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Abstract — We propose a new variant of the Correlation-based 

Feature Selection (CFS) method for coping with longitudinal data 
– where variables are repeatedly measured across different time 
points. The proposed CFS variant is evaluated on ten datasets 
created using data from the English Longitudinal Study of Ageing 
(ELSA), with different age-related diseases used as the class 
variables to be predicted. The results show that, overall, the 
proposed CFS variant leads to better predictive performance than 
the standard CFS and the baseline approach of no feature 
selection, when using Naïve Bayes and J48 decision tree induction 
as classification algorithms (although the difference in 
performance is very small in the results for J4.8). We also report 
the most relevant features selected by J48 across the datasets. 

Keywords — classification, feature selection, longitudinal data, 
age-related diseases 

I.� INTRODUCTION�
In machine learning, a classification algorithm aims to find 

a predictive relationship between features and the class 
variable. This is done by building a classification model from 
pre-classified instances. Afterwards, this model is used to 
predict the class label of previously unseen instances.  

In classification datasets with a large number of features, 
feature selection methods are often applied in a data pre-
processing step [1]–[3] in order to remove irrelevant or 
redundant features. This can lead to higher predictive accuracy 
and reduce the training time of classification algorithms.  

The vast majority of works on the classification task focus 
on analysing the standard type of classification data, where each 
variable is measured at a single time point, so that there is no 
explicit temporal structure in the data. However, many 
important data sources – particularly in the biomedical domain 
– contain longitudinal data, where the values of a variable are 
repeatedly measured across several time points  (often called 
waves) [4]. For instance, many hospital databases contain 
records with blood test results measured for the same patient 
across many time points. 

In this work, we address the feature selection task, in the 
special context of longitudinal data. When analysing 
longitudinal data, a standard feature selection method would 
typically ignore the temporal nature of the features and treat 
each feature value at a given time point as a separate feature. 
That is, a standard algorithm would ignore the important 
difference between values of the same feature (measuring the 
same property of an instance) across different time points and 

values of fundamentally different features (measuring different 
properties of an instance) at the same time point.  

In order to mitigate the above limitation of standard feature 
selection methods, we propose an adaptation of the well-known 
Correlation-based Feature Selection (CFS) method [5] to the 
context of longitudinal classification. The proposed adaptation 
of CFS works in two phases. First, it explicitly treats different 
values of the same feature across all time points as the same 
group of temporally related features, performing feature 
selection separately within each group of such related features. 
Second, it merges the selected features across all the groups in 
order to produce a single set of selected features which is then 
used as input by classification algorithms.  

The proposed adaptation of CFS was evaluated on 10 
longitudinal classification datasets created in this work using 
data from the English Longitudinal Study of Ageing (ELSA) 
[6]. Each dataset was involved in a classification task where the 
goal was to predict whether or not an individual would have an 
age-related disease, based mainly on the values of biomedical 
features measured for that individual in previous time points. 

The experimental results showed that the proposed 
adaptation of CFS obtained, overall, higher predictive accuracy 
than the standard CFS (which ignores the temporal nature of the 
features) and the natural baseline approach of not performing 
feature selection in the created datasets. 

This paper is organised as follows. Section II presents 
background and related work. Section III describes how the 
longitudinal datasets were created. Section IV introduces the 
proposed extension to the correlation-based feature selection 
method. Section V reports the computational results. Section VI 
presents the conclusion. 

II.� BACKGROUND 

A.� Feature Selection 

In the classification task, feature selection is often 
performed in a data preprocessing step to select a subset of 
relevant features out of all original features. There are several 
motivations for feature selection [1], [2]. The main one is to 
remove irrelevant, noisy, or redundant features, which can 
reduce the predictive accuracy of the classification model [2]. 
In addition, identifying the most relevant features is a form of 
discovered knowledge by itself. Moreover, feature selection can 
improve the interpretability of the classification model due to 
the smaller number of features used to build the model. Finally, 
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reducing the number of features can substantially speed up the 
execution of the classification algorithm.  

In general feature selection methods have two components: 
a search method which decides how to generate new subsets of 
features to be evaluated, and an evaluation function which 
assigns a numerical quality value to each candidate feature 
subset. There are three types of feature selection approaches. 
The first one is the filter approach [3], which evaluates a feature 
subset without running the target classification algorithm – i.e. 
the algorithm that will use the selected features to build a 
classification model. Typically, the filter method uses simple 
statistical tests as an evaluation function. Clearly, the main 
advantage of this approach is that it is relatively fast.  

In contrast, the wrapper and embedded approaches require 
running the target classification algorithm. The former 
evaluates the quality of a candidate feature subset by measuring 
the predictive accuracy (on training data) of the classification 
model built with that feature subset. This approach is very time 
consuming, since it requires many runs of a classification 
algorithm. The embedded approach builds a classification 
model and carries out feature selection at the same time. For 
example, when building a decision tree, the relevant features 
are automatically selected by the algorithm. This approach can 
also be very time consuming, depending on the classification 
algorithm used. In this work we use the filter approach, which 
is faster and more scalable to a large number of features.  

B.� Correlation-based Feature Selection 
Correlation-based Feature Selection (CFS) is a filter 

method which evaluates candidate feature subsets based on the 
following principle: good feature subsets contain features 
highly correlated with the class variable, but uncorrelated with 
each other, i.e., with little or no redundancy among features. To 
implement this principle, the standard CFS method [5] tries to 
(a) maximize the average correlation between each feature in a 
candidate subset and the class variable and (b) minimize the 
average correlation between each pair of features in a candidate 
subset.  

C.� Longitudinal Classification 

Unlike standard (non-longitudinal) datasets, longitudinal 
datasets consist of features whose values are assigned at 
multiple time points for each instance in a dataset. For example, 
a health-survey dataset, where instances represent patients, 
could contain features representing the results of different blood 
sample tests across several successive years. From a machine 
learning perspective, this type of datasets has temporal 
information about the features: how each feature’s values 
change across time. In general, conventional classification 
algorithms do not explicitly exploit this temporal information, 
since they treat all occurrences of a feature in the same way 
regardless of how recent the feature values are.  

In addition, the different values of a feature across time can 
exhibit some temporal redundancy in the sense that the value of 
a feature at a given time point may be correlated with values of 
the same feature in other time points (particularly closer time 
points). This is generally known as autocorrelation in the area 
of time series. Again, this kind of temporal redundancy is not 

explicitly detected by non-longitudinal classification or feature 
selection algorithms, which would not distinguish between 
measuring the correlation between two values of the same 
feature in two different time points (temporal redundancy) and 
measuring correlation between the values of two very different 
features at the same time point (non-temporal redundancy). By 
identifying these two types of redundancy, one can develop a 
feature selection algorithm that exploits the difference between 
them in order to try to improve the effectiveness of the feature 
selection procedure as will be seen in the later section. 

In general, there are two approaches for longitudinal 
classification. The first one is the problem transformation 
approach, which transforms a longitudinal dataset into a non-
longitudinal dataset before applying a conventional 
classification algorithm. The second approach is the algorithm-
adaptation approach which adapts a non-longitudinal 
classification algorithm for longitudinal datasets. In this paper, 
we focus on the problem transformation approach, which is 
more generic (algorithm-independent), so that we can apply 
different classification algorithms and analyse different types of 
classification models. 

As mentioned earlier, CFS can eliminate redundant and 
irrelevant features, but standard CFS ignores the temporal 
relation among the features so that it does not explicitly address 
the above mentioned temporal redundancy as a specific issue in 
longitudinal datasets. In the next Section, we briefly review 
related work on longitudinal feature selection methods, which 
were explicitly designed for longitudinal classification data. 

D.� Related Work on Longitudinal Feature Selection 
Although there is a huge literature on conventional (non-

longitudinal) feature selection [1]–[3], there are relatively few 
published studies on longitudinal feature selection for 
classification tasks. Here we briefly discuss the longitudinal 
feature selection methods most related to our work. 

In [7], a longitudinal feature selection method was 
proposed for temporal gene expression data. They used the 
Minimum Redundancy Maximum Relevance (mRMR) method, 
whose evaluation function is conceptually similar to the CFS’ 
one, based on maximising the candidate features’ relevance 
with respect to the class variable and minimising redundancy 
among candidate features. A feature’s degree of relevance is 
computed by the mean of the F-statistic over all the time points. 
A drawback is that the degree of relevance is averaged across 
all time points, ignoring that feature values at recent time points 
are intuitively more relevant for class prediction than older 
feature values. Also, the F-statistic makes the strong 
assumption that the data are normally distributed. The degree 
of redundancy among features is measured by using Dynamic 
Time Warping (DTW), also used in [8]. 

Another related work is [9], which proposed a margin-
based feature selection method which transforms a feature 
space into a weighted feature space. A temporal margin is 
defined based on a measure of distance between two-time 
points, and then it selects the features with large weights that 
maximise each temporal margin. This method only considers a 
feature’s relevance with respect to the class. In other words, the 
redundancy among features is ignored. 
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III.� DATA PREPARATION 
The classification datasets created in this work were 

derived from the English Longitudinal Study of Ageing (ELSA) 
[6] – https://www.elsa-project.ac.uk/. The ELSA study is a 
longitudinal survey of ageing and quality of life among older 
people that explores the dynamic relationships between health 
and functioning, social networks and participation, and 
economic position as people plan for, move into and progress 
beyond retirement. In this work, however, we focus only on the 
biomedical data in ELSA, such as the results of blood tests and 
other data collected by nurses, and the relationship between that 
data and the health status of patients, as will be described in 
more detail later. The ELSA subjects were recruited from a 
representative sample of the English population, who lived in 
private households, aged 50 and over [6]. The data was 
collected every two years: each data collection period was 
referred to as a ‘wave’, so that we can observe the variation of 
each feature’s values for each individual across those waves. In 
total, seven waves of data were collected and have well-
documented data. 

It should be noted that the data in the ELSA database was 
not collected specifically for machine learning purposes. 
Hence, we had to spend a large amount of time with data 
preparation for the classification task. The first step was to 
define the instances (objects to be classified), the classes and 
the predictive features used for classification. In essence, the 
instances represent individuals in the ELSA database, the class 
variables represent age-related diseases and the features 
represent biomedical information collected by nurses or other 
relevant characteristics of an individual (age and gender). We 
next describe data preparation in detail.  

A.� Creating class variables representing age-related diseases 
We aim at building classification models which help us 

understand what health factors play an important role in 
predicting whether or not a patient will have a certain age-
related disease in the future. Therefore, we looked into the 
ELSA core data, and then identified ten age-related diseases, 
each used as a class variable in this work. These diseases were 
angina, arthritis, cataract, dementia, diabetes, high blood 
pressure, heart attack, osteoporosis, Parkinson’s and stroke. 
Hence, we created ten datasets, each one with a different disease 
as the class variable to be predicted. More precisely, in each 
dataset, the binary class variable indicated the presence or 
absence of the corresponding disease in wave 7 (the most recent 
wave in ELSA). 

Note that, for each disease, there was no variable in the 
ELSA database that directly indicated whether or not an 
individual had that disease in a given wave. This kind of 
information was rather represented indirectly by several related 
variables whose values depend on both whether or not the 
individual (patient) had the target disease in the past and 
whether or not the patient still has the disease or whether the 
disease was first diagnosed in the current wave. Therefore, we 
needed to create a well-defined class variable for each disease 
separately, combining information from the several related 
variables associated with that disease. In order to create such 
class variables, in general, the following rule was used for each 

disease, combining information about that disease’s variables 
in wave 7: 

IF (“whether confirms the disease diagnosis” = “yes”)  
OR (“whether still has the disease” = “yes”)  
OR (“the disease diagnosis newly reported” = “yes”)  
THEN Disease = “yes” 
OTHERWISE Disease = “no”. 
In this rule, the terms between double quotes just before 

each “=” sign in the “IF” condition refer to original variables in 
ELSA’s wave 7 core data. Note that, although each dataset had 
a different class variable, all datasets contained instances 
representing the same individuals and the same set of predictive 
features (described next). 

B.� Creating predictive features based mainly on Nurse data 
In the created datasets, most features were created from 

raw variables available in the Nurse Visit data, part of the 
previously discussed ELSA database [6]. Those raw variables 
represent several types of biomedical information collected by 
a nurse, including for instance many types of blood sample 
tests. In addition, the nurse took several physical performance 
measurements that involved asking a patient to move his/her 
body in different ways. If a particular movement could not be 
done by the participant or he/she felt that it was unsafe, the 
attempt was marked as ‘Not attempted’ or ‘Test not completed’. 
The Nurse variables were only available at ELSA waves 2, 4, 
and 6, so our created datasets contained only features for these 
waves. These features were then used to predict age-related 
diseases (classes) at the later wave 7, whose data were collected 
about two years later than the data in wave 6. 

As mentioned earlier, the raw biomedical variables 
collected by the nurses were not collected specifically for 
machine learning and they also contained a large amount of 
obviously redundant or irrelevant information. Hence, we have 
created features for classification by extracting and combining 
information from the raw variables in the Nurse data files, as 
follows. First of all, we kept potentially predictive variables 
from the Nurse data, whilst many other variables which seemed 
intuitively useless for predicting age-related diseases were 
removed because such variables were collected mainly to 
record problems in data collection for other variables. For 
example, several variables capturing information such as the 
reasons why taking a blood sample test was refused by a patient, 
and information about several types of problems in some 
physical performance measurements were discarded. 

In addition, many variables in the Nurse data represented 
clearly redundant information in cases where the same variable 
(e.g. the result of a blood test) was measured three different 
time-points in the same wave in order to represent the 
variability in test results. This resulted in duplication of 
variables representing the same biomedical property in each 
wave, and none of those three measures can be considered 
‘better’ than the other two. Hence, instead of using any of the 
three underlying variables, we created a feature defined as the 
mean value over those three measures, for each individual 
(instance), for each wave. 

Another point to consider was the occurrence of different 
types of missing values in many raw variables in the Nurse data, 
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which were originally labelled as different negative values as 
follows (using as an example a blood test result variable): 
•� ���������	

��
	����
•� ���������������
����
����������
��
����������	�������	���
•� �������������� �
•� �!���"��#�	��
•� ������$������	�
��������	����

Considering all these types of missing values separately 
would considerably complicate the task of the classification 
algorithms. Hence, to simplify, all these different negative 
values were assumed to have the same meaning of “missing 
value”, so that we treated them in the same way by replacing all 
of them with the missing value symbol “?” (used in WEKA). 

In addition to features created from Nurse data, we also 
included in our datasets two features directly extracted from the 
Core files in ELSA which intuitively represent potentially very 
relevant information for predicting age-related diseases, namely 
the features “w7indager” (age) and “indsex” (gender). 

Finally, the most important point when creating the 
instances used in our datasets was that only the data from “core” 
members were used, that is, the ELSA records of their partners 
were ignored. The ELSA variable “idauniq”, which was a 
unique id for each individual, was added to our datasets to 
match up data about the same core member in different dataset 
files (across different waves). This variable was not used for 
classification purposes as it had no predictive power. Note that 
an instance was created for an individual only if that individual 
participated in wave 7, so the class variable values were 
available for all individuals in all datasets. However, some 
individuals in our datasets may not have participated in all 
waves used to create features (waves 2, 4 and 6). If an individual 
did not participate in a given wave, the corresponding features 
in that wave would have a missing value for that individual, and 
the feature selection and classification algorithms cope with 
those missing values in their own ways. 

C.� Constructing Longitudinal Features 
Recall that the features created from variables in the Nurse 

data (the vast majority of features in the created datasets) were 
measured across three different time-points (waves), namely 
waves 2, 4 and 6 of the ELSA database. We used the term 
“conceptual feature” to refer to the abstract concept of such a 
feature regardless of its observed value in any given wave. For 
instance, “chol” (Blood total cholesterol level) was a conceptual 
(abstract) feature which was associated with three actual 
features, w2chol, w4chol and w6chol, which represented the 
observed value of that variable in waves 2, 4, and 6. For each 
conceptual feature, we created new features trying to capture 
temporal trends in the variation of that feature’s values across 
the three waves, as follows. 

First of all, we created m groups of temporally related 
features, thus one group for each of the m conceptual features. 
Each group considered all temporal variations of a conceptual 
feature across waves 2, 4 and 6, which were the waves before 
the wave with the class to be predicted (wave 7). Thus, each 
group contained observed features that were the variations of a 
conceptual feature across different waves. In the next step, these 

observed features were used to create six different types of 
Constructed Longitudinal Features (CLFs). Note that these 
CLFs only work for continuous (real-valued) observed features. 

The first CLF was mono_w246, indicating whether the 
value of a base feature monotonically increased or decreased 
across waves 2, 4 and 6; as follows. Let f(2), f(4), f(6) be numeric 
values of feature f in waves 2, 4, 6. Then, f_mono_w246 
(mono_w246 for feature f) has the value 1 (monotonic increase) 
if f(2) < f(4) < f(6), value -1�(monotonic decrease) if f(2) > f(4) > f(6), 
or value 0 (no monotonic property) otherwise. However, a few 
features had their values observed in only two waves, so that a 
mono_w246 variable for such features cannot be created using 
the rule mentioned above. For such features, we created instead 
the CLF up_wt1t2, indicating whether the values of f in the two 
time-indices (wave numbers) t1 and t2 go up or not. For instance, 
f_up_w24 has the value 1 if f(2) < f(4), or value 0 otherwise. Note 
that if the value of the feature is missing in any of the waves, 
either of these CLFs has a missing value (denoted by “?”). 

Each of the other CLFs represents the difference between 
the values of a pair of features referring to the same conceptual 
feature in two different waves. Let f_diff_wt1t2 denote the 
difference between the values of feature f in the two time-
indices (wave numbers) t1 and t2, for each of the three pairs of 
waves where t2 > t1. Then, these CLFs are defined as follows: 

•� ����������	
	����	
	����	
•� ����������	
	����	
	����	
•� ����������	
	����	
	����	

Hence, positive (negative) values of these constructed features 
denote an increase (decrease) in the value of feature f with time.  

Table 1 shows the full set of 44 conceptual features used in 
all the datasets created in this work. This table shows, for each 
conceptual feature, its name and its description or definition in 
the ELSA database [6], the data source used to create the 
features. Note that the first 2 features, name age and gender, had 
one value for each individual, whereas the other 42 rows 
represent features from the Nurse data in ELSA which, in 
general, were longitudinal features with different values across 
waves (time points) for each individual. 36 of these 42 
longitudinal features had values in three waves, whereas the 
other 6 were only available in some waves. This could be 
explained as follows: one feature (apoe) occurred only in wave 
2, three features (hipval, whval, htpf) occurred only in waves 2 
and 4, and two features (wbc, mch) occurred only in waves 4 
and 6. Since 5 conceptual features had values in only two 
waves, each of these generated 3 features in our datasets (one 
feature for each of the two waves plus two CLFs). Furthermore, 
out of the 36 conceptual features having values in 3 waves, there 
were 22 conceptual features whose values were continuous 
(real-valued). Therefore, each of those 22 conceptual features 
generated 7 features in our datasets (one feature for each wave 
plus four CLFs). Table 2 shows the six types of CLFs, as 
explained earlier. The total number of features is 219. 

Regarding missing values, a common approach in standard 
non-longitudinal classification is to replace a missing value by 
a default value, typically the mean of the known values of the 
feature across the dataset, in the case of numerical features; or 
the mode, in the case of nominal features. 
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Table 1: All conceptual features used in the created data sets 
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However, in our context of the constructed temporal 
difference features for longitudinal classification, we can 
exploit additional temporal information about feature values 
when calculating the value that will replace the missing value 
(instead of using a pre-defined default value), as follows.  

Let i and j be the indices of two waves associated with a 
temporal difference feature based on a given feature f, denoted 
by (f_diff_wij). If the value of the base feature f is missing for a 
given individual (instance) x in one of those two waves (say 
wave i), and the value of f is known in the other two waves (j 
and k), then the missing value of the constructed f_diff_wij 
feature for x will be replaced by a value calculated by equation 
(1), where wave index k denotes the “third” wave (i.e. nor wave 
i nor wave j) available in the dataset, so that data from all three 
waves are used to estimate the missing value. 

 

����������� 	
��������
�����
��������������


������������
�
 (1) 

 
In equation (1), mean_f_diff_wij and mean_f_diff_wkj are 

the mean values of all known values of the constructed f_diff 
features for the corresponding waves. For example, if the value 
of f is missing in wave 4 for a given individual x, the value of 
the constructed feature f_diff_w24 for x is computed as:  

f_diff_w26x × (mean_f_diff_w24x / mean_f_diff_w26x). 
The motivation for this approach is that it considers not 

only the known values of f for other individuals in wave i, but 
also the known values of f for both the same individual and 
other individuals in waves j and k. In other words, the ratio 
mean_f_diff_wij to mean_f_diff_wkj acts as a normalization 
factor, correcting for the different scales of f_diff values in 
different time periods. Note that this method only copes with 
the missing values for the constructed features,  i.e., it does not 
attempt to fill in the missing values for the base feature. This 
latter possibility is left for future research. 

IV.� THE PROPOSED VARIANT OF CORRELATION-BASED 
FEATURE SELECTION FOR LONGITUDINAL DATA 

The proposed variant of the CFS method is based on the 
idea of first dividing the set of features into groups of 
temporally related features, with one group for each conceptual 
feature (see Section III-C). Each group contains two types of 

features: (a) all features representing different values of a 
conceptual feature across the different waves (time points); and 
(b) Constructed Longitudinal Features (CLFs) for the 
corresponding conceptual feature. For instance, the group of 
features for the conceptual feature “chol” (cholesterol level) 
contains seven features: w2chol, w4chol, w6chol, 
chol_mono_w246, chol_diff_w24, chol_diff_w46 and 
chol_diff_w26; where the first 3 features are the chol values at 
waves 2, 4 and 6, and the last four features are CLFs. 

In general, exhaustive search evaluates all possible feature 
subsets and selects the best candidate feature subset based on 
the CFS Merit function. For a given set of n candidate features, 
the time complexity of this method is ��. The exhaustive search 
method is computationally feasible only if the number of 
candidate features is relatively small. This is the case for each 
feature group in this work, where the number of features in each 
group is at most 7 (three observed features and four CLFs). 
Therefore, in order to address the temporal redundancy problem 
mentioned in Section III, the exhaustive search is applied to 
each feature group separately. We call this the Exhaustive CFS 
per Group (Exh-CFS-Gr) method. Afterwards, we merge all 
groups of selected features, so a single feature subset is obtained 
and output as the result of the feature selection process. The 
basic idea of the proposed Exh-CFS-Gr method is summarized 
in graphical form in Figure 1.  
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Table 2: The six types of proposed Constructed Longitudinal Features (CLFs) 

Figure 1: The basic idea of the proposed Exh-CFS-Gr method 
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V.� COMPUTATIONAL RESULTS 

A.� Experimental Methodology 
We report results for 10 datasets created from the ELSA 

data, as described earlier. Recall that each dataset had a 
different age-related disease in wave 7 as the class variable to 
be predicted, whilst all datasets had the same predictive features 
(derived in general from waves 2, 4, and 6). Predictive accuracy 
was measured by the F-measure, the harmonic mean between 
Precision and Recall [10], given by equation (2), 

 

�-
������ 	 ��
����������×�������
����������+�������

 (2) 

 
where Precision is the proportion of instances predicted as 
positive which are really positive and Recall is the proportion 
of positive instances that were correctly predicted as positive. 
To compute these measures, each class label (presence or 
absence of the disease) was considered in turn as the positive 
class and the reported F-measure is the arithmetic (unweighted) 
mean of the F-measures for the two class labels. We report 
results for three feature selection approaches: the proposed 
Exh-CFS-Gr method, standard CFS, and no feature selection. 
Each of these approaches was evaluated using two 
classification algorithms, namely Naïve Bayes and the decision 
tree algorithm J48. All experiments were performed using the 
WEKA tool [11] using 10-fold  cross-validation. 

B.� Predictive Accuracy Results 
Table 3 compares the F-measure values obtained by Naïve 

Bayes (NB), NB using features selected by standard CFS 
(ignoring temporal information), and NB using the proposed 
Exh-CFS-Gr method (exploiting temporal information).  

As shown in Table 3, NB using the proposed Exh-CFS-Gr 
obtained the best result in 6 out of the 10 datasets, whilst NB 
using standard CFS obtained the best result in 4 datasets. In all 
10 datasets, NB without feature selection obtained the worst 
result (joint with standard CFS in the Dementia dataset). Also, 
NB with Exh-CFS-Gr obtained the best (lowest) average rank.  

The Wilcoxon signed-ranks test [12] was used to compare 
the performances of two different methods. The main 
advantages of this test are its robustness against outliers and its 
non-parametric nature, making no assumption of normal 
distribution [10]. We are trying to reject the null hypothesis that 
Naïve Bayes (NB) with a given feature selection method 
obtains an F-measure value that is not significantly different 
from NB with another feature selection method (or just NB, 
without feature selection). We used the test with a significance 
level of α = 0.05, and N = 10 (10 datasets) in our experiments. 

First, comparing NB with Exh-CFS-Gr against NB without 
feature selection, the null hypothesis is rejected with a p-value 
of 0.005. Next, comparing NB with standard CFS against NB 
with no feature selection, the null hypothesis is rejected with a 
p-value of 0.008. Lastly, comparing NB with Exh-CFS-Gr 
against NB with standard CFS, the p-value is 0.959, so the null 
hypothesis cannot be rejected. To summarize, although there 
was no statistical evidence supporting that NB with Exh-CFS-
Gr performed better than NB with the standard CFS. Both Exh-

CFS-Gr+NB and CFS+NB performed significantly better than 
Naïve Bayes with no feature selection.  

Table 4 compares the F-measure values obtained by the 
decision tree algorithm J48 using all features (no feature 
selection in a pre-processing phase), by J48 using as input the 
features selected by standard CFS, and by J48 using as input the 
features selected by the proposed Exh-CFS-Gr. J48 using Exh-
CFS-Gr obtained the best result in 5 out of the 10 datasets. J48 
using standard CFS obtained the best result in three datasets, 
and J48 with no feature selection in a pre-processing phase was 
the winner in just two datasets. 

Unlike the Naïve Bayes algorithm, the J48 algorithm 
obtained very similar average ranks for all three approaches 
(with two CFS versions and no CFS). Hence, J48 benefited less 
from feature selection in a pre-processing phase than NB. This 

Table 3: F-measure values obtained by Naïve Bayes, after 
applying different CFS methods. The best F-measure value for 
each dataset (across all feature selection methods) is shown in 
boldface. The last row shows the average ranks. 

Dataset
NB (No Feature 
Selection)

standard CFS + 
NB

Exh-CFS-Gr + 
NB

Angina 0.559 0.562 0.576
Arthritis 0.614 0.625 0.629
Cataract 0.641 0.677 0.658
Dementia 0.589 0.589 0.603
Diabetes 0.732 0.760 0.733
HBP 0.672 0.693 0.676
HeartAtt 0.606 0.620 0.619
Osteoporosis 0.610 0.613 0.618
Parkinsons 0.553 0.560 0.570
Stroke 0.590 0.602 0.610

Average Rank 2.95 1.65 1.40

Table 4: F-measure values obtained by J48 after applying 
different CFS methods. The best F-measure value for each dataset 
(across all feature selection methods) is shown in boldface. The 
last row shows the average ranks. 

Dataset
J48 (No Feature 
Selection)

standard CFS + 
J48

Exh-CFS-Gr + 
J48

Angina 0.550 0.540 0.550
Arthritis 0.610 0.620 0.610
Cataract 0.670 0.670 0.670
Dementia 0.580 0.590 0.580
Diabetes 0.770 0.760 0.750
HBP 0.660 0.660 0.670
HeartAtt 0.610 0.610 0.600
Osteoporosis 0.610 0.610 0.620
Parkinsons 0.590 0.580 0.580
Stroke 0.600 0.590 0.600

Average Rank 2.05 2.00 1.95
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can be explained by the fact that, unlike NB, J48 performs 
embedded feature selection [13]. 

Again, we used the Wilcoxon signed-ranks test with 
significance level α = 0.05 and N = 10 to evaluate if there was 
a significant difference in predictive performance between two 
methods for each of the three pairs of methods: J48 with Exh-
CFS-Gr against J48 only, J48 with CFS against J48 only, and 
J48 with Exh-CFS-Gr against J48 with CFS. None of the three 
null hypotheses could be rejected, with p-values 0.953, 0.443 
and, 0.959 respectively. In other words, there was no statistical 
evidence supporting that Exh-CFS-Gr+J48 performed better 
than CFS+J48 or J48 without feature selection in a 
preprocessing phase. 

C.� Discussion on the most relevant features selected by J48, 
using as input the features selected by Exh-CFS-Gr  
For each dataset (each with a different age-related class 

variable), we looked at the decision tree built by J48 from the 
full dataset using as input the features selected by Exh-CFS-Gr. 
In each decision tree, we observed which feature was selected 
at the root node – and so it was used to classify all instances.  

First, “age” was selected as the root node in four datasets: 
Stroke, Dementia, Cataract, Parkinson’s. This was not 
surprising, since in our datasets the classes were age-related 
diseases. In the Parkinson’s dataset, “age” was the only feature 
selected by J48. 

For other datasets, in the following list of root features, the 
prefixes “w6” and “w2” at the start of a feature name denote 
that they were features observed in waves 6 and 2, respectively. 

The six other root features were: “w6LDL” in the Heart 
Attack dataset, “w2mmstre” for Angina, “w6hba1c” for 
Diabetes, “w2sysval” for High Blood Pressure, “w6mmgsd_me” 
for Arthritis, and “gender” for Osteoporosis.  

A brief description of these features can be found in Table 
1, whilst a more detailed explanation can be found in the ELSA 
documentation. In essence, LDL (Low Density Lipoprotein) is 
known as the “bad” cholesterol (having a large amount of it is 
unhealthy), Mmstre refers to the patient’s ability to keep their 
balance whilst standing for 10 seconds in a semi-tandem 
position, Hba1c is a measure of average plasma glucose 
concentration often used for testing if a patient has diabetes, 
Sysval means systolic blood pressure, and Mmgsd_me is a 
measure of grip strength. The choice of “gender” as the root 
node in the Osteoporosis dataset was natural, given that 
osteoporosis is more common in women than in men.  

VI.� CONCLUSION  
In conclusion, the results of our experiments showed that 

there was a statistically significant improvement in the 
predictive accuracy when the proposed Exh-CFS-Gr was used 
as a feature selection method before running Naïve Bayes (NB) 
by comparison with the baseline approach of running Naïve 
Bayes with no feature selection. Moreover, overall this CFS 
variant obtained somewhat higher predictive accuracy than NB 
with standard CFS, which suggests some progress. In contrast 
with the results for NB, even though J48 with Exh-CFS-Gr 

achieved the best average rank, it showed no statistically 
significant difference in predictive accuracy when compared 
against J48 only. In fact, standard CFS did not improve the 
predictive accuracy of J48 either. The J48 algorithm constructs 
decision trees as classification models, following an embedded 
feature selection approach. Hence, irrelevant and/or redundant 
features have a smaller effect on J48 models compared with NB 
models. 
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