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Abstract—Human Activity Recognition (HAR) is a powerful
tool for understanding human behaviour. Applying HAR to
wearable sensors can (1) provide new insights by enriching the
feature set in health studies, and (2) enhance the personalisation
and effectiveness of health, wellness, and fitness applications.
Wearable devices provide an unobtrusive platform for user
monitoring, and due to their increasing market penetration,
feel intrinsic to the wearer. The integration of these devices in
daily life provide a unique opportunity for understanding human
health and wellbeing. This is referred to as the “quantified self”
movement.

The analyses of complex health behaviours such as sleep,
traditionally require a time-consuming manual interpretation
by experts. This manual work is necessary due to the erratic
periodicity and persistent noisiness of human behaviour. In this
paper, we present a robust automated human activity recognition
algorithm, which we call RAHAR. We test our algorithm in
the application area of sleep research by providing a novel
framework for evaluating sleep quality and examining the corre-
lation between the aforementioned and an individual’s physical
activity. Our results improve the state-of-the-art procedure in
sleep research by 15% for area under ROC and by 30% for F1
score on average. However, application of RAHAR is not limited
to sleep analysis and can be used for understanding other health
problems such as obesity, diabetes, and cardiac diseases.

I. INTRODUCTION

Human Activity Recognition (HAR) is the understanding
of human behaviour from data captured by pervasive sensors,
such as cameras or wearable devices. It is a powerful tool
in medical application areas, where consistent and continuous
patient monitoring can be insightful. Wearable devices provide
an unobtrusive platform for such monitoring, and due to their
increasing market penetration, feel intrinsic to the user. This
daily integration into a user’s life is crucial for increasing the
understanding of overall human health and wellbeing. This is
referred to as the “quantified self” movement.

Wearables, such as actigraph accelerometers, generate a
continuous time series of a person’s daily physical exertion and
rest. This ubiquitous monitoring presents substantial amounts
of data, which can (i) provide new insights by enriching

the feature set in health studies, and (ii) enhance the per-
sonalisation and effectiveness of health, wellness, and fitness
applications. By decomposing an accelerometer’s time series
into distinctive activity modes or actions, a comprehensive
understanding of an individual’s daily physical activity can
be inferred. The advantages of longitudinal data are however
complemented by the potential of noise in data collection from
an uncontrolled environment. Therefore, the data sensitivity
calls for robust automated evaluation procedures.

In this paper, we present a robust automated human activity
recognition (RAHAR) algorithm. We test our algorithm in
the application area of sleep science by providing a novel
framework for evaluating sleep quality and examining the
correlation between the aforementioned and an individual’s
physical activity. Even though we evaluate the performance of
the proposed HAR algorithm on sleep analysis, RAHAR can
be employed in other research areas such as obesity, diabetes,
and cardiac diseases.

II. RELATED WORK

Human activity recognition (HAR) has been an active
research area in computer vision and machine learning for
many years. A variety of approaches have been investigated
to accomplish HAR ranging from analysis of still images and
videos to motion capture and inertial sensor data.

Video has been the most widely studied data source in
HAR literature. Hence, there exists a wealth of papers in this
particular domain. The most recent literature on HAR from
videos include trajectory-based descriptors [1]–[3], spatio-
temporal feature representations [4]–[6], feature encoding [7]–
[9], and deep learning [10]–[12]. Reviewing the extensive list
of video-based HAR studies, however, goes beyond the scope
of this study and we refer the reader to [13], [14] for a
collection of more comprehensive surveys on the topic.

Unlike HAR from video, existing approaches for HAR from
still images are somewhat limited, and range from histogram-
based representations [15], [16] and color descriptors [17] to
pose-, appearance- and parts-based representations [18]–[21].
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Guo and Lai recently provided a comprehensive survey of the
studies on still image-based HAR in [22].

Several techniques have been proposed, on the other hand,
for HAR from 3D data, encompassing representations based
on bag-of-words [23], [24], eigen-joints [25], sequence of
most informative joints [26], linear dynamical systems [27],
actionlets [28], Lie algebra embedding [29], covariance de-
scriptors [30], hidden Markov models [31], subspace view-
invariant metrics [32] and occupancy patterns [33], [34].
Aggarwal and Xia presented a recent survey summarizing
state-of-the-art techniques in HAR from 3D data [35].

Unlike vision-based HAR systems, sensor-based HAR tech-
nologies commonly deal with time series of state changes
and/or various parameter values collected from a wide range
of sensors such as contact sensors, accelerometers, audio and
motion detectors, etc. Chen et al. [36] and Bulling et al. [37]
present comprehensive reviews of sensor-based activity recog-
nition literature. The most recent work in this domain includes
knowledge-based inference [38], [39], ensemble methods [40],
[41], data-driven approaches [42], [43], and ontology-based
techniques [44].

All of the aforementioned studies investigate recogni-
tion/classification of fully observed action or activity, e.g.,
jumping, walking, running, drinking, etc. (i.e., activities of
daily living), using well-curated datasets. However, thanks to
the “quantified self” movement, myriad of consumer-grade
wearable devices have become available for individuals who
have started monitoring their physical activity on a continuous
basis, generating tremendous amount of data. Therefore, there
is an urgent need for automatic analysis of data coming
from fitness trackers to assess the physical activity levels and
patterns of individuals for the ultimate goal of quantifying
their overall wellbeing. This task requires understanding of
longitudinal, noisy physical activity data at a rather higher
(coarser) level than specific action/activity recognition level.
Main challenges as well as opportunities of HAR from per-
sonalized data and lifelogs have been discussed in several
dimensions in [45]–[49].

There has been a number of initiatives to overcome the
challenge of collecting annotated personalized data to further
research on HAR from continuous measurement of real-world
physical activities [50], [51]. Even though such systems exhibit
a crucial attempt in furthering research in mining personalized
data, they have limited practical importance as they rely on
manual annotation of the acquired data. There has also been
recent attempts to automatically recognize human activities
from continuous personalized data [52]–[55]. However, most
of these studies are designed to recognize only a predefined
set of activities, and hence, not comprehensive and robust
enough to quantify the physical activity levels for the overall
assessment of individuals’ wellbeing.

III. BACKGROUND

Sleep pattern evaluation is a paragon of cumbersome testing
and requires extensive manual evaluation and interpretation by
clinical experts. Unhealthy sleep habits can impede physical,

mental and emotional wellbeing, and lead to exacerbated
health consequences [56]. Since patient referral to sleep spe-
cialists is often based on self-reported abnormalities, exacer-
bation often precedes diagnosis.

Clinical diagnosis of complex sleep disorders involves a
variety of tests, including an overnight lab stay with oxygen
and brain wave monitoring (polysomnography and electroen-
cephalogram, respectively), and a daily sleep history log
with a subjective questionnaire. The daily sleep logs and
questionnaires are often found to be unreliable and incon-
sistent with actual observed activity. This is especially true
in adolescents [57]. The overnight stay allows specialists to
manually monitor the patient’s sleep period. This requires the
active involvement of a clinical sleep specialist. Furthermore,
the monitoring is only for one night and in a clinical setting,
rather than the patient’s own home. Using wearable devices
provides both a context-aware and longitudinal monitoring.

The inconvenience and inaccuracy of daily logs, coupled
with the invasiveness of an overnight lab stay, substantiate the
need and adoption of wearable devices for first pass diagnostic
screening. More generally, using our HAR approach with a
wearable device empowers users to self-monitor their sleep
patterns, and reform their activity habits for optimised sleep
and an improved quality of life.

IV. PRELIMINARIES

In this section we present a description of the dataset and
the context-aware definitions used for our application area.

A. Data

Data was collected as part of a research study to examine
the impact of sleep on health and performance in adolescents
by Weil COrnell Medical COllege - Qatar. Two international
high schools were selected for cohort development. Student
volunteers were provided with an actigraph accelerometer,
ActiGraph GT3X+1, to wear on their non-dominant wrist,
continuously throughout the study (i.e. even when sleeping).
Deidentified data collected in the study were used in the
current analysis.

The ActiGraph GT3X+ is a clinical-grade wearable de-
vice that has been previously validated against clinical
polysomnography [58]. The device samples the user’s sleep-
wake activity at 30-100 Hertz. Currently sleep experts use
this device in conjunction with the accompanying software,
ActiLife2, to evaluate an individual’s sleep period. We evaluate
our results side-by-side with ActiLife’s results.

B. Definitions

To apply our methodology to the area of sleep science, it
is important to note the definitions mentioned in this section.
In traditional sleep study literature, a sleep period is bounded
between the sleep-onset-time and sleep-awakening-time [59].
Experts characterise the sleep-onset-time as the first minute
after a self-reported bedtime, that is followed by 15 minutes

1http://actigraphcorp.com/support/activity-monitors/gt3xplus/
2http://actigraphcorp.com/products-showcase/software/actilife/
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Fig. 1: Sleep science definitions on an example accelerometer data extract

TABLE I: Relevant sleep science equations [59]

Sleep Period
[
Sleep Onset Time, Sleep Awakening Time

]
Sleep Period Duration ‖Sleep Awakening Time− Sleep Onset Time‖

Wake After Sleep Onset (WASO)
∑awake

n=onset ‖Wakefulness‖

Latency
[
Preceding Sedentary Time, Sleep Onset Time

]
Total Minutes in Bed ‖Sleep Awakening Time− Preceding Sedentary Time‖

Total Sleep Time ‖Sleep Period Duration−WASO− Latency‖

Sleep Efficiency Total Sleep Time/Total Minutes in Bed

of continuous sleep [60]. We propose a modified definition,
that allows for automatic evaluation and deems sleep diaries
unnecessary. As a result, we can infer the “bedtime” of an
individual in reverse, based on their sedentary activity before
the onset of sleep. Epoch records that contain no triaxial
movement, 0 steps taken, and an inclinometer output of not
lying down, are candidate sleep records, and are further tested
for whether they are a component of the sleep period. We
define sleep-onset-time as the first candidate epoch record in
a series of 15 continuous candidate sleep minutes. Likewise,
the sleep-awakening-time is defined as the last epoch record
in a series of 15 continuous candidate sleep minutes, that is
followed by 30 continuous non-candidate sleep minutes, (i.e.
30 minutes of active awake time). The sleep period duration
can be computed as the time passed between sleep onset and
sleep awakening.

Within the sleep period, there are periods of unrest or
wakefulness. For example, when a user re-adjusts positions,
or uses the bathroom. If the duration of movement exceeds
5 consecutive minutes of activity, it is marked as a time of
“wakefulness.” The total sum of all moments of wakefulness
is referred to as wake-after-sleep-onset, also known as WASO.

Immediately preceding the start of the sleep onset, is the
time-in-bed, which quantifies the sedentary time an individual
spends before they have fallen asleep. This sedentary time can
be observed in the actigraph accelerometer data. The time that

the preceding sedentary activity begins until the time of the
sleep onset is called the sleep latency.

From the aforementioned values, total sleep time and an
overall sleep efficiency score can be deduced. Total sleep time
covers the defined sleep period, less the wake after sleep onset
time and less the latency. Lastly, sleep efficiency is the ratio
of total sleep time to total minutes in bed. All of the above
definitions are summarised in Table I, and visualised in Fig. 1.
In this study, we use sleep efficiency as the metric to measure
sleep quality [61] among other metrics such as latency, wake
after sleep onset, awakening index, total sleep time, etc. [62].

V. METHODOLOGY

Our methodology for RAHAR is shown algorithmically in
Fig. 2. We elaborate on the details of our algorithm in the
sequel.

A. Pre-Processing

The accelerometer of choice, Actigraph GT3X+, sampled
each person’s activity at 30-100 Hertz. The stored data in-
cluded the triaxial accelerometer coordinates as well as a
computed epoch step count based on the vertical axis, and
post-processed inclinometer orientation. This raw data was
downloaded and aggregated to a minute-by-minute granularity.
An epoch of one minute was selected in order to optimise the
interpretability of the physical activity [63], as well as for

3



Fig. 3: Classification labelling of each change point interval during an example awake time

1: input: Raw accelerometer data
2: output: Time-series segments with activity intensity level

annotations
3: for all segment (daily or otherwise) do
4: for all epoch (minutes, hour, etc.) do
5: implement activity cut points
6: end for
7: change points ← implement hierarchical divisive esti-

mation
8: change point intervals ← divide time series by change

points
9: end for

10: for all change point interval do
11: activity mode ← statistical mode of cut points
12: end for

Fig. 2: Algorithm for Robust Automated Human Activity
Recognition (RAHAR).

implementing the state-of-the-art cut point methodology [64].
In other contexts, a different granularity may be sufficient.

B. Automated Annotation and Segmentation

Due to the context of sleep disorders, sleep periods needed
to be annotated within the raw ActiGraph output. Candidate
sleep records, epochs with no triaxial movement, 0 steps taken,
and an inclinometer output of not lying down, were identified
in the time series and tested to find the sleep onset time,
and sleep awakening time. The details of this terminology
is elaborated in the preliminaries section. All test instances
that fell within these two boundary times, were annotated as
“Sleep,” and constituted the sleep period.

Whilst analysing the data, we found that several participants
had multiple sleep periods in a day, implying that they took
daily naps or followed a polyphasic, or biphasic, sleep pattern.
Upon closer analysis of the length and time of the sleep
period, no discernible patterns were visible. Thus we opted to
segment the time series by the end of a sleep period rather
than the traditional approach of segmenting by day. Each
sleep period was linked to its preceding activity, extending
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until the previous sleep period. We refer to these segments as
sleep-wake segments. The result of this decision is that the
activity immediately before each sleep period is used for the
correlation analysis for its subsequent sleep period, rather than
the total for that day.

C. Activity Mode Detection

The actigraph accelerometer data contains post-filtered
“counts” for each of the axes. These counts quantify the
frequency and intensity of the user’s activity3. Using Troiano’s
cut point scale [64], the age of a user, and their accelerometer
triaxial count, each epoch is labeled with an intensity level:
Sedentary, Light, Moderate, or Vigorous. Since each epoch is
1 minute in length, this provides an unnecessary granularity
to an individual’s activity levels and is highly subject to noise.
We “smooth” the activity intensity levels over activity modes
using change point detection.

Once the time series is segmented into sleep-wake segments,
we identify the distinctive activity modes using the multi-
ple change point detection algorithm, hierarchical divisive
estimation [65]. We tested the change points to a statistical
significance level of 0.01 and used a maximum number of
random permutations of 99. Each change point result is treated
as the interval boundaries for distinctive activity modes.

Each sleep-wake segment now consists of a series of change
point intervals. The activity intensity classification label for
each change point interval is computed by taking the statistical
mode of the minute-by-minute labels over every epoch existing
within the interval. Fig. 3 illustrates the classification labelling
of an individual’s awake time.

D. Modeling

In sleep science, sleep quality is defined by a number of
metrics, including total sleep time, wake after sleep onset,
awakening index, and sleep efficiency [62]. In our analysis,
we focus on sleep efficiency metric for our experiments [61].
Sleep efficiency is computed as a numerical value ranging
from 0 to 1. According to specialists, a sleep efficiency below
0.85 (i.e., 85%) indicates poor sleep quality. Thus, each sleep
period can be classified as having “good sleep efficiency” or
“poor sleep efficiency” [66].

To model the effect of daily physical activity on sleep, the
duration of each intensity level of activity was aggregated over
the sleep-wake segment. The percentage of awake time in each
mode was used as the model input.

VI. EXPERIMENTS AND RESULTS

RAHAR is fundamentally a feature extraction algorithm
for HAR in the context of quantifying daily physical activity
levels of individuals. We therefore test the quality of activity
recognition by RAHAR as compared to an expert-based HAR
using a tool on continuous physical activity data from a
wearable sensor. Since there is no ground truth on human
activity in this context, our objective is to evaluate which HAR

3http://actigraphcorp.com/wp-content/uploads/2015/06/ActiGraph-White-
Paper What-is-a-Count .pdf

approach leads to better quality models for sleep research,
i.e., models for predicting sleep quality, specifically, sleep
efficiency.

We selected four models for evaluating the performance of
RAHAR against the performance of an expert-based HAR
using a tool on the described actigraphy dataset: logistic
regression, support vector machines with radial basis function
kernel, random forest, and adaboost.

• Logistic Regression (LogR): We chose this model be-
cause it is an easily interpretable binary classifier. It is
also relatively robust to noise, which as explained earlier
is a complication on data collected in an uncontrolled
environment.4

• Support Vector Machine (SVM): This model was selected
because it, also, is a binary classifier. We chose a radial
basis function kernel, and so it differs from logistic
regression in that it does not linearly divide the data.

• Random Forest (RF): This model was tested as an alter-
native because of its easy straightforward interpretation,
which is particularly relevant in the healthcare or con-
sumer domains. It also is not restricted to linearly dividing
the data.

• Adaboost (Ada): Lastly, Adaboost was tested because it
is less prone to overfitting than random forest.

For comparison purposes, we use the results from a sleep
specialist using Actigraph’s ActiLife software as a baseline.
The sleep specialist segmentation of the ActiLife results uses
the preceding day’s activity for each sleep period, and aggre-
gates the activity to an epoch of an hour. ActiLife requires the
sleep specialist to manually adjust the sleep period boundaries,
and then automatically computes the efficiency and other sleep
metrics.

Figs. 4a and 4b show the ROC curves for RAHAR and the
sleep expert using ActiLife software (denoted as “SE+AL”),
respectively, while Table II summarises the results for both
RAHAR and SE+AL. One of the most important performance
measures for HAR is the area under ROC (AU-ROC). Based
on AU-ROC scores, both RAHAR and SE+AL performed
best with random forest model. Furthermore, SE+AL achieved
an average AU-ROC of 0.7246 whereas RAHAR achieved
0.8355, a 15% improvement of AU-ROC score on average by
our algorithm as opposed to the sleep expert using ActiLife.
With an AU-ROC score of 0.5884 for SE+AL approach, the
logistic regression model was, however, unable to stratify the
dataset, and so predicted all cases to be in a single class.
We considered this to be a failure of the logistic regression
model for this problem, and thus, did not include its results in
our discussion whenever it was appropriate to do so. For this
reason, the misleading results have also been removed from
Table II.

4Even though we included logistic regression (LogR) in our experiments, it
is important to note that LogR model failed to stratify the dataset successfully
for the state-of-the-art baseline approach, and predicted all cases to be in a
single class. Therefore, we excluded LogR score of RAHAR from analysis
whenever corresponding LogR score of the state-of-the-art baseline approach
was not available.
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Fig. 4: ROC curves for sleep efficiency

(a) RAHAR (b) Sleep Expert + ActiLife

TABLE II: Sleep efficiency results

AU-ROC F1 Score Recall Precision Accuracy
SE+AL RAHAR SE+AL RAHAR SE+AL RAHAR SE+AL RAHAR SE+AL RAHAR

Ada 0.7489 0.8132 0.5574 0.6885 0.5484 0.5526 0.5667 0.9130 0.6966 0.7206
RF 0.8115 0.8746 0.6885 0.7500 0.6774 0.6316 0.7000 0.9231 0.7865 0.7647

SVM 0.7497 0.7895 0.3721 0.7077 0.2581 0.6053 0.6667 0.8519 0.6966 0.7206
LogR 0.5884 0.8649 - 0.6875 - 0.5789 - 0.8462 - 0.7059

Average 0.7246 0.8355 0.5393* 0.7154* 0.4946* 0.5965* 0.6445* 0.8960* 0.7266* 0.7353*
* logistic regression (LogR) score is not included in averaging.

Fig. 5: Comparison of the performance of random forest model for each approach

(a) ROC (b) Sensitivity-Specificity
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TABLE III: Sleep efficiency – sensitivity and specificity

AU-ROC F1 Score Sensitivity Specificity
SE+AL RAHAR SE+AL RAHAR SE+AL RAHAR SE+AL RAHAR

Ada 0.7489 0.8132 0.5574 0.6885 0.5484 0.5526 0.7759 0.9333
RF 0.8115 0.8746 0.6885 0.7500 0.6774 0.6316 0.8448 0.9333

SVM 0.7497 0.7895 0.3721 0.7077 0.2581 0.6053 0.9310 0.8667
LogR 0.5884 0.8649 - 0.6875 - 0.5789 - 0.8667

Average 0.7246 0.8355 0.5393* 0.7154* 0.4946* 0.5965* 0.8505* 0.9111*
* logistic regression (LogR) score is not included in averaging.

Another important performance measure for HAR is the F1
score, which is computed as the harmonic mean of precision
and recall. According to Table II, RAHAR performed better
than SE+AL in terms of precision and recall for all models,
and hence, yielded significantly higher F1 scores. Specifically,
F1 score for RAHAR, on average, was 0.7154 whereas it
was 0.5393 for SE+AL (excluding logistic regression in both
cases), yielding a solid margin of about 0.18 points (i.e., more
than 30% improvement). On the other hand, the accuracy
scores, on average, were 0.7353 for RAHAR and 0.7266 for
SE+AL (again excluding logistic regression), and exhibited a
relatively less significant difference still in favor of RAHAR.

VII. DISCUSSION OF RESULTS IN MEDICAL CONTEXT

In this section we discuss the results of the best performing
model and its broader impact to the area of sleep science.
As seen in Fig. 4 random forest and logistic regression were
the two best performing models with the RAHAR algorithm.
Based on the desired threshold value of true positive rate,
TPR, (i.e., sensitivity), either model could be preferred to
minimize false positive rate, FPR, (i.e., 1-specificity), which
is equivalent to maximizing specificity. Random forest was
also the best performing model for the SE+AL approach as
mentioned earlier. If we compare the ROC as well as the
sensitivity-specificity plots of the best model of each approach
(i.e., random forest), we see that RAHAR outperforms SE+AL
almost always as illustrated in Fig. 5.

Table III, on the other hand, summarises sensitivity and
specificity scores for RAHAR and SE+AL. Average sensitivity
score for SE+AL and RAHAR across all models except
logistic regression were 0.4946 and 0.5965, respectively. In
other words, average sensitivity score for RAHAR is 20%
higher than that of SE+AL. As for specificity, RAHAR with an
average score of 0.9111 outperforms SE+AL with an average
score of 0.8505, which corresponds to a 7% improvement.

As we seek to determine in our study whether a person had
a “good quality sleep” based on his physical activity levels
during awake period prior to sleep, a false positive occurs
when the model predicts “good quality sleep” when the person
actually had a “poor quality sleep.” Therefore, the number of
false positives needs to be kept at a minimum for a desired
number of true positives. In other words, a high specificity
score is sought after while keeping the sensitivity score at
the desired level. As can be seen from Fig. 5b with this
perspective in mind, for a large range of sensitivity scores,
RAHAR achieved higher specificity scores almost all the time

than SE+AL did. For example, RAHAR achieved a sensitivity
score of 0.9 with a specificity score of 0.8 whereas SE+AL
remained at a specificity score of 0.6 for the same sensitivity
threshold.

In summary, RAHAR outperforms state-of-the-art proce-
dure in sleep research in many aspects. However, its appli-
cation is not limited to sleep and it can be used for under-
standing and treatment of other health issues such as obesity,
diabetes, or cardiac diseases. Moreover, RAHAR allows for
fully automated interpretation without the necessity of manual
input or subjective self-reporting.

Given the current interest in deep learning, a natural ques-
tion that may arise is why an approach based on feature
extraction and model building has been used instead of using
deep learning models directly on the raw sensor data for
HAR. In medical community, the explainability of a model
is of utmost important as the medical professionals are inter-
ested in learning cause-and-effect relationships and using this
knowledge to support their decision making processes. In this
particular case, for example, sleep experts are interested in
understanding how and when certain physical activity levels
effect sleep in order to make decisions to improve sleep
quality of individuals accordingly. However, it is an interesting
idea to explore deep learning to see what is the best model
from a model accuracy perspective to understand the limits
of the value of continuous monitoring of individuals’ physical
activity, not only from a medical perspective in particular but
also from a “quantified self” perspective in general.

VIII. CONCLUSION

In this paper, we presented a robust automated human
activity recognition (RAHAR) algorithm for multi-modal phe-
nomena, and evaluated its performance in the application area
of sleep science. We tested the results of RAHAR against the
results of a sleep expert using ActiLife for predicting sleep
quality, specifically, sleep efficiency. Our model a) automated
the activity recognition, and b) improved the current state-of-
the-art results, on average, by 15% in terms of AU-ROC and
30% in terms of F1 scores across different models. Automating
the human activity recognition puts sleep science evaluation
in the hands of wearable device users. This empowers users
to self-monitor their sleep-wake habits, and take action to
improve the quality of their life. The improved results demon-
strate the robustness of RAHAR as well as the capabilities of
implementing the algorithm within clinical software such as
ActiLife.
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The application of RAHAR is, however, not limited to sleep
science. It can be used to monitor physical activity levels and
patterns of individuals with other health issues such as obesity,
diabetes, and cardiac diseases. Besides, RAHAR can also be
used in the general context of the “quantified self” movement,
and provide individuals actionable information about their
overall fitness levels.
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