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Abstract—Image denoising is an important pre-processing step
in medical image analysis. Different algorithms have been pro-
posed in past three decades with varying denoising performances.
More recently, having outperformed all conventional methods,
deep learning based models have shown a great promise. These
methods are however limited for requirement of large training
sample size and high computational costs. In this paper we show
that using small sample size, denoising autoencoders constructed
using convolutional layers can be used for efficient denoising
of medical images. Heterogeneous images can be combined to
boost sample size for increased denoising performance. Simplest
of networks can reconstruct images with corruption levels so high
that noise and signal are not differentiable to human eye.

Keywords—Image denoising, denoising autoencoder, convolu-
tional autoencoder

I. INTRODUCTION

Medical imaging including X-rays, Magnetic Resonance
Imaging (MRI), Computer Tomography (CT), ultrasound etc.
are susceptible to noise [21]. Reasons vary from use of
different image acquisition techniques to attempts at decreasing
patients exposure to radiation. As the amount of radiation is
decreased, noise increases [1]. Denoising is often required for
proper image analysis, both by humans and machines.

Image denoising, being a classical problem in computer
vision has been studied in detail. Various methods exist, rang-
ing from models based on partial differential equations (PDEs)
[18], [20], [22], domain transformations such as wavelets [6],
DCT [29], BLS-GSM [19] etc., non local techniques including
NL-means [30], [3], combination of non local means and
domain transformations such as BM3D [7] and a family of
models exploiting sparse coding techniques [17], [9], [15]. All
methods share a common goal, expressed as

z = x+ y (1)

Where z is the noisy image produced as a sum of original
image x and some noise y. Most methods try to approximate
x using z as close as possible. IN most cases, y is assumed to
be generated from a well defined process.

With recent developments in deep learning [14], [11], [23],
[2], [10], results from models based on deep architectures
have been promising. Autoencoders have been used for im-
age denoising [24], [25], [28], [5]. They easily outperform
conventional denoising methods and are less restrictive for
specification of noise generative processes. Denoising au-
toencoders constructed using convolutional layers have better

image denoising performance for their ability to exploit strong
spatial correlations.

In this paper we present empirical evidence that stacked
denoising autoencoders built using convolutional layers work
well for small sample sizes, typical of medical image
databases. Which is in contrary to the belief that for optimal
performance, very large training datasets are needed for models
based on deep architectures. We also show that these methods
can recover signal even when noise levels are very high, at the
point where most other denoising methods would fail.

Rest of this paper is organized as following, next section
discusses related work in image denoising using deep architec-
tures. Section III introduces autoencoders and their variants.
Section IV explains our experimental set-up and details our
empirical evaluation and section V presents our conclusions
and directions for future work.

II. RELATED WORK

Although BM3D [7] is considered state-of-the-art in image
denoising and is a very well engineered method, Burger et
al. [4] showed that a plain multi layer perceptron (MLP) can
achieve similar denoising performance.

Denoising autoencoders are a recent addition to image de-
noising literature. Used as a building block for deep networks,
they were introduced by Vincent et al. [24] as an extension to
classic autoencoders. It was shown that denoising autoencoders
can be stacked [25] to form a deep network by feeding the
output of one denoising autoencoder to the one below it.

Jain et al. [12] proposed image denoising using convolu-
tional neural networks. It was observed that using a small sam-
ple of training images, performance at par or better than state-
of-the-art based on wavelets and Markov random fields can be
achieved. Xie et al. [28] used stacked sparse autoencoders for
image denoising and inpainting, it performed at par with K-
SVD. Agostenelli et al. [1] experimented with adaptive multi
column deep neural networks for image denoising, built using
combination of stacked sparse autoencoders. This system was
shown to be robust for different noise types.

III. PRELIMINARIES

A. Autoencoders

An autoencoder is a type of neural network that tries
to learn an approximation to identity function using back-
propagation, i.e. given a set of unlabeled training inputs
x(1), x(2), ..., x(n), it uses
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z(i) = x(i) (2)

An autoencoder first takes an input x ∈ [0, 1]d and
maps(encode) it to a hidden representation y ∈ [0, 1]d

′
using

deterministic mapping, such as

y = s(Wx+ b) (3)

where s can be any non linear function. Latent represen-
tation y is then mapped back(decode) into a reconstruction z,
which is of same shape as x using similar mapping.

z = s(W ′y + b′) (4)

In (4), prime symbol is not a matrix transpose. Model
parameters (W,W ′, b, b′) are optimized to minimize recon-
struction error, which can be assessed using different loss
functions such as squared error or cross-entropy.

Basic architecture of an autoencoder is shown in Fig. 1
[32]

Fig. 1. A basic autoencoder

Here layer L1 is input layer which is encoded in layer L2

using latent representation and input is reconstructed at L3.

Using number of hidden units lower than inputs forces
autoencoder to learn a compressed approximation. Mostly an
autoencoder learns low dimensional representation very similar
to Principal Component Analysis (PCA). Having hidden units
larger than number of inputs can still discover useful insights
by imposing certain sparsity constraints.

1) Denoising Autoencoders: Denoising autoencoder is a
stochastic extension to classic autoencoder [24], that is we
force the model to learn reconstruction of input given its noisy
version. A stochastic corruption process randomly sets some
of the inputs to zero, forcing denoising autoencoder to predict
missing(corrupted) values for randomly selected subsets of
missing patterns.

Basic architecture of a denoising autoencoder is shown in
Fig. 2

Fig. 2. Denoising autoencoder, some inputs are set to missing

Denoising autoencoders can be stacked to create a deep
network (stacked denoising autoencoder) [25] shown in Fig. 3
[33].

Fig. 3. A stacked denoising autoencoder

Output from the layer below is fed to the current layer and
training is done layer wise.

2) Convolutional autoencoder: Convolutional autoen-
coders [16] are based on standard autoencoder architecture
with convolutional encoding and decoding layers. Compared
to classic autoencoders, convolutional autoencoders are better
suited for image processing as they utilize full capability of
convolutional neural networks to exploit image structure.

In convolutional autoencoders, weights are shared among
all input locations which helps preserve local spatiality. Rep-
resentation of ith feature map is given as

hi = s(x ∗W i + bi). (5)



where bias is broadcasted to whole map, ∗ denotes convo-
lution (2D) and s is an activation. Single bias per latent map
is used and reconstruction is obtained as

y = s(
∑
i∈H

hi ∗ W̃ i + c) (6)

where c is bias per input channel, H is group of latent
feature maps, W̃ is flip operation over both weight dimensions.

Backpropogation is used for computation of gradient of the
error function with respect to the parameters.

IV. EVALUATION

A. Data

We used two datasets, mini-MIAS database of mammo-
grams(MMM) [13] and a dental radiography database(DX)
[26]. MMM has 322 images of 1024 × 1024 resolution and
DX has 400 cephalometric X-ray images collected from 400
patients with a resolution of 1935 × 2400. Random images
from both datasets are shown in Fig. 4.

Fig. 4. Random sample of medical images from datasets MMM and DX, rows
1 and 2 show X-ray images from DX, whereas row 3 shows mammograms
from MMM

B. Experimental setup

All images were processed prior to modelling. Pre-
processing consisted of resizing all images to 64 × 64 for
computational resource reasons. Different parameters detailed
in Table I were used for corruption.

TABLE I. DATASET PERTURBATIONS

Noise type corruption parameters
Gaussian p=0.1, µ = 0, σ = 1
Gaussian p=0.5, µ = 0, σ = 1
Gaussian p=0.2, µ = 0, σ = 2
Gaussian p=0.2, µ = 0, σ = 5
Poisson p=0.2, λ = 1
Poisson p=0.2, λ = 5

p is proportion of noise introduced, σ and µ are standard deviation and mean of
normal distribution and λ is mean of Poisson distribution

Instead of corrupting a single image at a time, flattened
dataset with each row representing an image was corrupted,
hence simultaneously perturbing all images. Corrupted datasets
were then used for modelling. Relatively simple architec-
ture was used for convolutional denoising autoencoder (CNN
DAE), shown in Fig. 5.

Fig. 5. Architecture of CNN DAE used

Keras [31] was used for implementing this model on an
Acer Aspire M5 notebook (Intel Core i5-4200U, 10 GB RAM,
no GPU). Images were compared using structural similarity
index measure(SSIM) instead of peak signal to noise ratio
(PSNR) for its consistency and accuracy [27]. A composite
index of three measures, SSIM estimates the visual effects of
shifts in image luminance, contrast and other remaining errors,
collectively called structural changes. For original and coded
signals x and y, SSIM is given as

SSIM(x, y) = [l(x, y)]α[c(x, y)]β [s(x, y)]γ (7)

where α, β and γ > 0 control the relative significance of
each of three terms in SSIM and l, c and s are luminance,
contrast and structural components calculated as

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(8)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(9)

s(x, y) =
2σxy + C3

σxσy + C3
(10)



where µx and µy represents the mean of original and
coded image, σx and σy are standard deviation and σxy is
the covariance of two images.

Basic settings were kept constant with 100 epochs and
a batch size of 10. No fine-tuning was performed to get
comparison results on a basic architecture, that should be easy
to implement even by a naive user. Mean of SSIM scores over
the set of test images is reported for comparison.

C. Empirical evaluation

For baseline comparison, images corrupted with lowest
noise level (µ = 0, σ = 1, p = 0.1) were used. To keep similar
sample size for training, we used 300 images from each of the
datasets, leaving us with 22 for testing in MMM and 100 in
DX.

Using a batch size of 10 and 100 epochs, denoising results
are presented in Fig. 6 and Table II.

Fig. 6. Denoising results on both datasets, top row shows real images with
second row showing the noisier version (µ = 0, σ = 1, p = 0.1), third row
shows images denoised using CNN DAE and fourth row shows results of
applying a median filter

TABLE II. MEAN SSIM SCORES FOR TEST IMAGES FROM MMM AND
DX DATASETS

Image type MMM DX
Noisy 0.45 0.62
CNN DAE 0.81 0.88
Median filter 0.73 0.86

Results show an increased denoising performance using
this simple architecture on small datasets over the use of
median filter, which is most often used for this type of noise.

Model converged nicely for the given noise levels and
sample size, shown in Fig. 7. It can bee seen that even using
50 epochs, reducing training time in half, we would have got
similar results.

To test if increased sample size by combining hetero-
geneous data sources would have an impact on denoising
performance, we combined both datasets with 721 images for
training and 100 for testing.

Fig. 7. Training and validation loss from 100 epochs using a batchsize of 10

Fig. 8. Denoising performance of CNN DAE on combined dataset, top row
shows real images, second row is noisier version with minimal noise, third
row is denoising result of NL means, fourth rows shows results of median
filter, fifth row is results of using smaller dataset (300 training samples) with
CNN DAE, sixth row is the results of CNN DAE on larger combined dataset.

Denoising results on three randomly chosen test images
from combined dataset are shown in Fig. 8 and Table III.

Table III shows that CNN DAE performs better than NL
means and median filter. Increasing sample size marginally
enhanced the denoising performance.

To test the limits of CNN DAEs denoising performance, we



TABLE III. COMPARING MEAN SSIM SCORES USING DIFFERENT
DENOISING FILTERS

Image type SSIM
Noisy 0.63
NL means 0.62
Median filter 0.80
CNN DAE(a) 0.89
CNN DAE(b) 0.90

CNN DAE(a) is denoising performance using smaller dataset and CNN DAE(b) is
denoising performance on same images using the combined dataset.

used rest of the noisy datasets with varying noise generative
patterns and noise levels. Images with high corruption levels
are barely visible to human eye, so denoising performance
on those is of interest. Denoising results along with noisy and
noiseless images on varying levels of Gaussian noise are shown
in Fig. 9.

Fig. 9. Denoising performance of CNN DAE on different Gaussian noise
patterns. Top row shows original images, second row is noisy images with
noise levels of µ = 0, σ = 1, p = 0.5, third row shows denoising results,
fourth row shows corruption with p = 0.2, σ = 5, fifth row is denoised
images using CNN DAE, sixth and seventh rows shows noisy and denoised
images corrupted with p = 0.2, σ = 10.

It can be seen that as noise level increases, this simple
network has trouble reconstructing original signal. However,
even when the image is not visible to human eye, this network
is successful in partial generation of real images. Using a more
complex deeper model, or by increasing number of training
samples and number of epochs might help.

Performance of CNN DAE was tested on images corrupted
using Poisson noise with p = 0.2, λ = 1 and λ = 5. Denoising
results are shown in Fig. 10.

Fig. 10. CNN DAE performance on Poisson corrupted images. Top row
shows images corrupted with p = 0.2, λ = 1 with second row showing
denoised results using CNN DAE. Third and fourth rows show noisy and
denoised images corrupted with p = 0.2, λ = 5.

Table IV shows comparison of CNN DAE with median
filter and NL means for denoising performance on varying
noise levels and types. It is clear that CNN DAE outperforms
both denoising methods by a wide margin, which increases as
noise level increases.

TABLE IV. COMPARISON USING MEAN SSIM FOR DIFFERENT NOISE
PATTERNS AND LEVELS

Image type p = 0.5 sd = 5 sd = 10 Poisson, λ = 5
Noisy 0.10 0.03 0.01 0.33
NL means 0.25 0.03 0.01 0.15
Median filter 0.28 0.11 0.03 0.17
CNN DAE 0.70 0.55 0.39 0.85

p = 0.5 represents 50% corrupted images with µ = 0, σ = 1, sd = 5 are images
corrupted with p = 0.2, µ = 0, σ = 5, sd = 10 are corrupted with

p = 0.2, µ = 0, σ = 10 and Poisson, λ = 5 are corrupted with a Poisson noise
using λ = 5

Also, as the noise level is increased the network has trouble
converging. Fig. 11 shows the loss curves for Gaussian noise
with µ = 0, p = 0.2, σ = 10. Even using 100 epochs, model
has not converged.



Fig. 11. Model having trouble converging at higher noise levels, no decrease
in validation errors can be seen with increasing number of epochs.

V. CONCLUSION

We have shown that denoising autoencoder constructed
using convolutional layers can be used for efficient denoising
of medical images. In contrary to the belief, we have shown
that good denoising performance can be achieved using small
training datasets, training samples as few as 300 are enough
for good performance.

Our future work would focus on finding an optimal ar-
chitecture for small sample denoising. We would like to
investigate similar architectures on high resolution images and
the use of other image denoising methods such as singular
value decomposition (SVD) and median filters for image pre-
processing before using CNN DAE, in hope of boosting
denoising performance. It would also be of interest, if given
only a few images can we combine them with other readily
available images from datasets such as ImageNet [8] for better
denoising performance by increasing training sample size.
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