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Abstract—Probabilistic graphic model is an elegant frame-
work to compactly present complex real-world observations by
modeling uncertainty and logical flow (conditionally independent
factors). In this paper, we present a probabilistic framework of
neighborhood-based recommendation methods (PNBM) in which
similarity is regarded as an unobserved factor. Thus, PNBM leads
the estimation of user preference to maximizing a posterior over
similarity. We further introduce a novel multi-layer similarity
descriptor which models and learns the joint influence of various
features under PNBM, and name the new framework MPNBM.
Empirical results on real-world datasets show that MPNBM
allows very accurate estimation of user preferences.

I. INTRODUCTION

Collaborative filtering, which leverages user history infor-
mation to predict users’ unknown preference, is one of the
most successful techniques to build recommender systems
[17]. Matrix factorization (MF) [12] and neighborhood-based
methods (NBMs) [9] are two representative approaches. MF
family attracts more attention due to its ability of modeling
influence of various features (e.g. [22], [20], [11]), thus to
improve accuracy. However, it is difficult to provide explain-
able recommendation results. NBM family, shown as Fig.
1, is very popular mainly due to the fact that it naturally
explains recommendation results (e.g. An item which is similar
with what you bought before). Similarity serves as the basis
of weighting neighbors which is crucial to the accuracy
of NBM recommender systems. However, existing similarity
computation scheme is incapable of capturing influence from
different features which hampers further polishing similarity
to improve accuracy. In this paper, we first present a basic
probabilistic framework of NBM family (PNBM) which leads
learning similarity to a regression problem. Then we introduce
a novel multi-layer similarity descriptor which models and
learns the joint influence of different features under PNBM.

A. Related Work

Commonly, NBMs are divided into two classes [9]. One is
user-based approach which predicts the rating that a user will
assign to an unrated item by referring to other users who are
similar to this user. The other is item-based approach which
estimates a user’s preference to an unrated item based on other
items that are similar to this unrated item. The two approaches
follow the same principle.

With respect to NBM, researches have mainly focused on
similarity computation schemes [9] and neighbor selection

Fig. 1: A general structure of NBM

strategies [5]. Similarity also serves as the basis for neighbor
selection, thus we concentrate upon similarity in this paper.
Generally, there are two main approaches to compute similar-
ity. One introduces different kinds of correlation coefficients
as similarity [9], such as Pearson and Cosine correlations.
However, some researchers argue that such kind of methods
isolate the relations between two items without leveraging
global information. The other approach learns similarity via
regression models. [7], [18] introduce a way to learn similarity
by minimizing mean squared error between observed ratings
and their corresponding estimation. [18] factors similarity
matrix via low-rank approximations. [6] presents a weighted
error function which gives more weight to the users who
rated items most similar to the estimated item. [14], [15]
simplify standard neighborhood-based models to a simple
linear regression problem for top-N recommendation based
on binary databases.

A number of probabilistic models have been introduced
to collaborative filtering. However, only a very small portion
of them are NBM related. [15] presents a generic Bayesian
personalized ranking framework which is optimized for the
area under ROC (AUC) metric. [21] introduces a probabilistic
memory-based collaborative filtering method in which they
use a mixture Gaussian model built on the basis of a set of
user profiles and use the posterior distribution of user ratings
for prediction. [8] builds a Markov network using Pearson-
correlation NBM as basis. People also place probabilistic
prior assumptions to observations to model uncertainty. Such
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as, [10] places Dirichlet distribution on the absolute value
of rating difference. [5] uses different probabilistic density
functions to sample neighbors from a predefined similarity
matrix (vectors).

Unfortunately, these models are incapable of representing
complex features, and none of them discusses NBM family
itself from a Bayesian perspective.

B. Contribution

In this paper, we present a probabilistic (Bayesian) frame-
work of NBM family, and our contribution is twofold.
• First, we present a general graphical model of NBM fam-

ily (PNBM) which leads the estimation of user preference
to maximizing a posterior over similarity.

• Then, we introduce a novel multi-layer similarity de-
scriptor which is capable of modeling and learning the
joint influence of various features (e.g. rating, text, genre)
under PNBM, and we name the new framework as
MPNBM.

MPNBM is evaluated on three popular real-world datasets
via root-mean-square-error (RMSE) metric. Empirical results
show that MPNBM consistently outperform state-of-art ap-
proaches on the datasets we choose.

II. PRELIMINARY

Suppose we have a data set organized in form of User ×
Item matrix R ∈ RN×M , it contains N users and M items.
S ∈ RM×M is item similarity matrix, sij denotes similarity
between item i and j, we further assume sij = sji. I ∈ BN×M
presents indicator matrix, and B = {0, 1}. Iui = 1 if user u
rated item i, otherwise Iui = 0. R>0 ⊂ R denotes all the
observed ratings.

So far, many neighborhood-based methods have been pro-
posed, as surveyed in [9]. For simplicity, we take a variant of
mean-centering NBM [16] as instance throughout the paper.
The predication formula is defined in Equation (1).

r̂′ui = r̄i +

∑
j∈I\{i} sij(r

′
uj − r̄j)Iuj∑

j∈I\{i} |sij |Iuj
(1)

where r′uj is rating score that user u gave to item j. r̂′ui
denotes the estimation of user u’s preference on item i. r̄i
is the mean value of all the ratings given to item i. I presents
a set containing all the items.

For further simplicity, Equation (1) is transformed into a
vectorization form:

r̂ui =

∑
j∈I\{i} sijruj∑
j∈I\{i} |sij |Iuj

=
SiR

−
u

|Si|I−u
(2)

where r̂ui = r̂′ui − r̄i and rui = (r′ui − r̄i)Iui. Si ∈ R1×M

denotes similarity vector corresponding to item i and Ru ∈
RN×1 represents rating vector of user u. The multiplication
SiRu denotes the inner product of the two vectors. Iu ∈ BN×1

is an indicator vector of user u. The symbol ·− means a vector
that does not contain an item which is being predicted. For
example, with regard to Equation (2), R−u denotes a vector

does not contain rui. Moreover, we assume the testing set is
excluded from the training set, when we predict r̂ui in the
testing set, rui in the training set is always zero.

III. PROBABILISTIC FRAMEWORK OF NBM

Fig. 2: Graphical model of PNBM

In this section, we present a probabilistic graphical model
of NBMs (PNBM), shown in Fig. 2. It is a Bayesian network
which describes the following factorization:

p(Si, R
−
u ,rui, αS , αR) =

p(R−u )p(αS)p(αR)p(rui|Si, R−u , αR)p(Si|αS)
(3)

In our context, placing prior distribution on hyper-
parameters Θ{αS , αR} does not significantly improve accu-
racy while dramatically increasing time complexity. For the
sake of simplicity and reduction of time complexity, we simply
let p(αS), p(αR) be constant, and p(R−u ) is also constant. So
we can simplify Equation (3) to

p(Si, R
−
u , rui, αS , αR) ∝ p(rui|Si, R−u , αR)p(Si|αS) (4)

We introduce a general Gaussian distribution (but not lim-
ited to, other distribution can be also applied to. It depends on
real-world context.) to density function p(∗) which naturally
leads to a sum-of-square-error.

More specifically, assume that an item’s similarity vector Si
is independent from those of other items, and Si is sampled
from a mean-zero spherical Gaussian distribution. Thus we
have

p(S|αS) =

M∏
i=1

N (Si|0, α−1
S I) (5)

where N (x|µ, α−1) denotes the Gaussian distribution for x
with mean µ and precision α. We also assume that ratings are
independent with each other. Combine with Equation (2), we
have following

p(R>0|S,R−, αR) =

M∏
i=1

N∏
u=1

[N (rui|
SiR

−
u

|Si|I−u
, α−1

R )]Iui (6)



Fig. 3: Multi-layer similarity descriptor. Each
layer models an influence generated from
features.

IV. MULTI-LAYER Similarity DESCRIPTOR

In Section III, we introduced a general probabilistic
(Bayesian) NBM framework which is simple and straight-
forward. However, like other similarity computation methods,
PNBM falls short in feature representation which extremely
limits the accuracy improvement. In this section, we present
a multi-layer similarity descriptor (MLSD, shown in Fig.3
) which is able to model and learn the joint influence of
various features (e.g. ratings, text, genre, time). MLSD is
mathematically defined as

S =

T∑
t=1

φ(t)(Ω(t) ◦ Γ(t)) (7)

where Γ(t) ∈ RM×M denotes the similarity basis at t-th layer.
Ω(t) ∈ RM×M is Γ(t)’s constraint matrix which presents an
influence of observed features. For example, it can present the
similarity of text description ( or time closeness ) between
any two-item. Note that different influences may be generated
from the same feature. φ(t) denotes the importance of the
feature-influence modeled at layer t. T is the number of
layers (influence) employed to model similarity. In this paper,
we don’t require

∑T
t=1 φ

(t) = 1, since we always have a
normalization factor |Si|I−u in the prediction equation, i.e.
Equation (2). A ◦ B denotes point-wise product operation
(Hadamard product) on matrices A and B, e.g.(

a11 a12

a21 a22

)
◦
(
b11 b12

b21 b22

)
=

(
a11b11 a12b12

a21b11 a22b22

)
MLSD can be smoothly integrated into PNBM, shown in

Fig. 4, named MPNBM. The Bayesian network is mathemat-
ically describe as

p(R−u ,rui,Γ
(t)
i ,Ω

(t)
i , αt, αR) ∝

p(rui|Si, R−u , αR)

T∏
t=1

p(Ω
(t)
i ◦ Γ

(t)
i |αt)

(8)

Fig. 4: Graphical model of MPNBM. Note
that only black solid arrows (→) denote the
dependency flow in the graphical model.

where Si =
∑T
t=1 φ

(t)(Ω
(t)
i ◦ Γ

(t)
i ). Follow the same assump-

tions in Section III, we define the prior of layer t ( Ω
(t)
i ◦Γ(t))

as

p(Ω(t) ◦ Γ(t)|αt) =

M∏
i=1

N (Ω
(t)
i ◦ Γ

(t)
i |0, α

−1
t I) (9)

And we have the conditional distribution over observed ratings
defined as

p(R>0|Ω(t),Γ(t), R−, αR) =
M∏
i=1

N∏
u=1

N [(rui|
(
∑T
t=1 φ

(t)Ω(t) ◦ Γ(t))R−u

(
∑T
t=1 φ

(t)Ω(t) ◦ Γ(t))I−u
, α−1

R )]Iui

(10)

V. MAXIMUM A POSTERIOR

PNBM is a specific case of MPNBM, which only has one
layer with constraint-matrix set to 1. In this section, we take
MPNBM as example to present how we optimize similarity
via maximizing a posterior.

The log of Bayesian network defined in Equation (8) is
given by

log p(R−u , rui,Γ
(t)
i ,Ω

(t)
i , αt, αR) ∝

log p(rui|Si, R−u , αR) +

T∑
t=1

p(Ω
(t)
i ◦ Γ

(t)
i |αt)

(11)

In fact, it defines the posterior distribution over similarity.
Combine it with Equation (9) and Equation (10), we have

− logp(R−, R,Γ
(t)
i ,Ω

(t)
i , αt, αR) ∝

αR
2

M∑
i=1

N∑
u=1

(rui −
SiR

−
u

|Si|I−u
)2 +

αt
2

T∑
t=1

M∑
i=1

(||Ω(t)
i ◦ Γ

(t)
i ||2)

+M2
T∑
i=1

log
αt√
2π

+ log
αR√
2π

M∑
i=1

N∑
u=1

Iui

(12)



Maximizing the above Bayesian network distribution with
hyper-parameters being kept fixed is equivalent to minimizing
an error function defined as

E =
1

2

M∑
i=1

N∑
u=1

(rui −
SiR

−
u

|Si|I−u
)2 +

T∑
t=1

M∑
i=1

(λt||Ω(t)
i ◦ Γ

(t)
i ||2)

(13)
where λt = αt

2αR
is the regularization parameter for layer t.

A simple linear Gaussian model sometimes makes predic-
tion value fall out of the range of valid rating values. In order
to force the predication values to fall into valid range, we pass
the linear-Gaussian model through hyperbolic tangent function
h(x) = ex−e−x

ex+e−x which makes prediction values be in range of
[-1,1]. We map the centralized ratings to range [-1, 1] with
Equation (14).

t(x) =
x− maxx+minx

2

maxx − maxx+minx

2

(14)

where maxx and minx are the max and min value of
ratings, respectively. Since the ratings are centralized by their
corresponding mean value, we always have maxx > 0 and
minx < 0. As a result, the range of valid rating value align
with the estimation produced by our models.

The conditional distribution of observed ratings becomes

p(R>0|S,R−, αR) =

M∏
i=1

N∏
u=1

[N (rui|h(
SiR

−
u

|Si|I−u
), α−1

R )]Iui

(15)
We adopt stochastic gradient descent (SGD) as learning

algorithm to train latent factors, shown in Algorithm 1.

Algorithm 1 Training via Stochastic Gradient Descent

Preliminary: rating matrix R, error function.
Initialization: similarity basis Γ(t), influence constraint-
matrix Ω(t), influence importance factor φ(t), learning rate
β, regular parameter λt. Note that Si =

∑T
t=1 φ

(t)(Ω
(t)
i ◦

Γ
(t)
i ).
• Training:
for k = 1 to K do
• For each layer (t), point-wisely update the similarity
basis Γ

(t)
ij :

[Γ
(t)
ij ]new = [Γ

(t)
ij ]old−βeui ∂r̂ui

∂Γ
(t)
ij

−βλt(Ω(t)
ij ◦Γ

(t)
ij )

• where eui = r̂ui − rui.
end for
Prediction: prediction using Equation (1) with top-200 the
most similar neighbors.

VI. EXPERIMENTS

A. Description of Data Sets

In the experiments, we evaluate our models and state-of-art
methods over three different data sets, summarized in Table I.

ML-20M, ML-10M are data sets provided by MovieLens
[1]. Netflix is a subset sampled from Netflix Prize data set

TABLE I: Data Sets

data set user# item# ratings# scales density
ML-20M 138,493 26,744 20,000,263 [0.5,5] 0.54%
ML-10M 69,878 1,0677 10,000,054 [0.5,5] 1.34%
Netflix 32,682 13,139 3,967,477 [1,5] 0.92%

Yahoo-R4 7,637 3,791 207,854 [1,5] 0.72%

[2] such that each user rated 50-1500 movies, and each movie
is rated by 5-1800 users. Yahoo-R4 is a subset of the movie-
rating data set provided by the Yahoo Labs Webscope Team
[4] such that each movie are at least rated by 5 users.
• We use ML-10M, Netflix and Yahoo-R4 to compare the

models’ accuracy.
• We also compare each model’s accuracy on data sets

with different densities. In order to avoid the inherent
differences of data sets from different originations, we
extract 10 subsets from one single data set (ML-20M)
based on the users’ rating number. Precisely, each subset
has similar amount of users and items, the number of
users and items are in range [10000, 15000] and [8000,
20000] respectively. The density of each data set is from
0.28% to 2.67%.

B. Models for Comparison

In this paper, the following models are compared:
• RegSim: Regression on similarity [18], a representative

work which learns similarity via a regression method.
• SLIM: Sparse linear methods [14], a regression model

for top-N recommendation on binary data set. We extend
it to a arbitrary real-value prediction model by placing a
jointly Gaussian-Laplace prior on similarity vectors. It
has a very similar error function as SLIM,

E =
1

2

N∑
u=1

M∑
i=1

(rui −
SiR

−
u

|Si|I−u
)2Iui

+
λS
2

M∑
i=1

||Si||2 − λSµ
M∑
i=1

||Si||1

(16)

where µ is a non-zero mean value of the Gaussian prior.
• PCC: NBM using Pearson correlation as similarity [16].
• COS: NBM using Cosine correlation as similarity [9].
• PMF: Probabilistic matrix factorization [3].
• MPNBM: In this paper, we exploit influence from

ratings as an instance to demonstrate MLSD’s ability of
modeling various features, thus to improve accuracy. We
use a 3-layer similarity descriptor in which layer-1 treats
latent influence equally with constraint-matrix set to 1;
Layer-2 adopts Pearson correlation as constraint-matrix
that stresses the influence from those items which either
have significant positive correlation or strong negative
correlation with the item under predication; Layer-3 em-
ploys Jaccard index to form a constraint-matrix that am-
plifies the influence from those items which have similar
rating history, alleviates the divergence from infrequent-
rated items and frequent-rated items. Time Complexity.



Fig. 5: RMSE evaluation on ML-10M, Netflix, Yahoo-R4. The Y-axis displays RMSE value and the X-axis
shows the number of epochs (iterations) in the training.

Fig. 6: RMSE evaluation with different density. Left panel: Basic information of the 10 subsets extracted
from ML-20M. Right panel: The RMSE evaluation on each subset, the Y-axis displays RMSE value. The
X-axis of both panels displays the number of rated items per user in each subset.

The computational time is mainly taken by updating
similarity. At a single epoch, approximately T · L · #u

similarities are updated, where L is the size of training
set, #u is the average rating number per users and T is
the number of influence layers. Intuitively, a single epoch
takes about 4, 260, 340 seconds on Yahoo-R4, Netflix,
ML-10M respectively.

• Tanh-MPNBM: The model which we pass MPNBM
through hyperbolic tangent function ( detailed in Section
V ).

Experiment setting. All models are implemented with Mat-
lab, and run on a single core of a Intel (R) Xeon(R) 3.50 GHz

machine with 16 GB memory.

C. Parameters Setting

For RegSim, MPNBM, Tanh-MPNBM and SLIM, we em-
pirically choose parameters for each model after a grid search
in which β ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5}, λ1 = λ2 = λ3 ∈
{0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.1}. The finally chosen pa-
rameters are summarized in Table II (⊥ indicates a model does
not have such a parameter).

For PMF, we choose latent feature dimension D = 10
and the momentum of mini-batch SGD η = 0.8. Regularized



TABLE II: Parameters Setting for RegSim,
MPNBM, Tanh-MPNBM, SLIM.

β (λ1, λ2, λ3) (φ(1), φ(2), φ(3))
RegSim 0.1 (0.01,⊥,⊥) (⊥,⊥,⊥)
MPNBM 0.2 (0.05,0.05,0.05) (3,1,1)
Tanh-MPNBM 0.4 (0.05,0.05,0.05) (3,1,1)
SLIM 0.4 (0.02,⊥,⊥) (⊥,⊥,⊥)

parameters (λP , λQ for user latent factors and latent item
factors respectively) and learning rate β are set to
• For Yahoo-R4, λP = λQ = 0.05 and β = 0.0005.
• For Netflix, λP = λQ = 0.002 and β = 0.0002.
• For ML-10M, λP = λQ = 0.02 and β = 0.0002.
• For the first two ML-20M subsets shown in the left panel

of Fig. 6, λP = λQ = 0.01 and β = 0.0002.
• For the other eight ML-20M subsets shown in the left

panel of Fig. 6, λP = λQ = 0.02 and β = 0.0002.
For PCC and COS, we use top-200 the most similar

neighbors for prediction.

D. Comparison Results

During the test, we randomly divide each data set into
training set (85%), validation set (5%) and testing set (10%).
We adopt RMSE for evaluation. We repeat the experiments 5
times.

TABLE III: Accuracy Comparison (The
smaller RMSE, the better accuracy for
recommendation.). MPNB, TMPN, denote
MPNBM and Tanh-MPNBM respectively.

Yahoo-R4 Netflix ML-10M
RMSE INC% RMSE INC% RMSE INC%

RegSim 0.9723 0 0.8713 0 0.8034 0
MPNB 0.9641 0.84 0.8425 3.31 0.7941 1.16
TMPN 0.9629 0.97 0.8363 4.02 0.7955 0.98
SLIM 0.9725 -0.02 0.8731 -0.21 0.8004 0.37
PMF 1.0608 -9.1 0.8826 -1.3 0.7957 0.96
PCC 0.9813 -0.93 0.8620 1.07 0.8121 -1.08
COS 0.9722 0.01 0.8605 1.24 0.8362 -4.08

1) Accuracy: The comparison is performed over :
• Accuracy on different data sets.
• Accuracy on different density.
Fig. 5 presents the detail of training on different data sets.

Table III records the final accuracy comparison (the training
process is conducted by validation set). RegSim is selected as
baseline model, the accuracy improvement of each model is
displayed in the INC % column.

Fig. 6 shows the accuracy comparison on data sets with
different density. MPNBM and Tanh-MPNBM consistently
outperform outperform state-of-art models, especially on those
extremely sparse data sets ( which have serious cold start
problem). For simplicity, we don’t draw SLIM on the graph,
since SLIM has similar accuracy with RegSim.

We are also interested in that how the layer importance-
factor φ affects the MPNBM (Tanh-MPNBM). We use two

Fig. 7: Tanh-MPNBM: Comparison between
two strategies of setting φ.

strategies to select parameters φ for each layer, 1) we con-
sistently choose φ(1) = 3, φ(2) = φ(3) = 1 for all the three
data sets, named TMPN-V1; 2) letting φ(t) ∈ {1, 1.5, 2}, we
assign higher value to the φ which corresponding Ω has lower
RMSE, named TMPN-V2. The comparison is shown in Fig. 7,
and 1) the accuracy is not significantly influenced, MPNBM
(Tanh-MPNBM) is able to balance the influence automatically.
2) Assigning proper weight to φ according to the RMSE of Ω
results in faster convergence.

2) Stability: Model based approach may easily over fit
when increasing the number of parameters under training.
The system can be beneficent from the stability of algorithms
which is defined by
• converge speed: the first epoch where a model converges

to the local best solution, denoted as ε.
• ability of models to maintain their best status: the number

of epochs that a model stays in the local best solution,
denoted as ζ.

Table IV shows the values of ε and ζ of each model over
different data sets. In the comparison of stability, we treat

TABLE IV: Stability Comparison

Yahoo-R4 Netflix ML-10M
ε ζ ε ζ ε ζ

RegSim 86 102 134 ≥67 96 91
MPNBM 84 59 * 141 ≥60
Tanh-MPNBM 158 ≥43 166 ≥35 115 ≥86
SLIM 39 51 186 ≥15 150 ≥51
PMF 87 6 64 12 93 34

RMSE values x1 = x2, if |x1 − x2| ≤ 0.0001. Note that with
regard to a model which does not over fit after 200 epochs
(value of ζ prefixed with ≥), if the lowest RMSE value appears
at least 10 epochs, it is seen as the local best solution. * in
Table IV means a model does not converge after 200 epochs
on a data set. e.g, MPNBM does not converge on Netflix data



set, also shown in Fig. 5. The experimental results show that
MPNBM and Tanh-MPNBM stay in the local best solution for
many ( > 40) epochs which is better than PMF. With regard to
converge speed, as shown in Table IV, it seems that sometimes
MPNBM and Tanh-MPNBM do not converge as fast as PMF.
In fact, they achieve a considerable accuracy at a much earlier
epoch.

VII. CONCLUSION

In this paper, we have presented a probabilistic framework
of NBM family, and introduced a multi-layer similarity de-
scriptor under PNBM which is capable of modeling and learn-
ing the joint influence of various features. Our experiments
show that MPNBM and Tanh-MPNBM allow accurate and
stable estimation of user preferences.

Privacy is a serious problem to recommender systems.
Nowadays, applying differential privacy to recommendation
algorithms attracts great attention. A common approach is
adding noise to data set. Recently, people find that sampling
from a posterior distribution achieves some extent of differ-
ential privacy “for free” [19], and this idea has been already
successfully applied to probabilistic matrix factorization [13].
Following the same idea, our models can also provide such
kind of “free privacy”. We leave a detailed investigation as
future work.
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