considering that both the relevance
function ¢ and the penalizing cost factor p only take
values in [0, 1], it can be shown that,

<

(b)

Ug(9,y) = Be(d,y)+C4(0,y)
= ¢(y) (1 -I'p (gv y)) - ¢p(:g7 y) FC(Z), y)
Z 7¢p(?)’y)
> p(l—9(y) -1
(11)
|



C. Relationship with Standard Regression

A standard regression problem can be recast as an utility-
based regression problem. In effect, we can see standard
regression as a problem where all values have equal and
maximal relevance, i.e. ¢(y) 1,Vy € R. Hence, we
have a single bump. Provided that the relevance function
is constant, we have no indications on the benefits or loss
threshold to define the utility loss functions I'p and T'¢.
In such conditions, we can assign the maximum admissible
loss of the only existing bump with a standard error estimate
¢ of the target variable. This estimate can be based on the
Gaussian level of noise and on the number of observations.
This means that only the predictions with a loss below this
estimated standard error € are subject to benefit/cost analysis.
Moreover, there are no actions attached to the target variable
domain. Thus, the maximum admissible loss is the only
criterion for a prediction to be considered as a benefit or a
cost, and it is the same for both of them. In these conditions,
our utility function is reformulated as follows,

UL (9. y) o(y) 1 =Tp(5.y)) —*(.y) Tc(9,y)
1- FB(@» y) - FC’(Q’ y)

1- Fe(gv y) - Fe(:&v y)

1-2 Fe (ga y)

(12)
With this utility function, a standard loss function L is scaled
into a [—1,1] interval of utility values. The maximization
of U is equivalent to the minimization of the bounded
loss function T', and thus the minimization of L, the goal
of a standard regression task. Through this approach, any
standard regression problem can be addressed in our utility-
based regression framework.

IV. ILLUSTRATIVE EXAMPLE OF AN UTILITY SURFACE

Suppose that following WHO directives, we have defined
a set of control points, derived the relevance function ¢ and
identified the respective bumps partition (cf. Figure 3a). In
Figures 3b and 3c, we present the utility surface obtained
for the NOy Emissions prediction problem, with the penal-
ization costs factor p = 0.5. At the left, Figure 3b, we have
the utility isometrics of the surface, i.e. the lines that share
the same value of utility, while at the right, Figure 3c, we
have a 3D representation of how the utility values evolve
as a function of the true and predicted values. Through
this surface, we obtain a better understanding regarding the
costs and benefits associated to this application. Near the
diagonal where true and predicted values are equal, we have
a positive utility that grows fast as we reach higher values
of both the predicted and true values (top right corner).
These are the values with higher relevance. At the top left
and bottom right corners we get costs, i.e. negative utility
values. These areas correspond to inaccurate predictions
leading to incorrect actions or predictions where the loss
value goes beyond the maximum admissible loss (= 8.8).
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As the domain is characterized by having one action (bump)
only, that is alarm high LNO2 concentration values, and the
admissible loss is large, costs never get too high for the
range of values considered in the graphs. This explains why
the utility surface is mainly positive.

V. EXPERIMENTAL ANALYSIS

We have presented an utility-based evaluation methodol-
ogy that is able to handle applications with non-uniform
costs across the domain of a continuous target variable. In
this section, we test the sensitiveness of such methodology
in the task of identifying the best models for this kind of
applications, when compared with a standard error metric.
We claim that without our proposed utility-based metrics,
we can only obtain suboptimal models comparisons in
the context of our target applications. Through a set of
experiments we will show that standard evaluation metrics
are not always able to choose the best models.

Our experiments were conducted on the NOs concen-
tration data set we have been using. For the experiments
we used all the domain knowledge that we had. The used
relevance function ¢ was the same shown in Figure 3a.
Concerning the utility surface, we established p = 0.75 to
make opportunity costs more serious than false alarms.

With the goal of avoiding any bias on our conclusions
concerning the used modelling techniques, we have selected
four quite different approaches. For all of these techniques
we have used the implementations available on the R soft-
ware environment [10]. The selected methods were:

o regression trees (cart) - we used the implementation
available through package DMwR [11], with default
setting se=1.

o support vector machines (svm) - we used the imple-
mentation available in the package e1071 [12], width
default setting cost=1 and radial-basis kernel.

o multivariate adaptive regression splines (mars) - we
used the implementation available in the package
earth [13], with default setting degree=1 and
thresh=0.001.

o random forests (randomF) - we used the implementa-
tion available in randomForest package [14], with
default setting ntree=500 and nodesize=5.

No extensive parameter tuning was carried out, as top
performance is not the goal here - our goal is to compare
the model rankings produced by different evaluation metrics
under different setups. None of the alternative models we
are considering in our experiments optimizes any of our
utility-based metrics. In this context, we incur the danger
of concluding that all models perform equally bad in terms
of the applications goals, which would not allow us to
conclude anything concerning the eventual advantages of
our metrics. To avoid this problem we wanted to ensure
that among the candidate models there were alternatives
that were clearly better in terms of being able to optimize
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utility. These models should come up as the best models if
the used metrics have any value. To obtain these “optimal
models” we generated artificial sets of predictions based on
the predictions of the ”standard” models. Namely, we created
these artificial predictions by tweaking the prediction errors
of our original four modelling techniques in such a way that
the errors are artificially re-allocated to the test cases that
improve the overall utility score. By proceeding this way,
we reach to a set of artificial set of predictions that have
exactly the same set of error amplitudes as the base models,
but with a higher utility value because the smallest errors
were re-allocated to more relevant true values.

In our experiments we named these artificial sets of pre-
dictions improv.{base_technique) (e.g. improv.cart). From
the perspective of the goals of our target applications, these
improved models should appear ahead of the base models
(or at most at the same position in the unlikely event that the
base model already achieves this ”improved” performance).
A failure to rank these improved models on top would mean
the failure of our proposal. The function U g gives us a base
to evaluate models for regression tasks with non-uniform
benefits/costs across the target variable. Through it, we can
estimate the expected utility of a model. Given a regression
model, we can estimate its Mean Utility (M U) by,

1 n
MU = — P (Giy ys 13
U n;wy,y) (13)

where ¢ is the relevance function and p is the penalizing
costs factor. This metric reflects the model performance
regarding the application-specific biases. Positive values
indicate that the model is useful on average, while negative
values indicate that the model usually issues predictions that
represent costs. An equivalent metric is obtained if we map
the values of MU to the interval [0,1], thus leading the
Normalized Mean Utility (NMU) as follows,

diet Ué)@i,yi) +n
2n

NMU = (14)

(b)
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where ¢ is the relevance function and p is the penalizing
costs factor. For comparison purposes, we have evaluated
the performance of the models by these utility-based metrics
and by the NM AD evaluation metric, selected as a “repre-
sentative” of a standard evaluation metric that consists of a
normalized version of MAD to the interval [0, 1], as follows,
NMAD = 72%1 19: — vl

Zi=1 1Y — il

where Y is the median of the target variable Y. All the
three evaluation metrics use, as loss function, the absolute
deviation. Given that our data set has a small number of
cases, we chose to run a stratified 1x10-fold cross validation
process to obtain the performance estimates. The statistical
significance of the difference between the score of each
modelling technique and the one ranked as the best, was
measured using the Student paired t-test. For each statistic
we provide the mean (u) and the standard deviation (o)
obtained from the cross validation process.

The results are presented in Table I. From a first analysis
of the results, it is possible to notice that our utility-based
metrics (MU and NMU) and NMAD do not agree on
the top ranked modelling technique. Moreover, as expected,
the NM AD statistic is not able to distinguish between the
improved versions of the models and the original ones.
According to NMAD randomF is the best model for
this problem. However, randomF is not a well positioned
modelling technique according to both our utility metrics,
with a performance that is significantly worse than the top
model according to these two metrics. Still, according to
MU, the performance of randomF is positive, which means
that on average its predictions lead to a benefit. In effect, in
this application all modelling techniques achieved a globally
good utility score. This is explained by the overall positive
utility surface of this problem (cf. Figure 3c). Independently
of these observations, our experiments show that our metrics
are able to identify the best models (which were artificially
made the best) from the perspective of the user preference

5)
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Table 1

MU :p+o

NMU :p+o

NMAD :p+o

improv.randomF
0.51417 £ 0.03604
improv.svm
0.51264 + 0.03573
improv.mars
0.51222 + 0.03617
improv.cart s
0.50609 + 0.0358
SV *3%
0.48409 + 0.03248
randomF s
0.48344 + 0.03268
mars
0.48009 + 0.03302
cart

0.46883 + 0.03303

improv.randomF
0.75709 + 0.01802
improv.svm
0.75632 + 0.01787
improv.mars
0.75611 + 0.01809
improv.cart s
0.75305 £ 0.0179
SV *%
0.74205 + 0.01624
randomF s
0.74172 = 0.01634
mars
0.74005 +£ 0.01651
cart

0.73441 £ 0.01651

randomF
0.61803 + 0.07345
improv.randomF
0.61803 + 0.07345
mars
0.65046 + 0.10225
improv.mars s
0.65046 + 0.10225
svm *
0.66435 + 0.05996
improv.svm
0.66435 + 0.05996
cart
0.75887 £ 0.05341
improv.cart s

0.75887 £ 0.05341

biases for this application. Moreover, according to our met-
rics, the best model is improv.randomF. Still, more important
than this observation is the fact that our metrics were able
to rank at the top all improved variants of the base models,
which provides strong evidence concerning their ability to
identify models that perform better in terms of the goals of
this application.

VI. CONCLUSION

In this paper we have argued for the existence of real-
world data mining applications that represent regression
tasks with non-uniform costs and/or benefits across the target
variable. To properly evaluate the performance of regression
models in this context, we have proposed an utility-based
function that assesses benefits/costs to models predictions.
For this purpose, we take into account the relevance of the
true and predicted values, defined by a continuous function
that maps the domain of the target variable into a [0, 1]
scale of relevance, and consider two different aspects: (i)
the accuracy of the action associated with the predicted
value; and (ii) the numeric accuracy of the predicted value.
Through this utility-based evaluation framework, we are now
able to cope with non-uniform benefits/costs in regression,
likewise it happened in classification, and, at the same time,
incorporate the standard error metrics (e.g. mean squared
error) as special cases. Our experiments have confirmed the
risks of using standard evaluation metrics when comparing
models in applications with non-uniform costs. Namely,
there are problems where standard metrics are unable to
identify the best models, which can be critical for some
real-world applications. Moreover, we have shown that these
risks can be overcome by the use of our metric, which is
able to provide a model ranking that is in accordance to the
preference biases of the applications. Given the exploratory
character of this paper, there are many interesting future
perspectives. Namely, we believe that the integration of this
metric into the learning phase of regression algorithms can
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lead to better models from the perspective of the application
preference biases.
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