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Abstract—Rating and recommendation systems have become a
popular application area for applying a suite of machine learning
techniques. Current approaches rely primarily on probabilistic
interpretations and extensions of matrix factorization, which
factorizes a user-item ratings matrix into latent user and item
vectors. Most of these methods fail to model significant variations
in item ratings from otherwise similar users, a phenomenon
known as the “Napoleon Dynamite” effect. Recent efforts have
addressed this problem by adding a contextual bias term to the
rating, which captures the mood under which a user rates an item
or the context in which an item is rated by a user. In this work,
we extend this model in a nonparametric sense by learning the
optimal number of moods or contexts from the data, and derive
Gibbs sampling inference procedures for our model. We evaluate
our approach on the MovieLens 1M dataset, and show significant
improvements over the optimal parametric baseline, more than
twice the improvements previously encountered for this task. We
also extract and evaluate a DBLP dataset, wherein we predict
the number of papers co-authored by two authors, and present
improvements over the parametric baseline on this alternative
domain as well.

Index Terms—recommender systems; graphical models;

I. INTRODUCTION

Generating recommendations for users based on their pre-
viously revealed preferences and the ratings of similar users
has increased in popularity as a machine learning problem,
primarily due to the activities of internet companies such as
Amazon, or the coverage of competitions such as the Netflix
prize. Most of these methods have at their core a matrix
factorization-based approach. We can view the users and their
ratings for items as a U x M matrix R (subsequently referred to
as the ratings matrix or the user-item matrix), which contains
the ratings for U users over M items, and where every item
is rated by at least one user. The idea is to factorize R into its
latent factors: R ~ ATB, where A € RP*U g the latent user
matrix, and B € RP*M ig the latent item matrix. These lower
dimensional representations reflect the intuition that ratings are
based on a small number of factors (with dimension D), and
the idea is to complete the matrix using this low-dimensional
formulation, by taking the inner product between user and item
latent factors for items not rated by users during the prediction
or “matrix completion” step.

This general approach is also known as collaborative filter-
ing, since one not only utilizes the user’s previous preferences
but also the preferences of similar users (hence the “collabora-

tive” aspect). Probabilistic formulations of matrix factorization
for recommendation systems generally improve upon the per-
formance of their non-probabilistic counterparts, by treating
the latent factors as random variables. However, such methods
are unable to model context explicitly, since most probabilistic
models of this form generate the ratings from a normal
distribution with the mean set to the inner product between the
user and item latent factors. As a result, phenomena like the
Napoleon Dynamite effect, originally proposed in the context
of the Netflix prize, wherein certain movies (or more generally,
items) receive high variance ratings from users that otherwise
rate other items similarly (the movie Napoleon Dynamite being
a prime example), cannot be handled well in the traditional
probabilistic matrix factorization framework.

The recently proposed mixed membership matrix factoriza-
tion (M>F) model [1]] aims to tackle this problem by explicitly
modeling ratings not only with static latent factors, but with an
additional bias term that takes into account the context of the
rating. MF represents this bias term by modeling it through
a type of mixed membership stochastic blockmodel: each user
and each item can be represented as a discrete distribution
over user and item topics, representing contexts or moods
under which users rate items. When a user u rates an item
7, the contextual bias of this rating is a function of the user’s
bias for the item’s topic for that particular rating (intuitively,
the context under which item j is being rated). It is also a
function of the item’s bias for the user’s topic for that rating
(intuitively, the mood of the user w at the time of rating).
Thus, M3F models a user’s rating for an item as a function of
both the static latent factors and the user-item group and user
group-item based contextual biases.

The M3F model however, is limited in the sense that the
number of user and item topics for the contextual bias term is
set beforehand and not learned from the data. In our proposed
extension to this model, which we refer to as the infinite mixed
membership matrix factorization model (iM>F), we sample the
user and item topic assignments from an infinite-dimensional
prior, allowing us to learn the optimal number of user and
item topics from the data. Ideally, we would like the user and
item topics to be shared across all users and items, but that
each user and item maintain their own topic proportions over
these topics. Thus, we propose to use a hierarchical Dirichlet
process prior on the number of item and user topics, and



sample assignments through a Chinese restaurant franchise
representation. A Gibbs sampling procedure is derived and
implemented for this model, and we evaluate its performance
on two datasets from different domains: a movie ratings dataset
(MovieLens), and a publication co-authorship database that we
extracted ourselves from the DBLP database. Compared to the
baseline M3F model on the former dataset, we decrease root
mean square error (RMSE) by 0.0065, which is two times
higher than M3F’s improvement over its baseline. We also
significantly outperform M>F on the DBLP dataset.

II. RELATED WORK

As a way to attack recommender system problems, matrix
factorization has been one of the popular approaches along
with content-based filtering [2], and in recent years has proven
to be the superior alternative of the two [3]. Probabilistic
matrix factorization (PMF) was first introduced by Salakhut-
dinov and Mnih [4], whereby ratings are generated from a
Gaussian with a mean computed as the dot product of the user
and item latent factors, with fixed variance. A fully Bayesian
version of PMF (BPMF) was subsequently proposed by the
same authors [5]], where they assumed the latent factors were
themselves generated by Gaussian distributions, with normal-
Wishart priors on the hyperparameters.

Our work is primarily based on extending the M®F model
[1] . In M3F, the user and item latent factors are modeled as
in BPMF, but when generating a rating, in addition to using
the dot product of the latent factors as the mean, we add a
contextual bias term. More formally, we generate a rating by
a user u for an item j aq}

rujNN(Xo—i—cZ—i—d;—&—au-bj,UQ) (1)

where c¥ is the latent rating bias of user u under item topic ,
d; denotes the bias for item j under user topic ¢, xo is a fixed
global bias, and a,, and b; are the latent user and item factors
respectively. The M3F framework’s concept of modeling user
and item biases through user-item topic and item-user topic
interactions is derived from mixed membership stochastic
blockmodels (MMSBSs) [6], which itself is influenced by the
original mixed membership topic modeling framework [7]], and
stochastic block models [8], [9].

Collaborative topic regression [10] also combines matrix
factorization and mixed membership topic modeling, but their
method solves a different problem, the cold start issue of out-
of-matrix predictions, rather than contextual bias.

There has been a good amount of work on general non-
parametric techniques in matrix factorization and in particular,
applications in collaborative filtering. However, all of these
approaches focus on the parameters corresponding to the
number of latent factors, and aim to learn the optimal latent di-
mension from the data. [[1 1] do not use a probabilistic approach
and instead use SVD, whereas [12], [[13] adopt an Indian
Buffett Process to model the latent factor dimensionality, and

note that this is one of two variants proposed in the original paper, the
Topic-Indexed Bias (TIB) model. The other model, the Topic-Indexed Factor
(TIF) model, was found to underperform the TIB model.

implement variational inference-based solutions. We note that
such non-parametric approaches are orthogonal to our method,
since they target the latent dimensionality, and can thus be
easily integrated and combined with our approach.

III. APPROACH

Our proposed method, iM®F, is based on extending the
M?3F approach for probabilistic modeling of recommendation
systems. In iM>F, we add an infinite-dimensional prior for user
and item topics. This extension is realized in our model by us-
ing a nonparametric Bayesian prior for the topic distributions,
providing the model the ability to have a potentially infinite
number of user and item topics. We present the schematic and
symbolic views of our model, and derive a Gibbs sampling
inference scheme using the Chinese restaurant representation
of the nonparametric prior.

A. Chinese Restaurants

The nonparametric prior on the mixtures over topics for
users and items is motivated by its ability to allow the data to
dictate the optimal number of user and item groups, instead
of parameterizing these values beforehand. Using such a prior
makes it unnecessary to conduct extensive “tuning” experi-
ments for the number of topics, and is arguably conceptually
simpler and more elegant. We provide a brief background
of the ideas, with an emphasis on the intuition. For a more
rigorous introduction, we refer the reader to [14]. For the
purposes of exposition, we discuss the case of users being
defined as mixtures over user topics (i.e., a user is defined as
a mixture of various “moods”), and note that the item case is
completely symmetrical.

In the finite case, we can represent this mixture as a multi-
nomial distribution over the various user topics. The conjugate
prior for a multinomial distribution is the Dirichlet distribution,
sometimes seen as a “distribution over distributions” or a
distribution over finitely many points on the real line. If
we take the number of mixture components to infinity, then
the conjugate prior becomes a Dirichlet process (DP) [15],
a distribution over an infinitely fine-grained real line. In
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Fig. 1: The original M®F model, as proposed in [1].
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Fig. 2: Our proposed iM3F model with an HDP prior on the
user and item topics.

practice, we do not have a density defined for the infinite-
dimensional DP prior, so we define it indirectly via a sampling
scheme that is used to generate samples from this prior [14].
If we are interested in both the weights and the partitions,
then we use a stick-breaking construction to generate samples.
Otherwise, if we are simply interested in partition or cluster
assignments for the data, we can marginalize the mixture
weights and sample the assignments directly, through a process
known as a Chinese restaurant process (CRP) [16]. In our
situation, for every rating r,;, we can simply sample from the
CRP prior to ascertain which item and user topics were used
to generate the contextual bias for the rating.

A naive way to incorporate the CRP prior is to assume
that each user and item maintain their own priors over item
and user topicsﬂ Ideally though, we would like each user
or item to maintain their own mixture weights over topics,
but have a global set of topics that are shared across all
users and items. This requirement necessitates a hierarchical
Dirichlet process (HDP) prior [[17]] on the mixture components.
In the Chinese restaurant metaphor, we now use a Chinese
restaurant franchise (CRF) prior. Intuitively, this is a two-stage
Dirichlet process, where we have one process for a global set
of “dishes”, or topics that are shared by all users (or all items),
and another user-specific process for the table assignments
for individual customers (or ratings). The base distribution
for each user-specific CRP is the process corresponding to
the shared set of dishes, which forces each user (or item) to
maintain a distribution over the shared set of topics.

B. Generative Process

We present the generative process of the iM?F model,
depicted in Figure For the purposes of comparison, the
schematic view of the finite, parametric case is presented in
Figure |1} which corresponds to the original M3F model. First,
the hyperparameters for the latent user and item factors are

2Such a “separate” CRP model was implemented and evaluated, but the
results were worse than a parametric solution.

generated:
AY ~ Wishart(Wg, vg), AM ~ Wishart(Wy, vg)
u? ~ N (o, MoAY)™h), 1™ ~ N(po, (AoAM) ™)

We also generate the global probability measures that are used
to define a set of shared clusters for both the user and item
topics:

Go ~ DP(3, Hy), G1 ~ DP(j3, Hy)

Note that we assume the DPs associated with the item and
user global dishes have the same concentration parameter [3,
for the purposes of simplicity, and that the base measures are
discrete and uniform. Now that we have the hyperparameters,
we can sample the latent factor a,, for each user and the latent
factor b; for each item by sampling from a normal distribution.
Furthermore, since we have the global base measures, we can
sample the user- and item-specific mixture distributions from
DPs with discrete base measures Gy and Gy:

For each u € {1,...,U} :
ay ~ N(u”, (AY)™)
Gu NDP(’%GO)

For each j € {1,...,M}:
bj ~ N (uM, (AM)7h)

Once again, we assume the DPs associated with the item and
user-specific mixtures have the same concentration parameter
v. With a slight abuse of notation, we can generate the user
group and item group topic assignment indicator variables
from CRPs with appropriate base distributions:

For each rating 7, :
zgj ~ CRP(v,Gy,)
=M~ CRP(7,G))

where zf{J is the user cluster or topic that user u belongs

to when rating item j (user w’s mood at the time of rating
item 7). Similarly, z% is the item cluster or topic that item
7, when rated by user u, belongs to. Note that in practice the
topic assignments are sampled by marginalizing out the base
distributions G, and G}, and the only relevant parameter is -,
but for notational clarity we include the base measure. Letting
k = z% and i = szj we can generate cﬁ, the bias of user
u for item topic k, and similarly generate d’, the bias of a

specific item j for the user topic 7 as follows:
d;- ~N (i, o 3)
ey ~ N (., )
Finally, we have all the pieces in place to generate the rating:
Tuj ~ N( fj; +a, - bj,az)
where 8 = xo + ¢k +di.



C. Inference via Gibbs Sampling

Our sampling procedure is similar to the M3F sampling
scheme, except for the cluster assignment indicators 2V and
2™ as they are generated from a CRF (in iM>F) instead of a
multinomial with a Dirichlet prior.

We first sample the hyperparameters given the other vari-

ables in the model:

U
AYlrest\{u"} ~Wishart(W;' + ) (a, —a)(a, —a)")

u=1
AU
+ " :_ U(No —a)(po—a)") " w+U)
)
M
AM|rest\{p™} ~Wishart((W ! + Z(bj —b)(b; —b)T)
j=1
Ao M _ _
/\Oow(ﬂo —b)(po — b)) v + M)
€))

where in Equation a = % 25:1 a, and in Equation ,

b=4 Z;‘il b;. We then sample parameters ;¥ and p:

A VA
1Y [rest ~ N <W’ (AY (o + U))_1>

Aoko + Ejlvi1 b;

M
t~N
pJres ( No + M

L (AM(No +M))_1>

Then, we sam}gfle the item bias for a given user v and for
ie{l,..., K"}
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where V/, is the set of items rated by user u, and z,;; is an
selector variable which is 1 if the item topic assignment for
user u and item j is i. Note that K is conceptually infinite,
but in practice we go through the item clusters that exist in
the data thus far and generate c!,. Due to the symmetry of
the user and item biases, the user bias for an item j, with
i€ {l,...,KY} this time (K'Y is also conceptually infinite),
is:

M
dg —2,U L _ Gui b
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For notational convenience, let us define the empirical means
and variances of the values sampled through Equations [4] and
Blas (uc , oc) and (uq , 04) respectively.
Using the conjugacy property of the Gaussian and Wishart
distributions, we can sample the latent factors. We update a,,

and b; as follows:

For each u,
a,|rest ~N (AY*) 7 (AY Y +

M U
5 oy (g = o - ) |l
JEVL
(6)
For each j,
b |rest ~N (A7) (AMpM 4
M U
Z o 2a, (Tuj — X0 — ca"! — dj-“j> (AU~
u:jEV,,
(7

where in Equation 6l A" = AY + 7., 0~?b;b], and
in Equation (7, A}* =AM + Doujev, O Caudy.

Finally, we draw the topic assignment indicators, which is
where the HDP prior enters the picture. In the original M3F
model, user and item topic assignment indicators zuU] and z%
were sampled from a finite multinomial distribution, with the
hyperparameters of this multinomial sampled from a Dirichlet
prior multiplied by a likelihood term. In the CRF case, user
topic and item topic assignment sampling is done via a two-
stage process: sample the global dish assignments (per table)
available to the franchise, and then sample the local table
assignments (per customer) for a restaurant. Note that for the
problem, it is not the entire rating that is modeled by the
MMSB, but rather the rating residual, which is the rating
minus the score predicted by the latent factors. Therefore, let
the rating residual be defined as z,; = ry; — X0 — @y - bj.
Tying the restaurant analogy to our problem, customers are
ratings (or rather, rating residuals, as only the ¢ and d variables
are affected by the topic assignments), tables are user-specific
proportions over topics, and finally dishes are the topics
themselves, in that they represent the parameters used to
generate the data (residuals).

The corresponding Gibbs sampler thus has two sets of state
variables: the first being the table assignment indicator ¢ of
the observed residuals to tables, and the second is the dish
assignment indicator k associated with each table, which is
just a group of residuals. We sample the table assignments as
follows:

Plty; = t) oc NP ()

Pt =) x 7 (zi‘_l Pl ") My + P(xmcom)
Zk:l My +

where t corresponds to sampling a new table, 8 and v are
the hyperparameters for the CRPs corresponding to the dish
and table assignments respectively, N;” 7 is the number of
customers (rating residuals) associated with restaurant (user)
w sitting on existing table ¢ except the 5™ customer (i.e., except
the rating residual of user u for item 7), and Mj, is the number
of tables over all restaurants (users) on which the dish number




k is being served. In addition, p, k 7 is shorthand for the rating
residual empirical mean, computed over all residuals across all
users assigned to a table with dish &, except for the current
residual that we are sampling for. ¢ is the prior for the bias
or the residual term. When sampling a new table for a residual
Zyj, if we happen to sample a previously nonexistent table,
then we immediately sample a new dish for that table.
We sample dishes for each table as follows:

P(kur = k) oc M7 T Plauglug™) (8)
tyj=t
P(kur = k) < B[] P(auslco) )

tuj=t

where k corresponds to sampling a new dish, M N “! represents
the count of the tables assigned to dish k except the current
table that we are sampling a dish assignment for, and p Lt
is shorthand for the rating residual empirical mean, computed
over all residuals across all users assigned to a table with dish
k except all residuals on the current table we are sampling
for. Note that when computing the likelihoods, we compute
the joint likelihood over all the residuals associated with the
current table, since in the dish assignment we assign a dish

for a group of residuals.

When computing the probability of dish assignments as
per Equations [§] and [9] we used the MAP estimate in_the
predictive likelthood term for our experiments (Section [[V).
To be completely Bayesian, the actua? likelihood term is:

F (et rest) = /IP’(;f“t\{z k= Ko tury # 1))
11 P@uslug **)du;,

tyj=t

/ Wfﬁ P(2:]0)d

fe(* ia::”)ﬁ (5

(10)

an

0)2> do

12)

where in Equation X¢,;=t 18 the set of customers (residual

ratings) sitting on table ¢ (the table we are sampling the
dish for), and in Equation @ n is the number of customers
(residuals) sitting on table ¢, X = {@y/j/|ku jy =k, tuwj # t}
is set of all other residuals across all users that are associated
with dish or topic k (index by [) except those sitting on
our special table, and 6 = u;“t. In Equation we use
the assumption that the data (residual) is generated from a
Gaussian with a conjugate prior, and pp and 0% are defined as
before. From Equation[I2] we can say that the joint probability
over P(0,x;,,~¢) is a multivariate Gaussian, and marginalizing
over # yields a Gaussian as well. Using the laws of total
expectation, variance, and covariance, one can show that:

E[z;|X] = E[E[x]0, X]|X] = E[0|X] = pp
Var[z;|X] = Var[E[z;|0, X]|X] + E[Var[z;|0, X]|X]
= o’ —|—0123
Cov[z;,z;|X] = E[Cov[z;,x;|0, X]|X] +
Cov[E[z;|6, X],E[z;]0, X]|X]

Name Ratings Users Movies  Sparsity
ml100k 100,000 943 1682 6.3%
mllm 1,000,000 6040 3952 4.2%

TABLE I: MovieLens Dataset Statistics. Sparsity refers to the
percentage of non-zero elements in the matrix.

= 0+ Cov[0, 0]
= Var[f] = 0%

Thus, we can write the predictive likelihood term as:

T

1
(0, <elrest) o« ‘le ex p( e )
> i)

where p is an n-element vector with all entries equal to
wp (the posterior mean), and > is the covariance matrix for
which all diagonal elements are equal to o + 0% and all off
diagonal elements are equal to o%.

We can also analytically obtain the determinant of the
covariance matrix . : || = 02" + no?(" Vo2, where n is
the dimensionality of the matrix or the number of customers
sitting at the table whose dish we are sampling for.

(13)

IV. EXPERIMENTS

The proposed iM®F model was evaluated on the MovieLens
and DBLP datasets. On the MovieLens set, we broadly divided
our results into internal comparisons, meaning hyperparameter
variation experiments, and external comparisons, meaning
the improvements vis-a-vis M3E. For the DBLP dataset, we
present final numbers in comparison to M3F. While previous
work evaluated their approaches on the Netflix Prize dataset,
we are unable to do so due to the unavailability of the data.
All experiments were run on a quad-core 2.5 GHz Linux
machine with 8GB RAM, and the implementation was done
in MATLAB and C.

A. Datasets

The MovieLen dataset is a movie rating set, similar to
those used in the Netflix prize. We used two versions of
the datasets (ml100k and mllm) that contain 100,000 and
1 million ratings respectively. Table [I| shows some summary
statistics.

In both datasets, each user has rated at least 20 movies, with
each rating being an integer from 1 to 5. When comparing
the performance of different models, we measured the Root
Mean Square Error (RMSE) on a held-out test set that is
generated using a leave-one-out strategy: for each user, one
random rating is chosen out of her movie ratings and put into
the test set; the rest remain in the training set. We performed
this random split twice, and all results for the MovieLens
experiments are averaged over the two splits.

3http://www.grouplens.org



We have also extracted a publication dataset from the latest
DBLP XML dateﬂ as of January 6, 2013. The extracted co-
authorship dataset can be made publicly available for com-
parison purposes. The dataset consists of around 4.5 million
ratings; each rating is between two authors, and is simply a
count of the number of papers that they have co-authored. For
the purposes of our experiments, we selected the first 2 million
ratings between 1 and 10, which consisted of 644,256 authors,
and split the dataset into training and test components such that
every author is represented at least once in the test set. In this
dataset, the interpretation of the topics is akin to clusterings
of researchers based on a specific sub-field, or geographical
location.

B. Internal Comparisons

We use the ml100k dataset with 100 sampling iterations
to look at how varying the hyperparameters 5 and ~ affect
the final number of topics estimated from the data. The larger
mllm dataset with 500 sampling iterations was used to evalu-
ate RMSE for both the hyperparameter variation experiments
and the final comparison with M3F. When comparing against
M?3F, we use the hyperparameter settings that yield the best
performance as in the original paper [1]:

o Number of user topics KY: 2

o Number of item topics K: 1

o Latent factor dimensionality D: 40
As we do not alter the latent factor terms, we maintain D = 40
for the iM3F model. The impact of our CRF concentration
parameters 3 and -y, which correspond to the CRPs of the dish
and table processes respectively, are presented in Figure 3] In
Figures [3a]to[3c| we show the final topic numbers after running
100 iterations of the Gibbs sampler for the CRF model as we
varied v and 3. The overall trend is as expected, with higher
[ and ~ values resulting in more topics. Figure 4| presents the
train and test set RMSE on mllm for certain settings of the
concentration parameters 3 and . The lowest training RMSE
was obtained when v = 1,3 = 0.1 (0.6904), with KU =
94.5 and K™ = 100, which we refer to as ‘TrainBest’ in
subsequent exposition. The lowest test RMSE was when v =
0.1,8 = 0.1 (0.7718), i.e., *TestBest’, with KY = 64, and
KM = 7750
C. iM3F and M3F

We then compared our CRF iM®F model with the M>F
implementation of [1]]. For the mllm data, the M3F model
also shows a better fit to the data, and achieves a much lower
train RMSE of 0.60. However, in the test set comparison in
Figure [5| both of our CRF models outperformed M3F after 500
rounds of Gibbs sampling. The final test RMSE for ‘TestBest’
(our best result) was 0.7718, while for the M3F model it was
0.778ﬂ the difference being statistically significant according

“http://dblp.uni-trier.de/xml/

Sfractional values are obtained due to averaging between the two ML1M
splits

fnote that this is different than the result on the same dataset published
in previous work, however, we were unable to replicate the previous number
despite running the original implementation directly.
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Fig. 3: Impact of hyperparameters on CRF model
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Fig. 4: RMSE comparison of various iM3F models.

to the paired t¢-test. To put this improvement in context, the
test set gain of 0.0065 is more than twice the improvement
that M3F achieved over its baseline, BPMF, the difference
between M3F and BPMF being the addition of the MMSB to
model the contextual bias. ‘TrainBest’ achieved a test RMSE
of 0.7750, also an improvement greater than the M3F-BPMF
improvement.

On the DBLP dataset, for M3F we carried out an extensive
three-way grid search, varying the number of latent factors
(with the values {5,10,15,20,25,30}), and user and item
topics (with the values {1,2, 4,8, 16,32}), and found the best
configuration to be D = 25 KV = 2, KM = 1. The very
fact that we had to implement an extensive grid search for
these parameters already indicates the potential advantages of
the nonparametric approach. For the iM3F model, guided by
previous results we set v = 0.1 and tried 5 = 0.1 and 1.

IM3F vs. M3F Test RMSE
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RMSE

‘‘‘‘‘
‘‘‘‘‘‘‘‘

0.75 L L L L L L L L L
50 100 150 200 250 300 350 400 450 500

Iterations

Fig. 5: Test RMSE Comparison of iM3F and M3F model on
the mllm dataset.

Model Train RMSE Test RMSE KU KM
M3F 0.935 1.149 2 1
iM3E, v = 0.600 1.075 6 5
0.1,8=0.1

iMF, v = 0.544 1.049 23 27
01,8=1

TABLE II: Final train and test set RMSE results on the DBLP
dataset. Both iM3F models obtain better train and test set
RMSE.

The final results are presented in Table [II} along with the final
number of user and item topics. It is interesting to note that
the number of user and item topics that achieved the best
test RMSE in iM?F is quite a bit higher than the optimal
parameters for M>F.

The performance gain achievable through iM®F comes at
a cost, in that Gibbs sampling with nonparametric models is
computationally more expensive than with parametric ones,
as one always has to consider growing the number of clusters
in light of more data. However, we note that recent efforts
that develop exact, distributed MCMC procedures for Dirichlet
process-based models [18] can easily be applied in our sce-
nario to accelerate Gibbs sampling, which is a simple solution
for today’s multicore computers. We emphasize however, that
we have not added additional parameters to the model; rather,
KUY and K™ have been replaced with a pair of hyperparam-
eters, 5 and +y, providing the model more flexibility to learn.

V. FUTURE WORK & CONCLUSION

With the CRF prior, it is also possible to experiment with
variants based on the nature of the data itself. For example,
reciprocal datasets, wherein users rate other users ratings
are based on mutual compatibility, are becoming increasingly
more widespread, e.g., academic publication databases like our



DBLP dataset or the Microsoft Academic Scholar database,
or online dating websites like eHarmony or OkCupid. In
the future, we would like to model the co-authorship dataset
released (and other similar datasets) in more direct ‘relational’
manner. The bidirectional ratings need to be combined some-
how to incorporate the principle of reciprocity in these ratings.
Handling such modifications is straightforward in our work,

e.g., Figure [6]

W, , v,

Ho s A

dy, 0y

Fig. 6: The iM3F model modified to handle reciprocity. We
have a single user topic HDP prior shared on both sides of the
rating.

In this paper, we designed and implemented an important
addition to the general field of probabilistic matrix factor-
ization. We proposed a nonparametric prior to the mixed
membership matrix factorization model, and in the process
derived a Gibbs sampler using a Chinese restaurant franchise
representation. We then validated our model by decreasing
RMSE on the MovieLens 1M dataset compared to M>?F’s
RMSE, a much more significant improvement than what had
been done previously in the literature. We also extracted
a co-authorship database from DBLP, and showed RMSE
improvements over M3F there as well.

What the results suggest is that when utilizing and incor-
porating notions of mixed membership topic modeling into
probabilistic matrix factorization, a nonparametric prior is a
key assumption to make and model, let alone the convenience
factor of not having to perform a grid search to find parameter
values.
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