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Abstract—Inferring causality using longitudinal observational
databases is challenging due to the passive way the data are
collected. The majority of associations found within longitudi-
nal observational data are often non-causal and occur due to
confounding.

The focus of this paper is to investigate incorporating infor-
mation from additional databases to complement the longitudinal
observational database analysis. We investigate the detection of
prescription drug side effects as this is an example of a causal
relationship. In previous work a framework was proposed for
detecting side effects only using longitudinal data. In this paper
we combine a measure of association derived from mining a
spontaneous reporting system database to previously proposed
analysis that extracts domain expertise features for causal anal-
ysis of a UK general practice longitudinal database.

The results show that there is a significant improvement to
the performance of detecting prescription drug side effects when
the longitudinal observation data analysis is complemented by
incorporating additional drug safety sources into the framework.
The area under the receiver operating characteristic curve (AUC)
for correctly classifying a side effect when other data were
considered was 0.967, whereas without it the AUC was 0.923
However, the results of this paper may be biased by the evaluation
and future work should overcome this by developing an unbiased
reference set.

I. INTRODUCTION

The current gold standard methodology for inferring
causality between drugs and health outcomes is to conduct a
randomised clinical trial [1]. Methods have been developed for
identifying associations between drugs and health outcomes
using longitudinal observational data but due to the passive
way that data are collected, confounding is a common occur-
rence [2]. Confounding is when an association between two
variables is identified but the association is caused by a third
unobserved variable being associated to both of the variables.
Due to the problem of confounding, relationships between
drugs and health outcomes that are detected in longitudinal
observational databases often require further analysis before
causality is confirmed. This additional analysis is often in
the form of experimentation via randomised trails. This is
costly, sometimes unethical and cannot always be implemented
[3]. This issue has motivated an active field of research
into methods that can identify causal relationships without
requiring additional experimentation.

In previously work, researchers have investigated using
more advanced supervised data mining methods to identify
causality in longitudinal observational databases. Examples
include creating constrained Bayesian networks [4] or creating
features based on domain expertise in causal inference [5]. In
the later work, the authors proposed generating attributes based
on the nine Bradford Hill causality considerations [6] that
are often used by epidemiologists when manually determining
causality between drugs and health outcomes. Training a
classifier to distinguish between causal and non-causal rela-
tionships using five of the Bradford Hill causality consideration
proposed attributes lead to a lower false positive rate that
previously obtained using unsupervised methods [5] and was
suitable for causal inference with big data. Unfortunately the
false positive rate was still higher than desired, motivating
further development of the idea by incorporating more of the
Bradford Hill causality considerations. In this paper we in-
vestigate incorporating the consistency consideration from the
Bradford Hill causality considerations and determine whether
adding this consideration improves the classification.

The consistency consideration referred to whether an as-
sociation is found consistently across diverse and disperse
sources of data. If a drug truly causes a specific health
outcome, then the association between the drug and health
outcome should be found in different sources of data. When
an association is only found in one data source, then there
is a good chance that it may just have occurred by chance
or due to some form of bias in that way the data were
collected. To incorporate the consistency consideration into
the causal inference model perviously developed we calculate
a measure of association using the USA’s Food and Drug
Administrations Adverse Event Reporting System (FAERS)
data [7] to complement the analysis applied to a UK general
practice database known as The Health Improvement Network
(THIN) database (www.thin-uk.com) [8].

The continuation of this paper is as follows. In section
II we discuss the importance of incorporating expert domain
knowledge for successful data mining and describe the existing
causal inference method based on the Bradford Hill consider-
ations. In section III we describe the data used throughout this
paper and the various measures used to evaluate the causal
inference method. This is followed by the new framework that
incorporates the consistently consideration in section IV. In
section V we present the results of the analysis on a reference
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set and discuss these results. The paper concluded with section
VI.

II. BACKGROUND

There is debate about whether it is domain expertise or
machine learning skills that are the most important factor for
successful data mining. It is a generally accepted that domain
expertise is important in all aspects of the knowledge discovery
process [9]. Making use of domain expertise to understand the
problem enables the data miner to extract suitable features
and pre-process the data in a way that enables classifiers to
distinguish between classes. With well-designed and relevant
features, it is possible that the classes are separable in the
feature space. In this situation, any classifier should perform
reasonably well. However, if the features are unsuitable then
the majority of classifiers will perform poorly and advanced
techniques are required. Therefore, whenever possible, it is
important to incorporate domain expertise into the feature
extraction to simplify the classification task.

In [5] the authors incorporate causal inference domain
expertise to extract features that could be used as input into
training a classifier to identifying causal relationships between
drugs and health outcomes. The features were extracted based
on Bradford Hill’s causality considerations [6]. These are a set
of nine considerations that are often used to identify a causal
relationship such as a drug’s side effects. The considerations
are:

i) Association strength: A measure of dependancy
between the drug and health outcome.

ii) Temporality: Does the drug occur before the
health outcome or the health outcome before the
drug?

iii) Specificity: Is the drug only associated to one
health outcome and the health outcome only as-
sociated to one drug?

iv) Consistency: Is there evidence of the association
in difference sources of data?

v) Biological gradient: Is there a correlation between
the dosage of the drug and the occurrence of the
health outcome?

vi) Experimentation: Does stoping the drug stop the
health outcome and restarting the drug restart the
health outcome?

vii) Coherence: Does the drug causing the health
outcome make sense or would it contradict known
knowledge?

viii) Plausibility: Is the health outcome a possible side
effect of the drug (e.g. is there knowledge that
the chemical structure may interact with some
biological pathway to cause the health outcome)?

ix) Analogy: Is a similar drug know to cause the
health outcome or the drug known to cause a
similar health outcome?

In previous work, the classifier was trained to predict
whether a drug and health outcome pair correspond to an
adverse drug reaction based on the extraction of their features
from the longitudinal observational data. The extracted features
corresponded to the drug and health outcome relationship’s as-
sociation strength, temporality, specificity, biological gradient

and experimentation. This framework considering these five
Bradford Hill considerations resulted in AUC values ranging
between 0.883-937 [5]. The analogy consideration was not
used to create features, but was indirectly incorporated by
applying a supervised learning technique. The knowledge
of drug and health outcomes that are known to correspond
to adverse drug reactions or non-adverse drug reactions are
utilised by the classifier to enable it to learn to predict whether
a drug and health outcome pair correspond to an adverse
drug reaction based on their extracted Bradford Hill derived
features.

The classifier performed well and it was shown that includ-
ing features based on Bradford Hill’s specificity, biological
gradient and experimentation considerations rather than just
association strength and temporality significantly improved the
ability to identify adverse drug reactions. Unfortunately, due to
restricting the analysis to a single database in previous work, it
was not possible to extract features based on the consistency
consideration. The plausibility and coherence considerations
were also not previously used as these require expert knowl-
edge about the chemical structure of the drug and known
biological pathway interactions. However, the plausibility and
coherence considerations could be included in future work by
incorporating chemical structure data.

In this work we propose a way of combining the sponta-
neous reporting system databases with the longitudinal obser-
vational database analysis and can therefore create features
corresponding to the consistency consideration. It is of in-
terest to determine whether including a different data source
can improve the framework’s adverse drug reaction detecting
performance. The FAERS database is partitioned by year and
quarter. It would be possible to extract a measure of association
for each drug and health outcome within the FAERS for each
year from 2010 to 2013. A drug and health outcome with
a strong association in the THIN data and an association that
occurs frequently across the FAERS records would be evidence
of the drug and health outcome corresponding to an adverse
drug reaction.

III. MATERIALS

A. THIN

The THIN database is a longitudinal observational database
containing general practice data from the UK. The data
are extracted directly from the local databases of the 587
participating general practices and are then validated and
anonymised. The complete database contains over 3.6 million
active patient and over 12 million patients in total. For each
patient their year of birth and gender are recorded. There is also
additional demographic data often recorded. While patients are
registered at the general practice and it is participating, any
medical events (e.g., diagnosis, symptom, laboratory test or ad-
ministration event) that the patient informs the general practice
of is recorded into a medical table with a corresponding date
of recording. Any drugs that are prescribed during this period
are recorded into a therapy table along with the date of the
prescription. The THIN database contains over 750 million
medical records and over 1 billion therapy records. Screen
shots of the therapy, patient and medical tables contained in
THIN are displayed in Fig. 1 - Fig. 3.



Fig. 1. A screen shot of the THIN therapy table

Fig. 2. A screen shot of the THIN patient table

The medical events are recorded via a clinical encoding
consisting of 5 alphanumerics/dot characters known as a
READ code [10]. Each READ code is linked to a description
string detailing the medical event. The level of a READ code
x = x1x2x3x4x5 is defined as L(x) = max{i : xi 6= .}.
The READ codes have a hierarchal structure with child
READ codes corresponding to the same medical event as
their parents but with more detail, see Fig. 4. A READ code,
x = x1x2x3x4x5, is the parent of another READ code,
y = y1y2y3y4y5 if the level of READ code x is one less then
the level of READ code y and xi = yi,∀i ∈ N ≤ L(x). For
example, the READ code ‘A....’ corresponds to the description
‘Infection’ and is the parent of the READ code ‘A1...’ corre-
sponding to ‘Tuberculosis’, which is the parent of the READ
code ‘A11..’ corresponding to ‘Pulmonary tuberculosis’. The
drug prescriptions are recorded into the THIN database via a
multilexeid code. The multilexeid code has a corresponding
string detailing the drug’s generic name and dosage.

In this paper we use a subset of the THIN database. The
subset consists of approximately half of the patients within the
whole database but contains the complete medical and therapy
records for these patients. A subset of the THIN database is
used in this research as this enables us to develop novel ana-
lytical techniques that will later be evaluated on the remaining
THIN data. The potential adverse drug reactions identified
during the research on the first half of the THIN database
can be evaluated with standard epidemiological analysis on
the second half of the database.

There are some issues with the THIN database that can bias
analysis. One known problem is that patients can register at a
new general practice at any point in time. This can cause issues

Fig. 3. A screen shot of the THIN medical table

Fig. 4. An example of the hierarchical structure of the READ codes

with the recording of their medical events, as it is common for
newly registered patients to inform their new doctor of existing
illnesses. Due to them being at a new practice, the doctor will
record these existing illnesses but the date will be the date
they informed the doctor of these illnesses rather than the date
that the illness first occurred. Previous research has shown that
the probability of patients informing their doctors of existing
illnesses is reduced after being at the practice for 12 months
[11]. Therefore, we ignore the first 12 months of data for a
newly registered patient.

B. FAERS

The FAERS is a spontaneous reporting system (SRS)
database collect in the USA, see Fig. 5 for the database
structure of the FAERS. SRS databases contain records of
suspected adverse drug reactions. Medical health practitioners
or the consumers, such as patients, can submit a record
in a spontaneous reporting system if they expect they have
witnessed or experienced an adverse drug reaction. The records
therefore contain a link between a drug or set of drugs and a
medical event. The data are stored for each year and quarter.
In this paper we used the FAERS data from 2010 Q1 - 2013
Q4. We combined Q1-Q4 reports each year, so we had four
datasets, the reports recorded in years 2010, 2011, 2012 and
2013.

The FAERS data contain seven tables:

• Therapy- contains the start and end day of the pre-
scription

• Drug - contains drug name and dosage information



Fig. 5. The structure of the old FAERS database from [12]. The ISR has
now been replaced by the primaryid and caseid

• Reaction - contains the suspected adverse event

• Outcome - contains the outcome of the suspected
adverse drug reaction

• Demographics - contains details about the patient

• Indication - contains the cause of the patient taking
the prescription

• RPSR - contains information about the person submit-
ting the report

The drug table contains details of the drug suspected to
have caused an adverse drug reaction. The details include the
drug’s generic name in upper case, the drug dosage information
and the role of the drug within the report (e.g. is it a primary
suspect or concomitant). The health outcome suspected to
have been caused by an adverse drug reaction is recorded
into the reaction table. The column ISR, corresponding to
independent safety report, historically linked the drug and
reaction table records, however, in more recent files this has
been replaced by caseid and primaryid. Within the reaction
table, the health outcome is recorded via a string detailing the
health outcome. The string comes from a coding system known
as the Medical Dictionary for Regulatory Activities (MedDRA)
[13]. This coding system was developed specifically for drug
safety purposes.

As the THIN and FAERS have different recording codes
for the medical events and drug prescriptions we will combine
the records using string matching as both databases contain
the medical event descriptions and generic drug name strings.

C. SIDER

The Bradford Hill based framework for discovering adverse
drug reactions requires training a classifier to distinguish be-
tween adverse drug reactions and non-adverse drug reactions.
To train such a classifier requires a training set of labelled
data. This means we need to know a set of drug and health
outcome pairs where the drug is known to cause the health

outcome and a set of drug and health outcome pairs where the
drug is known to not cause the health outcome.

To find a set of drug and health outcomes where the
drug is known to cause the health outcome we used the
online side effect resource known as SIDER [14]. SIDER
contains drug and health outcome classifications. A search
can be implemented to find the set of health outcomes that
are indications to a specific drug or known side effects. The
authors used text mining to extract the drug packaging labelled
adverse drug reactions and indications in addition to extracting
information from public documents. SIDER uses the medDRA
coding system.

D. Non adverse events

To find a set of drug and health outcome pairs where the
drug does not cause the health outcome we identified health
outcomes that do not correspond to an actual illness or cannot
be caused by a drug acutely. This was accomplished due to the
hierarchal nature of the READ codes. We found parent READ
codes such as ‘family history’ or ‘cancer’ or ‘history of’ and
selected all the child, grandchild or great grandchild READ
codes. These READ codes were considered not possible to be
an acute adverse event. Any drug and READ code pair where
the READ code was from the set of Non adverse events was
deemed impossible to correspond to adverse drug reaction and
could therefore be classed as a non-adverse drug reaction.

E. Combining the Data Sources

The SIDER and FAERS data are readily combined as
they use the medDRA coding system. Combining the THIN
database presents a challenge as the medical events are
recorded via the READ code system. In this work we com-
bined THIN, FAERS and SIDER by exact non-case sensitive
string matching. For each of the READ codes in THIN the
corresponding description was matching with the medDRA
code description. For example, if in THIN the READ code’s
description was ’Vomiting’, then we matched this record
with any SIDER and FAERS record with a medDRA code
description of ’vomiting’. This may result in many unmatched
THIN and FAERS/SIDER records that actually correspond to
the same health outcome but have non-generic descriptions so
the string descriptions are not exactly the same.

F. Software

The software used in this study was SQL to store and pre-
process the data and the open software R [15] to perform the
analysis. The classification was performed using the ‘caret’
library [16] and the evaluation was performed using the
‘pROC’ library [17].

IV. FRAMEWORK INCORPORATING CONSISTENCY

A. Data Creation

The Bradford Hill framework requires extracting features
from the THIN and FAERS databases for a collection of drug
and health outcome pairs that are known to correspond to
adverse drug reactions (using SIDER) or cannot correspond
to an adverse drug reaction (due to selecting health outcome
having a clear non-drug cause).



1) Finding the labels: The first step is to find the drug
and health outcome pairs where there seems to be a temporal
association between the drug and health outcome in THIN and
a true label is known. Given a selection of drugs, for each drug
all the records of patients being prescribed the drug for the first
time are extracted. A drug and READ code pair is created for
each READ code that was recorded within a month of the
first prescription of the drug for three or more patients. The
set containing all these pairs is P = {pi}. For a drug and
READ code pair pi ∈ P , we then calculate the number of
prescriptions of the drug where the READ code occurred in
the month before the drug, Bi, and the number of prescriptions
of the drug where the READ code occurred in the month after
the drug, Ai. All the drug and READ code pairs where the
READ code occurred more often before the prescription were
excluded, P̂ = {pi ∈ P : Ai/Bi > 1}. The remaining drug
and READ code pairs are the ones that appear to have an
association in THIN.

Where possible these pairs are then labelled as correspond-
ing to a known adverse drug reaction or non-adverse drug
reaction. This was accomplished by labelling any pair with
a READ code from the non adverse events set detailed in
section III-D as a non-adverse drug reaction. For the remaining
unlabelled pairs, the READ code’s description was matched
with the known SIDER listed adverse drug reactions of the
drug and any pair with a match was labelled as a known
adverse drug reaction. The unlabelled pairs were discarded.
Formally, the label for pi ∈ P̂ is

yi =


1 if pi is a known side effect on SIDER
0 if the READ code of pi is

not a possible adverse event
−1 the label is unknown

(1)
the drug and READ code pairs of interest are then, P̄ = {pi ∈
P̂ : yi ≥ 0}. This resulted in a set of 8158 labelled drug and
READ code pairs, with 733 labelled as known adverse drug
reactions and 7425 labelled as non-adverse drug reactions.

2) Extracting THIN features: For a labelled drug and
READ code pair, pi, we extracted the association strength,
temporality, specificity, experimentation and biological gradi-
ent features from the THIN database. The extracted association
strength features used various measures of risk. The risk of a
READ code during a defined time period for a set of patients
is simply the number of patients who experience the READ
code during the define time period divided by the number of
patients. The risk difference is the risk of the READ code
during the month after the prescription for the one set of
patients minus the risk of the READ code during the month
after the prescription for a different set of patients. The risk
ratio is the risk of the READ code during the month after
the prescription for the one set of patients divided by the risk
of the READ code during the month after the prescription
for a different set of patients. The odds ratio is odd of the
READ code occurring during the month after the prescription
for the one set of patients divided by the odds of the READ
code occurring during the month after the prescription for a
different set of patients. The extracted features for the drug
and READ code pair pi are;

x1: The risk difference comparing the patients pre-
scribed the drug and prescribed any other drug.

TABLE I. THE CONTINGENCY TABLE OFTEN USED FOR ANALYSING
SRS DATA SUCH AS FAERS.

Health outcome m Other Health outcome
Drug n a b

Other Drug c d

x2: The risk ratio comparing the patients prescribed
the drug and prescribed any other drug.

x3: The odds ratio comparing the patients prescribed
the drug and prescribed any other drug.

x4: The risk difference comparing the patients pre-
scribed the drug and prescribed any other drug
but with an additional prescription filter. The filter
removed prescriptions from the THIN data of
any drug where a drug from the same family
was prescribed in the previous 12 months. The
risk difference was then calculated on the filtered
THIN data.

The temporality feature, x5, is Ai/Bi. The specificity
features are:

x6: the average age of the patients prescribed the
drug who have the READ code recorded within a
month of the prescription divided by the average
age of the patients prescribed the drug.

x7: the gender ratio (males/females) of the patients
prescribed the drug who have the READ code
recorded within a month of the prescription di-
vided by the gender ratio of the patients prescribed
the drug.

x8: the READ code level (L(p′is corresponding READ
code).

The biological feature, x9 , is the average drug dosage only
considering the patients prescribed the drug who have the
READ code recorded within a month of the prescription
divided by the average drug dosage when considering all the
patients prescribed the drug. The experimentation feature, x10

, calculates how many patients experience the READ code
within a month after a prescription of the drug and not during
the month before for two or more distinct prescriptions of the
drug divided by the number of patients who have a distinct
repeat prescription of the drug.

3) Extracting consistency feature: To extract features cor-
responding to the consistency consideration we calculated the
measure of association between a drug and health outcome
for each year of FAERS data. The risk difference was used to
determine a measure of association for each year of FAERS
data, using the values in a Contingency table, see Table I. The
risk difference calculation for drug n and health outcome m is

RDmn = [a/(a + b)]− [c/(c + d)] (2)

The consistency feature, x11 , was then calculated as the
number yearly FAERS datasets where the drug and health
outcome had a positive risk difference. For example, if the risk
difference for a specific drug and health outcome was 0.4 when
considering the 2010 FAERS data, 0.1 for the 2011 FAERS
data, -0.05 for the 2012 FAERS data and the health outcome
was not recorded with the drug in 2013, then x11 = 2.



TABLE II. THE THIN AND FAERS DATA WERE COMBINED WHEN THE OUTCOMES AND DRUGS MATCHED EXACTLY.

THIN Outcome THIN Drug FAERS Outcome FAERS Drug Match
Nausea Ciprofloxacin NAUSEA Ciprofloxacin Yes

CO Nausea Ciprofloxacin NAUSEA Ciprofloxacin No
HO Nausea Ciprofloxacin Nausea Ciprofloxacin No

Nausea Ciprofloxacin NAUSEA Cipro No
Nausea NED Ciprofloxacin NAUSEA Ciprofloxacin No

To combine the consistency feature for a drug and health
outcome coded in medDRA with the THIN features we
matched the READ code’s description string with the FAERS’s
medDRA description string and the drug strings in THIN and
FAERS. Table II illustrates the matching implemented.

B. The complete data

This resulted in a vector of features xi ∈ R11 for each
labelled drug and READ code pair, pi ∈ P̄ . Therefore the
labelled data corresponding to pi ∈ P̄ are X = {(xi, yi)}. For
the 23 drugs investigated there were 8158 drug-READ code
pairs that could be labelled, with 733 labelled as an adverse
drug reaction.

C. Evaluation

The Bradford Hill framework’s classifier is evaluated by
finding how often the classifier correctly classifies a drug and
READ code pair as corresponding to an adverse drug reaction.
The labelled data set, X = {(xi, yi)}, was partitioned into 80%
training/testing XT and 20% validation XV . The classifier is
trained on XT using 10-fold cross validation to learn a function
f : R10 → {0, 1} that maps a drug and READ code pair’s
Bradford Hill based extracted features into a class of adverse
drug reaction or class of non-adverse drug reaction.

The trained classifier is then applied to the extracted
features of each drug and READ code pairs in the validation set
to predict their classes, f(xi), (xi, yi) ∈ XV and the prediction
is compared with the truth. The classification is,

• TP when f(xi) = 1 and yi = 1

• TN when f(xi) = −1 and yi = −1

• FP when f(xi) = 1 and yi = −1

• FN when f(xi) = −1 and yi = 1

The sensitivity and specificity of the classifier are,

Sensitivity = TP/(TP + FN)

Specificity = TN/(FP + TN)

The receiver operating characteristic, ROC, curve is then
drawn by plotting the sensitivity against one minus the speci-
ficity. A common measure of performance for a classifier is the
area under the ROC curve (AUC) [18]. As we are interested
in a classifier that can identify adverse drug reactions without
incorrectly classifying many non-adverse drug reactions, we
also calculate the partial AUC between the specificity values
0.8-1, denoted pAUC[0.8,1]. The AUC of two classifier can
be compared using the Delong method [19] and we use
this technique to determine significant differences at a 5%
significance level.

Fig. 6. The ROC plots for the Bradford Hill framework classifier not including
the consistency feature (red), the Bradford Hill framework classifier including
the consistency feature (blue) and the number of years that the FAERS data
had a positive risk difference for the drug and READ code pair (green).

TABLE III. THE AUC VALUES FOR THE DIFFERENT CLASSIFIERS.

Method AUC pAUC[0.8,1]

Framework incorporating the consistency feature 0.967 0.1794
Framework excluding the consistency feature 0.923 0.1498

The consistency feature alone 0.807 0.1299

V. RESULTS & DISCUSSION

The ROC plots for the Bradford Hill framework’s classi-
fier incorporating the consistency feature, the Bradford Hill
framework’s classifier excluding the consistency feature and
just using the consistency feature are presented in Fig. 6.
The AUC and pAUC[0.8,1] values are displayed in Table
III. It can be seen that incorporating the consistency feature
significantly increased the AUC, 0.967 compared to 0.923
without the consistency feature (p-value 1.02 ×10−5). This
shows that incorporating the consistency feature increased
the frameworks ability to detect adverse drug reactions. This
results also suggests that performing analysis by combining
different sources of data can lead to improved results in health
informatics.

The performance of just using the measure of consistency
of an association between and drug and READ code pair
over the years 2010-2014 within the FAERS data resulted



TABLE IV. CONSISTENCY ATTRIBUTE DISTRIBUTION ACROSS THE
CLASSES.

x11 = 0 x11 = 1 x11 = 2 x11 = 3 x11 = 4
yi = 0 7391 15 6 5 8
yi = 1 272 68 83 111 199

in an AUC of 0.807. The plot shows that the measure of
consistency was able to identify many known adverse drug
reactions, with a high sensitivity when the specificity is also
high. However, there is a point in the specificity where the
measure of consistency is no longer able to identify adverse
drug reactions. This shows that the FAERS data can be used to
identify adverse drug reactions accurately but is limited in that
it cannot identify all the adverse drug reactions. This highlights
the requirement of performing analysis on the combination of
longitudinal healthcare and SRS data to detect adverse drug
reactions.

The results suggest that the consistency feature extracted
from the FAERS data is able to aid the classifier to detect ad-
verse drug reactions that are not reported in the FAERS, as the
framework incorporating the consistency feature outperformed
the framework excluding the consistency feature and relying
on the consistency alone. We suspected that the inclusion
of consistency feature may bias the classifier due to strong
correlation between the number of positive risk difference
values across the years 2010-2014 and the drug and READ
code pair corresponding to an adverse drug reaction. However,
this was not the case, even though the consistency feature was
highly skewed between the classes, see table IV. Over half of
the ADRs could be identified, with a small false positive rate,
using the signalling criteria of x11 ≥ 2, however the THIN
features were required to be able to signal the remaining ADRs
that are reported less often in the FAERS data.

One limitation of this research is the potential bias of
the data combination and labelling. For example, the labels
and consistency feature may highly correlated due to bias
as the SIDER labels being derived from drug packaging and
public documents that may have considered the SRS data. The
reference set of known non-adverse drug reactions also caused
a bias as it is very difficult to know whether a health outcome
is definitely not an adverse drug reaction to a specific drug.
The reference set drug and health outcomes corresponding to
non-adverse drug reactions were selected due to the health
outcome having a clear non-drug cause. Therefore the drug and
health outcomes corresponding to non-adverse drug reactions
in the reference set are extremely unlikely to be recorded as
a suspected adverse drug reaction in the FAERS database.
Both of these issue result in bias of the consistency attributes
for the reference set used. As a consequence the trained
classifier is likely to predict any drug and health outcome
pair that is recorded in FAERS, and therefore probably likely
to have a consistency feature value greater than 0, as an
adverse drug reaction. However, many of the FAERS records
may not correspond to an actual adverse drug reaction. In
future work it is important to improve the reference set by
including drug and health outcome pairs that are known to
correspond to non-adverse drug reaction but are still plausible
(i.e., include health outcomes that are common illnesses such
as ‘vomiting’ or ‘rash’). Evaluating the framework on such a
reference set will result in a less biased measure of how well
the framework incorporating the Bradford Hill consistency

consideration performs.

The framework was also limited by the string matching
between the THIN READ code descriptions and the medDRA
descriptions. Many of the known adverse drug reactions may
not be labelled in the data due to the READ code description
slightly differing from the medDRA description and some of
the drug and READ code pairs may have missing consistency
feature values due to problems with the string matching. If a
natural language processing method was developed for map-
ping the READ code and medDRA description (or any medical
terminology coding system) then it would enable different
sources of data to be readily integrated and analysed together.
This is likely to help researchers extract new knowledge.

The framework incorporating the Bradford Hill association
strength, temporality, consistency, specificity, biological gradi-
ent and experimentation has a high performance but this may
be increased by including the plausibility and coherence con-
siderations. Other sources of data have been used to identify
potential adverse drug reactions, including chemical structure
data. It may be possible to combine more sources of data,
such as chemical structure databases, to cover all the Bradford
Hill considerations and developed a framework that can detect
any adverse drug reaction with an even higher specificity and
sensitivity.

VI. CONCLUSION

In this paper we have proposed a way to incorporate a
measure of how consistent an association between and drug
and health outcome is by combining different forms of drug
safety data. This increased the existing Bradford Hill based
causal inference framework’s ability to identify adverse drug
reactions in longitudinal observational data. The results show
that incorporating features derived from the FAERS database
significantly improved the classifiers ability to distinguish
between adverse drug reaction relationships and non-adverse
drug reaction relationships.

In future work a new reference set could be developed to
evaluate the framework fairly. It would also be of interest to
incorporate chemical structure databases to include features
based on the plausibility and coherence Bradford Hill consid-
erations.
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