arXiv:1709.01907v1 [stat.ML] 6 Sep 2017

Deep and Confident Prediction for Time Series at Uber

Lingxue Zhu*
Department of Statistics,
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
Email: Izhu@cmu.edu

Abstract—Reliable uncertainty estimation for time series pre-
diction is critical in many fields, including physics, biology,
and manufacturing. At Uber, probabilistic time series fore-
casting is used for robust prediction of number of trips during
special events, driver incentive allocation, as well as real-time
anomaly detection across millions of metrics. Classical time
series models are often used in conjunction with a probabilistic
formulation for uncertainty estimation. However, such models
are hard to tune, scale, and add exogenous variables to. Moti-
vated by the recent resurgence of Long Short Term Memory
networks, we propose a novel end-to-end Bayesian deep model
that provides time series prediction along with uncertainty
estimation. We provide detailed experiments of the proposed
solution on completed trips data, and successfully apply it to
large-scale time series anomaly detection at Uber.

Keywords—Bayesian neural networks, predictive uncertainty,
time series, anomaly detection.

1. Introduction

Accurate time series forecasting and reliable estimation
of the prediction uncertainty are critical for anomaly detec-
tion, optimal resource allocation, budget planning, and other
related tasks. This problem is challenging, especially during
high variance segments (e.g., holidays, sporting events),
because extreme event prediction depends on numerous
external factors that can include weather, city population
growth, or marketing changes (e.g., driver incentives) [1]]
that all contribute to the uncertainty of the forecast. These
exogenous variables, however, are difficult to incorporate in
many classical time series models, such as those found in the
standard R forecast |2] package. In addition, these models
usually require manual tuning to set model and uncertainty
parameters.

Relatively recently, time series modeling based on the
Long Short Term Memory (LSTM) model [3] has gained
popularity due to its end-to-end modeling, ease of incorpo-
rating exogenous variables, and automatic feature extraction
abilities [4]. By providing a large amount of data across

* This work was done during an internship at Uber Technologies.

Nikolay Laptev
Uber Technologies
San Francisco, California 94103
Email: nlaptev@uber.com

numerous dimensions, it has been shown that an LSTM net-
work can model complex nonlinear feature interactions [5],
which is critical for modeling complex extreme events. A
recent paper [[6] has shown that a neural network forecasting
model is able to outperform classical time series methods
in cases with long, interdependent time series.

However, the problem of estimating the uncertainty in
time-series predictions using neural networks remains an
open question. The prediction uncertainty is important for
assessing how much to trust the forecast produced by the
model, and has profound impact in anomaly detection. The
previous model proposed in [6] had no information regard-
ing the uncertainty. Specifically, this resulted in a large false
anomaly rates during holidays where the model prediction
has large variance.

In this paper, we propose a novel end-to-end model
architecture for time series prediction, and quantify the pre-
diction uncertainty using Bayesian Neural Network, which
is further used for large-scale anomaly detection.

Recently, Bayesian neural networks (BNNs) have gar-
nered increasing attention as a principled framework to
provide uncertainty estimation for deep models. Under this
framework, the prediction uncertainty can be decomposed
into three types: model uncertainty, inherent noise, and
model misspecification. Model uncertainty, also referred to
as epistemic uncertainty, captures our ignorance of the
model parameters, and can be reduced as more samples be-
ing collected. Inherent noise, on the other hand, captures the
uncertainty in the data generation process and is irreducible.
These two sources have been previously recognized with
successful application in computer visions [7].

The third uncertainty from model misspecification, how-
ever, has been long-overlooked. This captures the scenario
where the testing samples come from a different population
than the training set, which is often the case in time series
anomaly detection. Similar ideas have gained attention in
deep learning under the concept of adversarial examples in
computer vision [8]], but its implication in prediction uncer-
tainty remains unexplored. Here, we propose a principled
solution to incorporate this uncertainty using an encoder-
decoder framework. To the best of our knowledge, this
is the first time that misspecification uncertainty has been
successfully applied to prediction and anomaly detection in

a principled way.
In summary, this paper makes the following contribu-
tions:

e Provides a generic and scalable uncertainty estima-
tion implementation for deep prediction models.

o Quantifies the prediction uncertainty from three
sources: (i) model uncertainty, (ii) inherent noise,
and (iii) model misspecification. The third uncer-
tainty has been previously overlooked, and we pro-
pose a potential solution with an encoder-decoder.

o Motivates a real-world anomaly detection use-case
at Uber that uses Bayesian Neural Networks with
uncertainty estimation to improve performance at
scale.

The rest of this paper is organized as follows: Section [2]
gives an overview of previous work on time series prediction
for both classical and deep learning models, as well as the
various approaches for uncertainty estimation in neural net-
works. The approach of Monte Carlo dropout (MC dropout)
is used in this paper due to its simplicity, strong general-
ization ability, and scalability. In Section [3] we present our
uncertainty estimation algorithm that accounts for the three
different sources of uncertainty. Section [4] provides detailed
experiments to evaluate the model performance on Uber trip
data, and lays out a successful application to large-scale
anomaly detection for millions of metrics at Uber. Finally,
Section [5] concludes the paper.

2. Related Works

2.1. Time Series Prediction

Classical time series models, such as those found in
the standard R forecast [2|] package are popular methods
to provide an univariate base-level forecast. These models
usually require manual tuning to set seasonality and other
parameters. Furthermore, while there are time series models
that can incorporate exogenous variables [9], they suffer
from the curse of dimensionality and require frequent re-
training. To more effectively deal with exogenous variables,
a combination of univariate modeling and a machine learn-
ing model to handle residuals was introduced in [[10]. The
resulting two-stage model, however, is hard to tune, requires
manual feature extraction and frequent retraining, which is
prohibitive to millions of time series.

Relatively recently, time series modeling based on
LSTM [3|] technique gained popularity due to its end-to-
end modeling, ease of incorporating exogenous variables,
and automatic feature extraction abilities [4]]. By providing
a large amount of data across numerous dimensions, it has
been shown that an LSTM approach can model complex
extreme events by allowing nonlinear feature interactions
151, [6].

While uncertainty estimation for classical forecasting
models has been widely studied [11]], this is not the case
for neural networks. Approaches such as a modified loss

function or using a collection of heterogenous networks
[12] were proposed, however they require changes to the
underlying model architecture. A more detailed review is
given in the next section.

In this work, we use a simple and scalable approach for
deep model uncertainty estimation that builds on [[13]. This
framework provides a generic error estimator that runs in
production at Uber-scale to mitigate against bad decisions
(e.g., false anomaly alerts) resulting from poor forecasts due
to high prediction variance.

2.2. Bayesian Neural Networks

Bayesian Neural Networks (BNNs) introduce uncer-
tainty to deep learning models from a Bayesian perspective.
By giving a prior to the network parameters W, the network
aims to find the posterior distribution of W, instead of a
point estimation.

This procedure is usually referred to as posterior infer-
ence in traditional Bayesian models. Unfortunately, due to
the complicated non-linearity and non-conjugacy in deep
models, exact posterior inference is rarely available; in ad-
dition, most traditional algorithms for approximate Bayesian
inference cannot scale to the large number of parameters in
most neural networks.

Recently, several approximate inference methods are
proposed for Bayesian Neural Networks. Most approaches
are based on variational inference that optimizes the varia-
tional lower bound, including stochastic search [14]], varia-
tional Bayes [15]], probabilistic backpropagation [16], Bayes
by BackProp [17] and its extension [[18]]. Several algorithms
further extend the approximation framework to a-divergence
optimization, including [19]], [20]. We refer the readers to
[21] for a more detailed and complete review of these
methods.

All of the aforementioned algorithms require different
training methods for the neural network. Specifically, the
loss function must be adjusted to different optimization
problems, and the training algorithm has to be modified in
a usually non-trivial sense. In practice, however, an out-of-
the-box solution is often preferred, without changing the
neural network architecture and can be directly applied
to the previously trained model. In addition, most exist-
ing inference algorithms introduce extra model parameters,
sometimes even double, which is difficult to scale given the
large amount of parameters used in practice.

This paper is inspired by the Monte Carlo dropout
(MC dropout) framework proposed in [13] and [22], which
requires no change of the existing model architecture and
provides uncertainty estimation almost for free. Specifically,
stochastic dropouts are applied after each hidden layer, and
the model output can be approximately viewed as a random
sample generated from the posterior predictive distribution
[21]. As a result, the model uncertainty can be estimated
by the sample variance of the model predictions in a few
repetitions. Details of this algorithm will be reviewed in the
next section.

The MC dropout framework is particularly appealing to
practitioners because it is generic, easy to implement, and di-
rectly applicable to any existing neural networks. However,
the exploration of its application to real-world problems
remains extremely limited. This paper takes an important
step forward by successfully adapting this framework to
conduct time series prediction and anomaly detection at
large scale.

3. Method

Given a trained neural network f"(-) where W repre-
sents the fitted parameters, as well as a new sample z*, our
goal is to evaluate the uncertainty of the model prediction,
7 = fW(z*). Specifically, we would like to quantify the
prediction standard error, 7, so that an approximate «-level
prediction interval can be constructed by

(0" = Zaj2m, J° + 2ay2m] (1

where z, /5 is the upper /2 quantile of a standard Normal.
This prediction interval is critical for various tasks. For
example, in anomaly detection, anomaly alerts will be fired
when the observed value falls outside the constructed 95%
interval. As a result, underestimating 1 will lead to high
false positive rates.

In the rest of this section, we will present our uncertainty
estimation algorithm in Section[3.1] which accounts for three
different sources of prediction uncertainties. This framework
can be generalized to any neural network architectures.
Then, in Section we will present our neural network
design for predicting time series at Uber.

3.1. Prediction Uncertainty

We denote a neural network as function f"(-), where f
captures the network architecture, and W is the collection
of model parameters. In a Bayesian neural network, a prior
is introduced for the weight parameters, and the model
aims to fit the optimal posterior distribution. For example,
a Gaussian prior is commonly assumed:

W~ N(0,1)

We further specify the data generating distribution
p(y| £V (z)). In regression, we often assume

y| W~ N(f"(z),0?)

with some noise level o. In classification, the softmax
likelihood is often used. For time series prediction, we will
focus on the regression setting in this paper.

Given a set of N observations X = {z1,...,zy} and
Y = {y1,...,yn}, Bayesian inference aims at finding the
posterior distribution over model parameters p(W | X,Y).
With a new data point x*, the prediction distribution is
obtained by marginalizing out the posterior distribution:

p(y* |2) = /W Py | 1Y (@)W | X, Y) dW

In particular, the variance of the prediction distribution
quantifies the prediction uncertainty, which can be further
decomposed using law of total variance:

Var(y™ [z*) = Var [E(y* [W, z")] + E [Var(y" | W, z7)]

= Var(fV (z*)) + o
(2)

Immediately, we see that the variance is decomposed
into two terms: (i) Var(f" (z*)), which reflects our igno-
rance over model parameter W, referred to as the model
uncertainty; and (i) o2 which is the noise level during data
generating process, referred to as the inherent noise.

An underlying assumption for (2)) is that y* is generated
by the same procedure. However, this is not always the case
in practice. In anomaly detection, in particular, it is expected
that certain time series will have unusual patterns, which
can be very different from the trained model. Therefore,
we propose that a complete measurement of prediction
uncertainty should be a combination from three sources:
(i) model uncertainty, (ii) model misspecification, and (iii)
inherent noise level. The following sections provide details
on how we handle these three terms.

3.1.1. Model uncertainty. The key to estimating model
uncertainty is the posterior distribution p(W | X,Y), also
referred to as Bayesian inference. This is particularly chal-
lenging in neural networks because the non-conjugacy due
to nonlinearities. There have been various research efforts
on approximate inference in deep learning (see Section [2.2]
for a review). Here, we follow the idea in [13]] and [22] to
approximate model uncertainty using Monte Carlo dropout
(MC dropout).

The algorithm proceeds as follows: given a new input
x*, we compute the neural network output with stochastic
dropouts at each layer. That is, randomly dropout each
hidden unit with certain probability p. This stochastic feed-
forward is repeated B times, and we obtain {ygl), s QE‘B)}.
Then the model uncertainty can be approximated by the
sample variance:

Var(fW (z)2 3)

EB: (y(b

b:l

where §* = 3 Zb 19 [13] There has been recent
work done on choosmg the optimal dropout probability p
adaptively by treating it as part of the model parameter, but
this approach requires modifying the training phase [12]. In
practice, we find that the uncertainty estimation is usually
robust within a reasonable range of p.

3.1.2. Model misspecification. Next, we address the prob-
lem of capturing potential model misspecification. In par-
ticular, we would like to capture the uncertainty when pre-
dicting unseen samples with very different patterns from the
training data set. We propose to account for this source of
uncertainty by introducing an encoder-decoder to the model
framework. The idea is to train an encoder that extracts the

representative features from a time series, in the sense that
a decoder can reconstruct the time series from the encoded
space. At test time, the quality of encoding of each sample
will provide insight on how close it is to the training set.
Another way to think of this approach is that we first fit a
latent embedding space for all training time series using an
encoder-decoder framework. Then, we measure the distance
between test cases and training samples in the embedded
space.

The next question is how to incorporate this uncertainty
in the variance calculation. Here, we take a principled
approach by connecting the encoder, g(-), with a predic-
tion network, h(-), and treat them as one large network
f = h(g(-)) during inference. Figure [I] illustrates such
an inference network, and Algorithm [I] presents the MC
dropout algorithm. Specifically, given an input time series
x = {x1,...,x7}, the encoder g(-) constructs the learned
embedding e = g(x), which is further concatenated with
external features, and the final vector is fed to the final
prediction network h. During this feedforward pass, MC
dropout is applied to all layers in both the encoder g and
the prediction network h. As a result, the random dropout in
the encoder perturbs the input intelligently in the embedding
space, which accounts for potential model misspecification
and gets further propagated through the prediction network.
Here, variational dropout for recurrent neural networks [22]
is applied to the LSTM layers in the encoder, and regular
dropout [[13]] is applied to the prediction network.

Algorithm 1: MCdropout
Input: data z*, encoder ¢(-), prediction network h(-),

dropout probability p, number of iterations B
Output: prediction ¢, ., uncertainty 7,

1: for b=1to B do
2 ey « VariationalDropout(g(x*), p)
30 %) < Concatenate(e(, , extFeatures)
4 Y@ < Dropout (h(sz)),p)
5: end for

// prediction

~ 1 B A
6 Ume < B Qb1 U(p)
// model unjcgertainty and misspecification
1 ~ ~
70t g e (U — 9°)°
8: return gy’ ., m

3.1.3. Inherent noise. Finally, we estimate the inherent
noise level o2. In the original MC dropout algorithm [13]],
this parameter is implicitly determined by a prior over the
smoothness of W. As a result, the model could end up with
drastically different estimations of the uncertainty level de-
pending on this pre-specified smoothness (see [21]], chapter
4). This dependency is undesirable in anomaly detection,
because we want the uncertainty estimation to also have
robust frequentist coverage, but it is rarely the case that we
would know the correct noise level a priori.

Here, we propose a simple and adaptive approach that
estimates the noise level via the residual sum of squares,
evaluated on an independent held-out validation set. Specif-

ically, let fW () be the fitted model on training data, and
X' = {«f,...., 2y },Y" = {yi,...,y;,} be an independent
validation set, then we estimate o2 via

\%4

o= (- M) @

v=1

Note that (X', Y”) are independent from f I’T/(-), and if we

further assume that f" () is an unbiased estimation of the
true model, we have

V ~
B6Y) =0t 4 5 Y B[-]
v=1

= 02 + Varrrn (fV (2))

where Varpgry is w.r.t the training data, which decreases
as the training sample size increases, and — 0 as the
training sample size N — oo. Therefore, 5% provides an
asymptotically unbiased estimation on the inherent noise
level. In the finite sample scenario, it always overestimates
the noise level and tends to be more conservative.

The final inference algorithm combines inherent noise
estimation with MC dropout, and is presented in Algo-
rithm 2

Algorithm 2: Inference
Input: data z*, encoder ¢(-), prediction network h(-),

dropout probability p, number of iterations B
Output: prediction g*, predictive uncertainty 7

// prediction, model uncertainty and misspecification
1: §*, m < MCdropout (z*,g,h,p, B)

// Inherent noise
: for z;, in validation set {z1,...,2},} do
Yy < hg(z,))
: end for

2 1 14 Y1 2

R D (y v yv)

// total prediction uncertainty

6: 1< \/n3 + 13

7: return ¢§*, n

3.2. Model Design

The complete architecture of the neural network is
shown in Figure [I] The network contains two major com-
ponents: (i) an encoder-decoder framework that captures
the inherent pattern in the time series, which is learned
during pre-training step, and (ii) a prediction network that
takes input from both the learned embedding from encoder-
decoder, as well as any potential external features to guide
the prediction. We discuss the two components in more
details below.

3.2.1. Encoder-decoder. Prior to fitting the prediction
model, we first conduct a pre-training step to fit an encoder
that can extract useful and representative embeddings from
a time series. The goals are to ensure that (i) the learned

|

i

i

i

! External

! Features

oo oo o, A -
4 Learned ! X X .\,
h Embedding I L 4100
N i i
1 . .
'] LsT™ o — LsTM M LsTM |— -+ —] LsTm | !
| 1 1
N i i
|- . .
$ | !
i \ Encoder ; Decoder)
AN /

Pre-training /°

S e e et et e et e e e o+ ks h k= = s

Figure 1. Neural network architecture, with a pre-training phase using a
LSTM encoder-decoder, followed by a prediction network, with input being
the learned embedding concatenated with external features.

embedding provides useful features for prediction and (ii)
unusual input can be captured in the embedded space, which
will get further propagated to the prediction network in the
next step. Here, we use an encoder-decoder framework with
two-layer LSTM cells.

Specifically, given a univariate time series {w}:, the
encoder reads in the first 7' timestamps {z1,...,z7r}, and
constructs a fixed-dimensional embedding state. After then,
from this embedding state, the decoder constructs the fol-
lowing F' timestamps {z741, ..., x4} With guidance from
{zr_p41,...,x7} (Figure |1, bottom panel). The intuition
is that in order to construct the next few timestamps, the
embedding state must extract representative and meaningful
features from the input time series. This design is inspired
from the success of video representation learning using a
similar architecture [23|].

3.2.2. Prediction network. After the encoder-decoder is
pre-trained, it is treated as an intelligent feature-extraction
blackbox. Specifically, the last LSTM cell states of the
encoder are extracted as learned embedding. Then, a pre-
diction network is trained to forecast the next one or more
timestamps using the learned embedding as features. In the
scenario where external features are available, these can be
concatenated to the embedding vector and passed together
to the final prediction network.

Here, we use a multi-layer perceptron as the prediction
network. We will show in Section [£.] that the learned em-
bedding from the encoder successfully captures interesting
patterns from the input time series. In addition, including
external features significantly improves the prediction accu-
racy during holidays and special events (see Section [)

3.2.3. Inference. After the full model is trained, the in-
ference stage involves only the encoder and the prediction
network (Figure [1] left panel). The complete inference al-
gorithm is presented in Algorithm [2| where the prediction

uncertainty, 7, contains two terms: (i) the model and mis-
specification uncertainty, estimated by applying MC dropout
to both the encoder and the prediction network, as presented
in Algorithm [I} and (ii) the inherent noise level, estimated
by the residuals on a held-out validation set. Finally, an
approximate «-level prediction interval is constructed by
[0* — 2aj2M, U* + Zas2n], where z,/5 is the upper a/2
quantile of a standard Normal.

Two hyper-parameters need to be specified in Algo-
rithm [2} the dropout probability, p, and the number of
iterations, B. As for the dropout probability, we find in
our experiments that the uncertainty estimation is relatively
stable across a range of p, and we choose the one that
achieves the best performance on the validation set. As for
the number of iterations, the standard error of the estimated
prediction uncertainty is proportional to 1/v/B. We measure
the standard error across different repetitions, and find that
a few hundreds of iterations are usually suffice to achieve a
stable estimation.

4. Evaluation

This section contains two sets of results. We first eval-
uate the model performance on a moderately sized data
set of daily trips processed by the Uber platform. We will
evaluate the prediction accuracy and the quality of uncertain
estimation during both holidays and non-holidays. We will
also present how the encoder recognizes the day of the week
pattern in the embedding space. Next, we will illustrate the
application of this model to real-time large-scale anomaly
detection for millions of metrics at Uber.

4.1. Results on Uber Trip Data

4.1.1. Experimental settings. In this section, we illustrate
the model performance using the daily completed trips over
four years across eight representative large cities in U.S. and
Canada, including Atlanta, Boston, Chicago, Los Angeles,
New York City, San Francisco, Toronto, and Washington
D.C. We use three years of data as the training set, the
following four months as the validation set, and the final
eight months as the testing set. The encoder-decoder is
constructed with two-layer LSTM cells, with 128 and 32
hidden states, respectively. The prediction network has three
fully connected layers with tanh activation, with 128, 64,
and 16 hidden units, respectively.

Samples are constructed using a sliding window with
step size one, where each sliding window contains the previ-
ous 28 days as input, and aims to forecast the upcoming day.
The raw data are log-transformed to alleviate exponential
effects. Next, within each sliding window, the first day is
subtracted from all values, so that trends are removed and
the neural network is trained for the incremental value. At
test time, it is straightforward to revert these transformations
to obtain predictions at the original scale.

4.1.2. Prediction performance. We compare the prediction
accuracy among four different models:

TABLE 1. SMAPE OF FOUR DIFFERENT PREDICTION MODELS,
EVALUATED ON THE TEST DATA.

City Last-Day | QRF | LSTM | Our Model
Atlanta 159 13.2 11.0 7.3
Boston 13.6 15.4 10.0 8.2
Chicago 16.0 12.7 9.5 6.1

Los Angeles 12.3 10.9 8.5 4.7
New York City 11.5 10.9 8.7 6.1
San Francisco 10.7 11.8 7.3 4.5

Toronto 15.2 11.7 10.0 5.3
Washington D.C. 13.0 13.3 8.2 52
Average 13.5 12.5 9.2 5.9

1) Last-Day: A naive model that uses the last day’s
completed trips as the prediction for the next day.

2) QREF: Based on the naive last-day prediction, a
quantile random forest (QRF) is further trained to
estimate the holiday lifts, i.e., the ratio to adjust
the forecast during holidays. The final prediction is
calculated from the last-day forecast multiplied by
the estimated ratio.

3) LSTM: A vanilla LSTM model with similar size as
our model. Specifically, a two-layer sacked LSTM
is constructed, with 128 and 32 hidden states, re-
spectively, followed by a fully connected layer for
the final output. This neural network also takes 28
days as input, and predicts the next day.

4) Our Model: Our model that combines an encoder-
decoder and a prediction network, as described in
Figure

Table |1| reports the Symmetric Mean Absolute Percent-
age Error (SMAPE) of the four models, evaluated on the
testing set. We see that using a QRF to adjust for holiday
lifts is only slightly better than the naive prediction. On
the other hand, a vanilla LSTM neural network provides
an average of 26% improvement across the eight cities. As
we further incorporate the encoder-decoder framework and
introduce external features for holidays to the prediction
network (Figure [I)), our proposed model achieves another
36% improvement in prediction accuracy. Note that when
using LSTM and our model, only one generic model is
trained, where the neural network is not tuned for any city-
specific patterns; nevertheless, we still observe significant
improvement on SMAPE across all cities when compared
to traditional approaches.

Finally, Figure [2] visualizes the true values and our
predictions during the testing period in San Francisco as an
example. We observe that accurate predictions are achieved
not only in regular days, but also during holiday seasons.

4.1.3. Uncertainty estimation. Next, we evaluate the qual-
ity of our uncertainty estimation by calibrating the empirical
coverage of the prediction intervals. Here, the dropout prob-
ability is set to be 5% at each layer, and Table [2] reports the
empirical coverage of the 95% predictive intervals under
three different scenarios:

—— True
fffff Prediction

/]

Thanksgiving ~ Christmas New year

%

Memorial day

/

Independence day

Labor day

Figure 2. Daily completed trips in San Francisco during eight months of the
testing set. True values are shown with the orange solid line, and predictions
are shown with the blue dashed line, where the 95% prediction band is
shown as the grey area. Exact values are anonymized.

TABLE 2. EMPIRICAL COVERAGE OF 95% PREDICTIVE INTERVALS,
EVALUATED ON THE TEST DATA.

City PredNet | Enc+Pred | Enc+Pred+Noise
Atlanta 78.33% 91.25% 94.30%
Boston 85.93% 95.82% 99.24%
Chicago 71.86% 80.23% 90.49%

Los Angeles 76.43% 92.40% 94.30%
New York City 76.43% 85.55% 95.44%
San Francisco 78.33% 95.06% 96.20%

Toronto 80.23% 90.87% 94.68%
Washington D.C. | 78.33% 93.54% 96.96%
Average 78.23% 90.59% 95.20%

1) PredNet: Use only model uncertainty estimated
from MC dropout in the prediction network, with
no dropout layers in the encoder.

2) Enc+Pred: Use MC dropout in both the encoder
and the prediction network, but without the inherent
noise level. This is the term 7; in Algorithm [2]

3) Enc+Pred+Noise: Use the full prediction uncer-
tainty 7 as presented in Algorithm 2] including n;
as in 2), as well as the inherent noise level 7.

By comparing PredNet with Enc+Pred, it is clear
that introducing MC dropout to the encoder network is
critical, which significantly improves the empirical coverage
from 78% to 90% by capturing potential model misspeci-
fication. In addition, by further accounting for the inherent
noise level, the empirical coverage of the final uncertainty
estimation, Enc+Pred+Noise, nicely centers around 95%
as desired.

One important use-case of the uncertainty estimation is
to provide insight for unusual patterns in the time series.
Figure [3] shows the estimated predictive uncertainty on six
U.S. holidays in the testing data. We see that New Year’s Eve
has significantly higher uncertainty than all other holidays.
This pattern is consistent with our previous experience,
where New Year’s Eve is usually the most difficult day to
predict.

4.1.4. Embedding features. As illustrated previously, the
encoder is critical for both improving prediction accuracy,

Atlanta

Boston

Chicago

Los Angeles
New York City
San Francisco
Toronto
Washington D.C.

o <« &

L &
N
& S > \@& N
S & B\ o

Figure 3. Estimated prediction standard deviations on six U.S. holidays
during testing period for eight cities. Exact values are anonymized.

Sat-Sun

Mon-Tue

Figure 4. Training set of time series, visualized in the embedding space.
Each point represents a 28-day segment, colored by the day of the week
of the last day. We evaluate the cell states of the two LSTM layers, where
the first layer with dimension 128 is plotted on the left, and second layer
with dimension 32 is plotted on the right. PCA is used to project into 2D
space for visualization.

as well as for estimating prediction uncertainty. One natural
follow-up question is whether we can interpret the embed-
ding features extracted by the encoder. This can also provide
valuable insights for model selection and anomaly detection.
Here, we visualize our training data, each being a 28-day
time series segment, in the embedding space. We use the
last LSTM cell in the encoder, and project its cell states to
2D for visualization using PCA (Figure [). The strongest
pattern we observe is day of the week, where weekdays
and weekends form different clusters, with Fridays usually
sitting in between. We do not observe city-level clusters,
which is probably due to the fact all cities in this data set
are large cities in North America, where riders and drivers
tend to have similar behaviors.

4.2. Application to Anomaly Detection at Uber

At Uber, we track millions of metrics each day to mon-
itor the status of various services across the company. One
important application of uncertainty estimation is to provide
real-time anomaly detection and deploy alerts for potential
outages and unusual behaviors. A natural approach is to
trigger an alarm when the observed value falls outside of

the 95% predictive interval. There are two main challenges
we need to address in this application:

e Scalability: In order to provide real-time anomaly
detection at the current scale, each predictive interval
must be calculated within a few milliseconds during
inference stage.

o Performance: With highly imbalanced data, we aim
to reduce the false positive rate as much as possible
to avoid unnecessary on-call duties, while making
sure the false negative rate is properly controlled so
that real outages will be captured.

4.2.1. Scalability. Our model inference is implemented in
Go. Our implementation involves efficient matrix manipula-
tion operations, as well as stochastic dropout by randomly
setting hidden units to zero with pre-specified probability. A
few hundred stochastic passes are executed to calculate the
prediction uncertainty, which is updated every few minutes
for each metric. We find that the uncertainty estimation step
adds only a small amount of computation overhead and can
be conducted within ten milliseconds per metric.

4.2.2. Performance. Here, we illustrate the precision and
recall of this framework on an example data set containing
100 metrics with manual annotation available, where 17
of them are true anomalies. Note that the neural network
was previously trained on a separate and much larger data
set. By adding MC dropout layers in the neural network,
the estimated predictive intervals achieved 100% recall rate
and a 80.95% precision rate. Figure 5] visualizes the neural
network predictive intervals on four representative metrics,
where alerts are correctly fired for two of them. When
applying this framework to all metrics, we observe a 4%
improvement in precision compared to the previous ad-hoc
solution, which is substantial at Uber’s scale.

5. Conclusion

We have presented an end-to-end neural network archi-
tecture for uncertainty estimation used at Uber. Using the
MC dropout technique and model misspecification distribu-
tion, we showed a simple way to provide uncertainty estima-
tion for a neural network forecast at scale while providing
a 95% uncertainty coverage. A critical feature about our
framework is its applicability to any neural network without
modifying the underlying architecture.

We have used the proposed uncertainty estimate to mea-
sure special event (e.g., holiday) uncertainty and to improve
anomaly detection accuracy. For special event uncertainty
estimation, we found New Year’s Eve to be the most uncer-
tain time. Using the uncertainty information, we adjusted the
confidence bands of an internal anomaly detection model to
improve precision during high uncertainty events, resulting
in a 4% accuracy improvement, which is large given the
number of metrics we track at Uber.

Our future work will be focused on utilizing the uncer-
tainty information for neural network debugging during high
error periods.

o

(a) Normal |

(b) Normal Il

(c) Anomaly | (d) Anomaly Il

Figure 5. Four example metrics during a 12-hour span, and anomaly
detection is performed for the following 30 minutes. All metrics are
evaluated by minutes. The neural network constructs predictive intervals
for the following 30 minutes, visualized by the shaded area in each plot. (a)
A normal metric with large fluctuation, where the observation falls within
the predictive interval. (b) A normal metric with small fluctuation, and an
unusual inflation has just ended. The predictive interval still captures the
observation. (¢) An anomalous metric with a single spike that falls outside
the predictive interval. (d) An anomalous metric with two consecutive
spikes, also captured by our model.

References

[11 J. D. Horne and W. Manzenreiter, “Accounting for mega-events,”
International Review for the Sociology of Sport, vol. 39, no. 2, pp.
187-203, 2004.

[2] R.J. Hyndman and Y. Khandakar, “Automatic time series forecasting:
the forecast package for R,” Journal of Statistical Software, vol. 26,
no. 3, pp. 1-22, 2008.

[3] S.Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[4] M. Assaad, R. Boné, and H. Cardot, “A new boosting algorithm
for improved time-series forecasting with recurrent neural networks,”
Information Fusion, vol. 9, no. 1, pp. 41-55, 2008.

[5] O. P. Ogunmolu, X. Gu, S. B. Jiang, and N. R. Gans, “Nonlinear
systems identification using deep dynamic neural networks,” arXiv
preprint arXiv:1610.01439, 2016.

[6] N.Laptev, J. Yosinski, E. Li, and S. Smyl, “Time-series extreme event
forecasting with neural networks at uber,” International Conference
on Machine Learning, 2017.

[71 A. Kendall and Y. Gal, “What uncertainties do we need in bayesian
deep learning for computer vision?”” arXiv preprint arXiv:1703.04977,
2017.

[8] I J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and har-
nessing adversarial examples,” International Conference on Learning
Representations, 2014.

[91 W. W.-S. Wei, Time series analysis.
1994.

[10] T. Opitz, “Modeling asymptotically independent spatial extremes
based on laplace random fields,” Spatial Statistics, vol. 16, pp. 1-
18, 2016.

[11] R. D. Dietz, T. L. Casavant, T. E. Scheetz, T. A. Braun, and M. S.
Andersland, “Modeling the impact of run-time uncertainty on optimal

computation scheduling using feedback,” in Parallel Processing '97,
Aug, pp. 481-488.

Addison-Wesley publ Reading,

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Y. Gal, J. Hron, and A. Kendall, “Concrete dropout,” arXiv preprint
arXiv:1705.07832, 2017.

Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in Proceedings of
the 33rd International Conference on Machine Learning, 2016, pp.
1050-1059.

J. Paisley, D. Blei, and M. Jordan, “Variational bayesian inference
with stochastic search,” in Proceedings of the 29th International
Conference on Machine Learning, 2012, pp. 1367-1374.

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
The International Conference on Learning Representations, 2014.

J. M. Hernandez-Lobato and R. Adams, “Probabilistic backpropa-
gation for scalable learning of bayesian neural networks,” in Pro-
ceedings of the 32nd International Conference on Machine Learning,
2015, pp. 1861-1869.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural networks,” in Proceedings of the 32nd Interna-
tional Conference on Machine Learning, 2015, pp. 1613-1622.

M. Fortunato, C. Blundell, and O. Vinyals, “Bayesian recurrent neural
networks,” arXiv preprint arXiv:1704.02798, 2017.

J. M. Hernandez-Lobato, Y. Li, M. Rowland, D. Herndandez-Lobato,
T. Bui, and R. E. Turner, “Black-box a-divergence minimization,”
in Proceedings of the 33rd International Conference on Machine
Learning, 2016, pp. 1511-1520.

Y. Li and Y. Gal, “Dropout inference in bayesian neural networks
with alpha-divergences,” arXiv preprint arXiv:1703.02914, 2017.

Y. Gal, “Uncertainty in deep learning,” Ph.D. dissertation, PhD thesis,
University of Cambridge, 2016.

Y. Gal and Z. Ghahramani, “A theoretically grounded application
of dropout in recurrent neural networks,” in Advances in Neural
Information Processing Systems, 2016, pp. 1019-1027.

N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised
learning of video representations using Istms,” in Proceedings of the
32nd International Conference on Machine Learning, 2015, pp. 843—
852.

	1 Introduction
	2 Related Works
	2.1 Time Series Prediction
	2.2 Bayesian Neural Networks

	3 Method
	3.1 Prediction Uncertainty
	3.1.1 Model uncertainty
	3.1.2 Model misspecification
	3.1.3 Inherent noise

	3.2 Model Design
	3.2.1 Encoder-decoder
	3.2.2 Prediction network
	3.2.3 Inference

	4 Evaluation
	4.1 Results on Uber Trip Data
	4.1.1 Experimental settings
	4.1.2 Prediction performance
	4.1.3 Uncertainty estimation
	4.1.4 Embedding features

	4.2 Application to Anomaly Detection at Uber
	4.2.1 Scalability
	4.2.2 Performance

	5 Conclusion
	References

