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ABSTRACT
Cyber-physical systems are critical infrastructures that are
crucial both to the reliable delivery of resources such as en-
ergy, and to the stable functioning of automatic and con-
trol architectures. These systems are composed of interde-
pendent physical, control and communications networks de-
scribed by disparate mathematical models creating scientific
challenges that go well beyond the modeling and analysis of
the individual networks. A key challenge in cyber-physical
defense is a fast online detection and localization of faults
and intrusions without prior knowledge of the failure type.
We describe a set of techniques for the efficient identifica-
tion of faults from correlations in physical signals, assuming
only a minimal amount of available system information. The
performance of our detection method is illustrated on data
collected from a large building automation system.

CCS Concepts
•Information systems→Data stream mining; •Security
and privacy → Intrusion detection systems;
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1. INTRODUCTION
Cyber-physical systems are physical networks, governed

by the laws of physics, but regulated by a control system
coupled to computer networks that transmit the informa-
tion required to optimize and control the physical networks
for reliability and efficiency [30, 34]. Examples include, but
are not limited to, smart grids, gas pipelines, civil infras-
tructures, autonomous automotive systems, automatic pilot
avionics and process control systems. The interdependence
of the cyber and physical networks makes the combined sys-
tem more vulnerable to attacks; manipulation of the com-
puter control network can leverage cyber-physical capabil-
ities to cause damage or significantly degrade the perfor-
mance of the critical infrastructure [6, 21].

The ability to detect and localize failures or attacks rep-
resents an important step towards the design of resilient
cyber-physical networks and strategies for implementation
of certificates for proportional response. It is natural to ex-
pect that indications of intrusion or misbehavior in the cyber
subsystem are present as anomalies in the physical network.
This fact can be used for searching for outliers in the data
streams collected by the sensors monitoring the state of the
physical system – a well-studied problem in a wide range of
application domains [19]. Although anomalous changes in
individual signals can be an indication of a major failure or
a crude attack, they do not capture more sophisticated sce-
narios of coordinated intrusions. Therefore, it is important
to take into account information from the spatiotemporal
correlations of anomalies of individual signals. Moreover,
exploiting these correlations might enable probabilistic lo-
calization of the intruder or failure within the network, and
hence serve as a basis for building a proper response.

We study the problem of detection and localization of dis-
turbances based on the analysis of spatiotemporal correla-
tions between physical data streams. Our goal is to develop
efficient methods for the detection and localization of fail-
ures within the cyber-physical system without reference to
a predefined attack vector. Failure events can be very di-
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verse, while attacks become more and more creative and so-
phisticated, so the detection methodologies cannot be based
on scripted scenarios. In addition, detection methodologies
which do not exploit prior knowledge of the topology of the
physical network will have a broader range of application.
Therefore, we deliberately do not incorporate any specific
aspects of the physical system architecture in the algorithm
design. Further desired requirements for detection and local-
ization algorithms include scalability (the number of signals
and time measurements can potentially be very large), gen-
erality (we assume that the signals are heterogeneous and
of diverse nature), robustness (the signals can be noisy and
incomplete) and low computational complexity (to allow de-
ployment of the algorithm in a fast online fashion).

Cyber-physical intrusion detection and response method-
ologies will improve at much faster rates when the devel-
opment and refinement is closely coupled with real-world
experimentation that validates strengths and reveals weak-
nesses. The simplicity and generality of the detection algo-
rithms are very important since they will allow for deploy-
ment in different cyber-physical systems. In this paper, we
test our techniques on specific real-world data from an au-
tomated HVAC system in a large building at Los Alamos
National Laboratory (LANL). We are planning to deploy
and experimentally validate these methods on several other
cyber-physical systems of importance to LANL.

We present a general protocol for detection and localiza-
tion of disturbance which meet most of the aforementioned
requirements. First, we develop a simple procedure for con-
structing a special correlation matrix out of detrended het-
erogeneous signals, making some assumptions on the anomaly
signature we would like to be able to capture. Then, we use
the correlation matrix to solve three crucial tasks: i) detec-
tion of the anomaly using spectral methods; ii) localization
of a subset of anomalous nodes within the system using low-
rank approximations and biclustering methods; iii) finally,
identification of the functional role of the inferred anomaly
based on the sensor labels. We validate our framework on
experimental real-world data collected from a building au-
tomation system at LANL.

2. TIME SERIES ANALYSIS AND CORRE-
LATION MATRIX CONSTRUCTION

We consider the problem involving data from N physical
sensors indexed by V . For each sensor i ∈ V we are given a
time series Xi(t) collected at times t ∈ T . The data Xi(t)
can be heterogeneous real or integer valued signals and pro-
vides a (partial) description of a system. We assume that
the spatial and temporal relationships between the sensors
are unknown, but that we do have access to sensor labels.
We also assume that the fluctuations of each time series in
the system around their mean behavior during normal op-
erations are essentially independent.

Formally, we say that during normal operations the ob-
servations Xi(t) can be modeled as

Xi(t) = Yi(t) +Ni(t) + Si(t), (1)

where the Ni(t) represent the uncorrelated random noise,
Si(t) is a potential signal of attack or failure (correlated be-
tween sensors) which is absent during normal operations,
and Yi(t), which we call the trace, describes the idealized
operation of the system without noise. When the system

is attacked or experiences a fault the affected parts of the
system U ⊂ V are expected to move away from the trace,
Si(t) 6= 0 for i ∈ U . We are interested in those cases when
the signal is nonzero for a significant subset of sensors. It
may occur that for each individual sensor the failure sig-
nal is not directly observable, but that it can be detected
and becomes statistically significant when the subset of af-
fected sensors are taken into account collectively. In these
cases, the differences between the trace and the correspond-
ing observations will become related. In other words, since
the Si(t) values corresponding to a particular disturbance
event are likely to be correlated, we expect that the correla-
tion relations will become apparent in the detrended signals
Xi(t) − Yi(t) if the signal (e.g. attack or failure) occurs at
t = τ and lasts for T time steps. Our goal is to construct
a suitable correlation matrix out of these time series which
will enable the detection and localization of the undesirable
changes in system state.

2.1 Detrending the Signals
Unfortunately, the traces Yi(t) are a priori unknown. In

some cases they can be learned from an ensemble of repeat-
ing operations under normal behavior, but here we assume
that this data might be unavailable. Thus we approximate
the traces with a running mean,

X̄i(t) :=
1

τav

t+τav/2∑
t′=t−τav/2

Xi(t
′), (2)

centered at t. This is a reasonable assumption if the traces
Yi are fairly smooth: in this case, X̂i(t) are smoothed using
the points Xi(t

′) for t′ = t − τav/2 to t + τav/2. This will
not be a good assumption if the system changes modes of
operation or otherwise undergoes rapid changes within the
interval [t− τav/2, t+ τav/2].

Note that although the use of the centered running mean
requires the knowledge of the signal in the future, it pro-
duces better results with respect to the approach where the
trailing mean is employed. (A centered rolling mean approx-
imates the trace with a linear function, while the trailing
mean approximates the trace with a constant function.) At
the same time, an online detection algorithm based on the
centered mean will have a time-lag of τav/2. There is hence
a trade off between the quality of approximation and the
speed of detection.

It seems intuitive that the choice of smaller τav would
introduce a smaller time-lag, and thus would lead to better
results. On the other hand, τav should be large enough to
average out the small fluctuations caused by the terms Ni(t).
A similar argument implies that τav should be chosen to
be close in size to the expected duration of an attack or
fault signal one would like to be able to detect: if τav is
much larger than this scale, the signal will be likely to be
averaged out. In practice, there is often a range of reasonable
choices for the length τav of the sliding window; one should
choose the one which satisfies the requirements on a desired
maximum time-lag of detection.

2.2 Construction of the Correlation Matrix
We calculate correlation matrices from the residuals (an

example is depicted in Figure 1) of the detrended data streams

Ri(t) := Xi(t)− X̄i(t). (3)



At this point, one more parameter, the time interval τcorr
over which correlations are calculated, must be chosen. Ide-
ally, this time window should be at least as large as the
duration of the event we would like to detect. This time
length, in general, is application dependent; typically, we
are interested in the time scales which are a low multiple of
τav. Thus if the correlation window is determined to be of
length τcorr, we calculate the Pearson correlation coefficient
for each pair,

ξij(t) :=

∑
(Ri(t

′)− µi,t) (Rj(t
′)− µj,t)√∑

(Ri(t′)− µi,t)2
√∑

(Rj(t′)− µj,t)2
, (4)

where each sum is taken from t′ = t− τcorr to t and

µi,t :=
1

τcorr

t∑
t′=t−τcorr

Ri(t). (5)

This gives us the desired correlation matrix Mij(t) = ξij(t)
at each time instance. We are not interested in detecting
the self-correlations which are trivially equal to one, so we
put by definition ξii(t) = 0 ∀i ∈ V .
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Figure 1: Three residuals from a typical signal
stream. Signal (a) has S(t) = 0 while signals (b)
and (c) have correlated S(t) 6= 0 due to an attack or
failure. The attack starts at approximatly 11:00 and
some correlation can be observed between (b) and
(c). The goal is to find and identify such correlated
signals among the many recorded signals.

With our setup under normal operations, when the data
streams can be modeled as in Equation (1) with Si(t) = 0,
we expect the detrended data streams to be uncorrelated,

∀i 6= j, E[ξij(t)] = 0. (6)

However, during an attack or failure we expect there to be
a set of sensors U ⊂ V such that Si(t) 6= 0 for i ∈ U , and
hence

∀r 6= s, r, s ∈ U, E[ξrs(t)] = σrs > 0, (7)

since the non-zero signals Si(t), i ∈ U of the attack are
supposed to have a similar behavior.

3. DETECTION AND LOCALIZATION OF
ANOMALOUS SUBMATRIX

In this section, we present a protocol for detecting and lo-
calizing a group of anomalously behaving devices within the
physical network. Formulating the problem in the frame-
work of submatrix localization, the detection step is done
by monitoring the spectral gap in the correlation matrix
spectrum. This method is universal and does not require
any prior assumptions on the form of the noise and on par-
ticular normalization of the correlation matrix. We explore
three approaches to the localization of the anomalous nodes:
sparse PCA based on a low-rank approximation, and two bi-
clustering methods for finding a submatrix with an elevated
mean value.

3.1 Detection of Anomalous Submatrix
Under normal conditions and low noise, the correlation

matrix of the physical system might contain some structural
information about the topology of the system. For instance,
we can expect communities representing common functional
roles or spatial locations of devices to have strong corre-
lations. All other matrix elements should appear as noisy
and uncorrelated values fluctuating around zero. When an
anomaly occurs under the assumptions of Section 2 with a
strong enough signal, one should witness the emergence of
one single submatrix with a higher mean value. As in the
problem of detecting a single community in a graph [15], the
change in the correlation matrix induced by the anomalous
signal should be also visible in the spectrum of the corre-
lation matrix. In the ideal case, if the community is large
enough, there is a spectral gap between the first and the
second largest eigenvalues, and in addition, the principle
eigenvector contains information about the location of the
community. We use the idealized case to gain intuition about
the behavior of the real world system.

This intuition for the correlation matrices constructed from
the real signals comes from rigorous analysis for ideal noise,
which also illustrates the concept of a“sufficiently strong sig-
nal” used above. As an example, consider a rank-1 matrix
with eigenvalue θ, P = θuuT , and suppose that we observe
this matrix corrupted by a noise taking the form of a nor-
malized N×N Gaussian Wigner matrix W , with zero-mean
elements and variance of the off-diagonal elements equal to
1/N2. It is well known that the spectrum of W converges to
the semi-circle law with support [−2, 2]. Let us denote the
largest eigenvalue associated with the measurement matrix
P +W as λ1, and the corresponding eigenvector as u1. De-
pending on the “signal strength” θ, the values of the largest
eigenvalue and eigenvector of P +W undergo a phase tran-
sition [2]. If θ > 1, then in the large N limit λ1 → 1 + 1/θ is
clearly separated from the bulk, and |〈u, u1〉| → 1−1/θ2. In
the opposite case θ ≤ 1, λ1 → 2 and the associated eigenvec-
tor does not carry any useful information, being completely
degraded by the noise, with |〈u, u1〉| → 0. Similar results
hold for the case of multiplicative noise.

In a typical real-world situation, the spectrum of the cor-
relation matrix in the presence of an anomalously correlated
group of devices has a form presented in the main part of
Figure 2. There is a clear gap, separating two largest eigen-
vectors λ1 and λ2, and the nonzero values of eigenvalues λi
for i ≥ 2, sorted by the order of magnitude, is entirely due to
the noise. In the case of a weak signal, however, the picture
can be similar to the inset of Figure 2, where the presence



of the spectral gap ∆1 = λ1 − λ2 does not seem to be so
obvious.

The important question is how to decide whether the gap
is statistically significant. The challenge here is that we
do not assume any prior information on the statistics of
the trace and on the noise distribution; this setting has not
been well studied in the literature so far. To address this
question, we suggest the following detection criterion. Let
∆i = λi − λi+1 be the collection of spacings between suc-
cessive eigenvalues of the correlation matrix. Following the
assumption that the nonzero values of all eigenvalues but
the largest one are entirely due to a random noise, we can
empirically estimate the corresponding characteristic noise
scale as

δ =

√
1

N − 2

∑
1<i<N

∆2
i . (8)

Now our proposed detection certificate is as follows: we con-
sider that the first eigenvalue is statistically well separated
if

∆1 > ∆2 + δ. (9)

We count the opposite case as an absence of detection. The
validity of this detection criterion will be checked in the
Section 4 involving real data examples.

n

λn

0

Δ1

δ

Δ2

0

Δ1

Δ2

δ

strong signal

weak signal

Figure 2: A representation of a typical spectrum of
a real-world correlation matrix in the presence of an
anomaly (main figure) and with a weak anomalous
signal (inset). In the first case, the condition (9) is
satisfied, and hence we consider the outcome of the
detection test as positive. In the case of weak signal,
the level of noise does not allow us to conclude that
an anomalous community of devices is present.

3.2 Localization Using the Low-rank Approx-
imation

Once the detection certificate presented in Subsection 3.1
yields a positive result, the next step is to localize the anoma-
lously correlated elements of the system. The K communi-
ties detection problem is often addressed using the low rank
approximation [10]. In our case, a significant spectral gap
∆1 indicates that the hidden matrix can be localized by

looking at the best rank 1 approximation M̂ of the initial

matrix M ,

M̂ = arg min
M̂

‖M − M̂‖F s.t. rank(M̂) = 1, (10)

where ‖ · ‖F is the Frobenius norm. The solution to this
problem is well-known and is given by the singular value
decomposition (SVD) of the matrix M , from which we re-
tain only the leading singular value σ and the corresponding
singular vector q [14]:

M̂ = σqqT . (11)

Unfortunately, in general the resulting vector q is not sparse,
which does not allow us to identify the location of the anoma-
lous nodes. Ideally, for detecting a group containing k anoma-
lous nodes, we would like to obtain a vector with only k
nonzero components, indicating their positions; this prob-
lem is often referred to as sparse PCA [11]. While under
a general low-rank assumption this problem is NP-hard, for
the special case of rank 1 it can be solved analytically simply
by sorting the elements of q, and retaining only k largest ele-
ments [28, 37], resulting in a k-sparse vector that we denote

as qk. The constant in the expression for M̂ is then simply
given by σk = qTkMqk.

Another difficulty comes from the fact that a priori we
do not know the size of the anomalous module. Sometimes,
in order to find the optimal value of k, the so-called elbow
method can be used [35]. The idea is fairly simple; find
the minimal k such that the quality of approximation εk ≡
‖M − σkqkqTk ‖F is not increased “too much” when we make
a step from k to k+1. More precisely, the optimal k is given
by the minimal k such that

εk − εk+1 < ε, (12)

where ε is some small constant, and the only parameter of
the algorithm. The total complexity of the method is dom-
inated by the complexity of the SVD-decomposition and is
O(N3) in the most general case.

We expect the nonzero values of qk for the optimal k to
indicate the location of the nodes producing anomalous cor-
relations. However, in the examples involving real data, the
cusp on the elbow diagram might be not very pronounced in
hard cases (see Figure 3 for an example), therefore, in prac-
tice it can be unclear how to select an appropriate ε and
hence how to apply the condition (12). At the same time
it should be noted that at the end of the day we are not
necessarily interested in inferring the whole set of anoma-
lous nodes, but rather in understanding the cause of the
anomaly. In this sense, one can choose to infer only a subset
of anomalous sensors, but requiring a high level of confi-
dence for this localization task; then the idea is to search for
a subset of k∗ strongly correlated nodes. However k∗ can
not be arbitrary small. Indeed, even in the idealized case
there exist a practically achievable lower bound on the size
of detectable community [20, 12] k &

√
N . That is why the

final suggested strategy consists in searching for a subset of
most correlated sensors of size k∗ =

√
N , and then in ana-

lyzing the corresponding group of devices using the tag data
for determining the cause of the anomaly. This approach
will be used in our experimental tests in Section 4, where an
empirical evidence for the algorithmic failure in detection of
communities of very small size will be presented.
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Figure 3: An example of an ideal and real-world el-
bow diagram. In the case of relatively weak signals,
the elbow plot produced from the real data does not
have a pronounced cusp, which makes the identifi-
cation of the optimal size of the group hard.

3.3 Localization via Biclustering Methods
In this part we discuss two efficient algorithms for lo-

calization of the anomalous subgraph of the physical net-
work, which do not explicitly use the rank 1 assumption,
but instead attempt to find a k × k submatrix with an ele-
vated mean. The first one, called Large Average Submatrix
(LAS), has been introduced in [31] and analyzed in Ref. [3],
and consists in consecutive updates of k rows and k columns,
starting from a random k × k submatrix and repeating the
updates until a guaranteed convergence to a local maximum,
meaning that the resulting submatrix can not be improved
by changing only its column or row set. A recently intro-
duced improved version of this algorithm, analysed in [16]
and named Iterative Greedy Procedure (IGP) follows a sim-
ple greedy scheme: starting by one randomly chosen row,
we add the best columns and rows sequentially until a k× k
submatrix is recovered. This algorithm outputs a provably
better results, at least in the case of large Gaussian ran-
dom matrices. In what follows, we test the performance of
these algorithms on a real data set as a part of the localiza-
tion procedure for finding the anomalously behaving group
of nodes.

In order to get the best resulting submatrix, we use a
multi-start procedure, initializing both algorithms L times
for given k, and retain the most significant submatrix. As
before, the size of the hidden subgraph k is unknown. In this
case, again, we use k∗ =

√
N in order to find a smaller sub-

matrix, representing the nodes which belong to the anoma-
lous group of devices. The proposed method is summarized
in Algorithm 1. The complexity of the Algorithm 1 is domi-
nated by the complexity of the localization step, and is equal
to O(N3) for the low-rank algorithm, to O(ILN lnN) for
LAS and to O(2k∗LN lnN) for IGP, where I is the num-
ber of iterations needed for convergence of the LAS scheme
(I . 1000 for practical cases described here), and L & 103

is the number of warm starts that we use in biclustering
algorithms to achieve a desired precision of the best local
maximum.

Algorithm 1 Detection and localization of faults

Input: N time series {Xi}i∈V , recorded in real time

Correlation matrix: compute {Ri(t)}i∈V and M =
{ξij(t)} as described in Section 2.
Detection: check for the condition (9) ∆1 > ∆2 + δ.

if positive detection then
Localization: apply low-rank or biclustering algo-
rithms on M , and infer a subset of k∗ anomalous nodes

Identification: using the label data, infer the common
cause of the failure

end if

If the tag data (sensor labels) and/or additional topolog-
ical information is available, one should be able to infer a
possible cause of the failure by looking at the common fac-
tor uniting the selected nodes. In most cases, the selected
basic devices are coupled to a single functional model or to
a particular controller which might be at the origin of the
fault and requires additional inspection.

3.4 Tests with synthetic data
Prior to running tests on a real-world platform (next sec-

tion), we examine the detection procedure on artificially-
generated signals consisting of a mixture of correlated and
uncorrelated one-dimensional random walks. In this ide-
alized situation, we generate N = 900 artificial signals as
one-dimensional random walks starting from zero. We select
k0 = 50 of them to be correlated and to represent an anoma-
lous subgroup we would like to detect and identify. Uncor-
related random walks are lazy. With probability p0 = 0.9,
the position at time Xi(t + 1) remains unchanged with re-
spect to the previous time step Xi(t), and with probability
p± = 0.05 two positions separated by one time step sat-
isfy Xi(t + 1) = Xi(t) ± 1. Correlated random walks are
constructed as follows: they are related to one of the ran-
dom walks (called the master random walk), at each time
step independently repeating the step of the master random
walk with probability ρ = 0.5, and otherwise behaving as an
uncorrelated random walk.

Let us now show the performance of Algorithm 1 on this
artificial signal ensemble. First, we detrend the data and
construct the correlation matrix M in the way described in
Section 2; we choose τcorr = 200, and the running mean is
taken over the window τav = 10 time steps. The spectrum of
M is presented in Figure 4 and triggers a positive detection
according to the criterion (9).

Next, we run the localization algorithms presented in Sec-
tions 3.2 and 3.3. We find that for k∗ =

√
N = 30, all

algorithms perfectly identify a subgroup of 30 correlated
signals. If we choose to search the correlated group with
the (unknown) ground truth size k0 = 50, then the low-
rank approximation approach misidentifies 5 signals, cor-
rectly counting the other 45 as correlated. Both bicluster-
ing methods make only one mistake in this case; however, it
requires a rather large number of warm starts (L ' 3 · 104)
in order to converge to the best solution, which makes the
algorithm slightly slower compared to the SVD-based one.
As we will see in the next section, the speed of convergence
is a very important property for online deployment of the
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Figure 4: The spectrum (on a semi-log scale) of the
correlation matrix M constructed from the total of
N = 900 artificially-generated signals, including k0 =
50 correlated walks. The correlated group of signals
produces an identifiable gap ∆1 in the eigenvalue
spectrum.

algorithm.

4. EXPERIMENTS WITH REAL DATA

4.1 System Description
Large commercial air conditioning (AC) systems repre-

sent an attractive cyber-physical test case for fault detection
and localization algorithms because they contain relatively
sophisticated physical, control and communications archi-
tectures, and the available tag data can serve as a ground
truth for discovered groups and modules. We collected and
analyzed the data streams from the AC system in a 30 000
m2 office building, with about 900 sensors located in the
conditioned spaces. These sensors record local tempera-
ture, airflow and valve opening positions. See Figure 5 for
a schematic representation of the system used in this study,
which shares a common structure with a large number of
commercial AC systems. A more in depth discussion of this
AC layout is provided in the references [1, 18]. Altogether
this constitutes a system of approximately 1000 data het-
erogeneous data streams, sampled once per minute.

The variable air volume (VAV) units represent the air in-
lets to the cooled spaces, containing valves that regulate the
chilled air flowing to the conditioned space. Different VAVs
spatially close to each other are connected to a common air
handling unit (AHU). A pressure sensor at the fans output
provides an input to to a local control loop that regulates
the electrical fan power to fix the fan pressure output. A
network representation of a part of the physical system in-
cluding conditioned spaces, fans and controllers is drawn in
Figure 6; this data has been extracted from the tag data
accompanying the recorded signals. This figure takes into
account the spatial layout of conditioned rooms, and gives
an idea of physical and communication links in the system.

Due to a conflict of local control loops, one of the fans (Fan
6 in Figure 6) in this building is behaving anomalously: at
certain times of the day it produces mild uncontrolled os-
cillations. Although this action is not a result of a cyber

4 AHU units 300 VAV units

Figure 5: A schematic representation of air condi-
tioning (AC) system used in this work. The AC sys-
tem includes two sets of loops: a water loop circu-
lating water between the chiller and the air-to-water
heat exchangers, and the air loops, where the fans in
the air handling units (AHU) force the warm return
air through the heat exchangers, and the cooled air
is then delivered to the variable air volume (VAV)
units. Thermostats (T) throughout the system pro-
vide input to the controllers that regulate the air
flows supplied to the VAVs. The recorded tem-
perature, airflow and valve opening position signals
from all the sensors and fans are used as input data
streams to our fault detection and localization algo-
rithm.

attack, it represents a perfect initial test for the protocol
aiming at detection and localization of failures: we expect
that these oscillations should leave a signature in the cor-
relations of related physical signals, while the signal is too
weak to be visible and identified as an outlier in individual
recorded signals. This anomalous behavior in the system is
a proxy for attacks of the control architecture that can oc-
cur due to vulnerabilities of the cyber part of the network.
First, we demonstrate the performance of our detection cer-
tificate, using the described Fan 6 oscillations as a failure
event that we would like to detect and identify. At a sec-
ond stage, we perform controlled experiments mimicking a
simple intrusion on a smaller subset of devices in order to
test the performance limits of the detection and localization
algorithms as a function of the size of the anomalous set.

4.2 Detection Algorithm Performance
In Figure 7, we show examples of our data stream. The

left plot of Figure 7 shows an anomalous behavior of Fan 6,
and three examples of temperature measurements in three
conditioned spaces, two of which are serviced by Fan 6, and
one being unrelated. The right plot shows examples of other
signals of different types (airflow and valve positions) that we
use for tests. The analysis of individual signals do not allow
us to detect an anomalous behavior and to relate it to the
malfunctioning Fan 6, and therefore we follow the procedure
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Figure 6: Network representation of a part of the
cyber-physical system considered in this work. The
network reflects the spatial organization of the con-
ditioned spaces, and includes a part of both physical
and control links. Fan 6 is the anomalously behaving
unit of the system.

described in Section 2, constructing the correlation matrix
and attempting to detect the anomaly from correlations of
physical signals.

Let us first demonstrate the performance of the detection
algorithm, described in Section 3.1. In Figure 8, we show
the spectra of the correlation matrices M in four different
situations: i) Fan 6 oscillating, and all signals included; ii)
Fan 6 oscillating, and signals serviced by Fan 6 removed
from the data; iii) Fan 6 not oscillating, all signals included;
iv) Fan 6 oscillating smoothly with a large period (on the
order a half a day). It is clear that only case i) should
trigger a positive detection outcome. Indeed, we notice that
only the spectrum in this case satisfies the condition (9),
while all other situations yield a negative detection result.
The matrix M in each case has been constructed using the
parameters τav = 30 min and τcorr = 200 min.

4.3 Localization Algorithm Performance
Once the presence of anomaly is detected, we compare

the performance of localization algorithms. Is it possible to
correctly identify the group of nodes related to the anoma-
lous fan, and hence to infer the reason of misbehavior? Ta-
bles 1 and 2 demonstrate localization results for two values
of group sizes. The ground truth k0 = 209, which is in gen-
eral unknown, and for k∗ = 30 strongest signals. We follow
the strategy outlined in Sections 3.2 and 3.3 and use differ-
ent combinations of the smoothing window time τav and the
correlation time window τcorr. As discussed in Section 2,
little relevant information is captured with small τav, and
indeed we find that τav = 10 does not lead to a positive
detection, see Table 1. The best results are obtained for
larger values of τav, where more data is incorporated in the
correlation matrix.

One of the major requirements for the algorithms is the
ability to perform online detection and localization. New
data points arrive every minute, so we would like the lo-
calization algorithms to converge in several seconds. The
low-rank algorithm is very fast, and does not need any ad-
justments. As discussed in the previous section, in order
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Figure 7: Fan 6 oscillations create anomalous data
measurements in rooms that are serviced by that
fan. Changes in output of Fan 6 can be seen in the
temperature, air flow, and valve opening positions
in Room 1 (red) and Room 2 (green) VAV measure-
ment data but not in Room 3 (blue) data. Room 1
and 2 are serviced by Fan 6 but Room 3 is not.
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Figure 8: Spectra (in the semi-log scale) of the corre-
lation matrix M for different scenarios. Oscillations
of Fan 6 occur: (a) related signals included, (b) re-
lated signals excluded. All signals included when (c)
Fan 6 does not oscillate and (d) Fan 6 oscillates, but
with smoothly with a large period. Only the spec-
trum (a) satisfies the detection condition (9), as it
should be.

to meet the computation complexity requirement for the bi-
clustering algorithm we are forced to limit the number of
warm starts to 1000 for the size k0 = 209 and to 10000 for
k∗ = 30 since the convergence time of biclustering procedure
grows with k. Another important property of the bicluster-
ing methods is that unlike in the low-rank approximation,
the identities of the discovered columns do not always match
the identity of the discovered rows; we use only one of the
subsets to compute the number of mismatches.

With these restrictions, the three algorithms produce sim-



τav Detection
Number of false positives

Low-rank LAS IGP
k∗ k0 k∗ k0 k∗ k0

10 7 27 169 26 144 25 149
30 3 0 123 0 112 0 115
50 3 0 106 0 107 0 108

Table 1: Performance of different localization algo-
rithms as a function of τav in the presence of Fan 6
activity. There are k0 = 209 heterogeneous streams
serviced by Fan 6, out of N = 974 total signals. The
table demonstrates the number of mismatches (false
detections) identified by the algorithms in the case
of searched groups of sizes k∗ and k0, with k∗ = 30.
For all cases, τcorr = 120 min is kept fixed.

τcorr Detection
Number of false positives

Low-rank LAS IGP
k∗ k0 k∗ k0 k∗ k0

90 3 2 128 2 120 2 122
120 3 0 123 0 112 0 115
160 3 0 112 0 110 0 109
200 3 0 106 0 103 0 104

Table 2: Comparison of the localization algorithms
under the same conditions as the ones described in
Table 1, as a function of τcorr. In this table, τav = 30
min is kept fixed.

ilar results with a comparable speed (under 3 seconds for
low-rank algorithm and within 20−30 seconds for bicluster-
ing in the present case). While only half of the true nodes
are discovered when searching for all of the k0 anomalous
signals, very few false positives occur when only searching
for the k∗ strongest signals. The discovered k∗ signals in al-
most all cases belong to a subgroup of a true group related
to the anomalous fan. This value is sufficient to determine
the common functional role of nodes inside this group, which
corresponds to their relation to the anomalous Fan 6 in this
case study. Therefore, all algorithms satisfy the require-
ments of performance, simplicity and scalability, which make
them appropriate for deployment in real cyber-physical sys-
tems. In the next section, we discuss controlled experiments
which would allow us to investigate the effect of the size of
the anomalous community.

4.4 Identification limits from controlled exper-
iments

Previously, we have tested the performance of the scheme
on detecting the faulty behavior of Fan 6 already present in
the system. In this section, we report results from controlled
experiments on particular sensors of the office automation
system. In their simplest form, these experiments consisted
in a manipulation of temperature set points, mimicking lo-
calized intrusions of small amplitude. The trials were con-
ducted on the controllers related to a small number of sensor
units on Fan 5 (a non-oscillating fan, see Figure 6), while all
sensors related to the anomalous Fan 6 have been excluded
to avoid an undesired interference.

The experiments that we report here took the following
form: the temperature set points for 10 chosen VAV were
raised 0.5◦F for 30 minutes and then lowered 1◦F for the

next 30 minutes. Each VAV contains three sensors measur-
ing temperature, airflow, and valve opening position. The
experimental intrusions potentially affected a total of 30
data streams. Among these 30 data streams of interest, only
16 showed a significant level of correlation. There are sev-
eral reasons for this behavior, but the most important one
consists in the observation that the airflow and valve open-
ing positions have a much faster response to the set-point
change compared to the temperature measurements which
rise or fall on a much longer time scale. In the following
we assume that these k0 = 16 sensors constitute the ground
truth for an anomalous group of nodes.

Using the collected data, we validate the choice of k∗ =√
N put forward in Sections 3.2 and 3.3, and used through-

out the study of the anomalous sensors related to the Fan
6. In particular, we verify that if the size of the group k0
represents a sufficiently small fraction of the total number
of signals, then it can not be correctly localized. In order to
perform this study, we have considered 1000 selections of N
randomly chosen signals but always containing the k0 = 16
anomalous nodes. We applied our detection and localiza-
tion protocol in each case for a range of N . The low-rank
algorithm was used for localization as we have seen that at
these scales it gives the same results with the fastest com-
putation time; other localization methods show equivalent
results. Note that the localization procedure was triggered
only when the detection condition (9) was satisfied.
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Figure 9: Empirical probability of successful detec-
tion and localization of a group of k0 = 16 anomalous
devices as a function of the total number of signals
N . Localization is considered as succesfull if all k0
nodes are correctly identified (top) and if at least
50% of nodes are recovered (bottom). Each point is
averaged over 1000 random selections of N signals.

The results are presented in the Figure 9 with the em-
pirical probability of successful detection and localization
shown as a function of the total number of signals N . Two
definitions of success are examined; a full and correct 100%
identification of the ground truth, and a successful localiza-
tion of at least 50% of the k0 nodes, i.e. correctly identifying
at least 8 devices out of 16. For the 100% identificaiton case
we find a phase transition-type behavior as a function of



N . The localization algorithm starts to fail at some point
near N = k20. This behavior is very close to the theoretical
bounds derived in the idealized situations of Gaussian and
Bernoulli distributions; in particular, it justifies our choice
for k∗ in the case where the optimal community size is un-
known. The second case of 50% identificaiton illustrates
that if we allow for some mistakes in the identification of
anomalous sensors, then a successful localization occurs ev-
ery time the detection procedure yields a positive result.
This procedure might be appropriate if the labeled network
is sufficiently sparse and the common cause of the anomaly
can be easily identified using the sensor labels even in the
case where not all the nodes are correctly localized.

5. RELATED WORK
Defense of cyber-physical systems: Methods for de-

tecting and localizing cyber-physical failures and attacks
have attracted significant attention [30, 34, 33, 26]. Ma-
jor hurdles stem from a high degree of influence of sensor
data from seasonal changes, proximity correlations and op-
erational switches, and from the fact that infrastructure op-
erators do not always have an accurate model of the physical
network (the assumption we make in this work), or the ex-
isting models are not integrated into unified cyber-physical
system model [33]. Another important factor is an increas-
ing size and complexity of the systems under considerations
[32]. Some of the previous works develop detection tech-
niques based on an accurate system modeling and on ac-
counting for different attack scenarios [26], which represents
a completely different approach to the problem compared to
the present study.

Signal detrending: Aiming at general applications, we
have used a simple running-mean signal detrending proce-
dure in Section 2. The goal of detrending any time series
[X(t)]τ+Tt=τ is to decompose the signal into a superposition of
simpler pieces. There are a wide array of detrending meth-
ods [5, 4, 13, 8, 17, 22] , and each have associated strengths
and weaknesses. These detrending methods assume the time
series is stationary which is most often achieved with a
regression-line fit to the observed time series. After remov-
ing this trend the residual time series is evaluated for station-
arity (i.e. EX(t) = EX(t+τ) ; τ ∈ N ) using a Dickey-Fuller
test [5, 4, 13]. A stationary signal can be further decom-
posed by assuming it follows a linear auto-regressive process
[5, 4]. An auto-regressive process is one that supposes the
signal at time t is a linear addition of the signal sampled at
past time points X(t) =

∑
i=t−1 aiX(i).

Other data-driven approaches considered for detrending
a times series are exponential-smoothing, for example, the
Holt-Winters methodology [8]. Exponential and Holt-Winters
smoothing detrend the time series by assuming the signal
at time t is made up of past observations weighted by a
geometrically decreasing parameter α ∈ (0, 1) such that
X(t) = αX(t − 1) + (1 − α)st−1 where st−1 is the cumu-
lative sum of past weighted observations [17, 22].

Outliers detection: Anomaly detection is an important
field with application to a wide number of domains (see [7]
for a general survey). A large number of methods have been
suggested, including network [36] and time series [19] spe-
cific techniques. A general formulation of the anomaly de-
tection problem often takes form of hypothesis testing by
considering H0 (absence of anomaly) versus H1 (presence
of anomaly). In the present work, the hypothesis H1 has

been formulated as follows: if the correlation matrix is con-
structed and normalized in such a way that the normally
behaving correlations fluctuate around zero, then there ex-
ist a submatrix with elements having a deviating mean [25].
This task is directly related to the problem of finding hidden
cliques and community detection in graphs [15].

Optimal denoising: Real-world correlation matrices are
noisy, and in general it is not sufficient to work directly with
the observed data. One should develop techniques for ex-
tracting a useful signal from the signal-plus-noise matrix, the
procedure also known as denoising which appears in many
machine learning [23], signal processing [29] and classifica-
tion applications [24]. Moreover, in reality the signal matrix
might have no special structure, while the form of the noise
term is in general unknown. Several studies have explored
the problem of the effective rank estimation of the signal
matrix by optimal thresholding of singular values [27, 9]. In
this work, we encountered a different problem of estimat-
ing the size of the anomalous submatrix under the rank 1
assumption.

6. CONCLUSIONS
In this work we explored a set of methods for detection

and localization of failures in cyber-physical systems, based
on the analysis of correlations between physical time series.
The established protocol enables the identification of a group
of anomalous sensors and provides insight for the localiza-
tion of the failure source. The developed detection proce-
dure achieves a number of important requirements, including
low computational complexity and simplicity of implemen-
tation. Our capability to access the cyber-physical demon-
stration system, described in the article, to collect and an-
alyze data from this system, and to deploy the presented
detection algorithm opens a path forward for future work.
We plan to continue real-world experiments which will con-
sist of manipulating the building control system in a known
manner using diverse attack strategies; this will allow us to
further validate the presented methods. Another direction
that we intend to explore consists of combining more con-
trol communication network data in order to minimize the
possibility of false detections and to enhance the quality of
failure source localization. These developments are essential
for conception of algorithms for proportional response and
for designing resilient cyber-physical networks.
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