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2453 Luxembourg, Luxembourg

Email: diogo.duarte@choiceholding.com

Abstract—Power grids are critical infrastructure assets that
face non-technical losses (NTL) such as electricity theft or faulty
meters. NTL may range up to 40% of the total electricity
distributed in emerging countries. Industrial NTL detection
systems are still largely based on expert knowledge when deciding
whether to carry out costly on-site inspections of customers.
Electricity providers are reluctant to move to large-scale de-
ployments of automated systems that learn NTL profiles from
data due to the latter’s propensity to suggest a large number of
unnecessary inspections. In this paper, we propose a novel system
that combines automated statistical decision making with expert
knowledge. First, we propose a machine learning framework that
classifies customers into NTL or non-NTL using a variety of
features derived from the customers’ consumption data. The
methodology used is specifically tailored to the level of noise
in the data. Second, in order to allow human experts to feed
their knowledge in the decision loop, we propose a method for
visualizing prediction results at various granularity levels in a
spatial hologram. Our approach allows domain experts to put
the classification results into the context of the data and to
incorporate their knowledge for making the final decisions of
which customers to inspect. This work has resulted in appreciable
results on a real-world data set of 3.6M customers. Our system
is being deployed in a commercial NTL detection software.

Index Terms—Critical infrastructure, non-technical losses,
time series classification, Microsoft HoloLens, spatial hologram.

I. INTRODUCTION

Critical infrastructure refers to assets that are essential for

the functioning of a society and economy. They include power

generation, transmission and distribution facilities. Losses in

power grids can be grouped into technical losses, which appear

naturally due to internal electrical resistance, and non-technical

losses (NTL), which appear during power distribution. NTL

include, but are not limited to, the following causes [1], [2]:

• Meter tampering in order to record lower consumptions

• Bypassing meters by rigging lines from the power source

• Arranged false meter readings by bribing readers

• Faulty or broken meters

NTL can range up to 40% of the total electricity distributed in

countries such as Brazil, India, Malaysia or Lebanon [3]. As

Fig. 1. Example usage of our NTL detection system: Customers are classified
as either regular (green), irregular (red) or suspicious (yellow) by a machine
learning system. Holographic spatial visualization of customers allows domain
experts at the electricity providers to gather information about the customers
as well as their neighborhood in order to decide which customers to inspect.
The figure depicts the profile of an irregular customer whose consumption
has significantly dropped in the last few months.

a consequence, electricity providers face financial losses as

well as a decrease of stability and reliability in their power

networks. It is for these reasons that electricity providers

aim to reduce NTL in their networks by carrying out on-

site inspections of customers that have potentially irregular

behavior. To date, most NTL detection systems deployed in

industry are based on expert knowledge rules [2]. In contrast,

the predominant research direction reported in the recent

research literature is the use of machine learning/data mining

methods, which learn from customer data and known irregular

behavior that was reported through inspection results. Due

to the high costs per inspection and the limited number of

possible inspections, electricity providers aim to maximize the

return on investment (ROI) of inspections.

In this paper, we combine both worlds in a spatiotemporal

approach that allows domain experts to visualize the prediction

results of NTL classifiers in a holographic spatial visualization.

An example of this outcome is depicted in Figure 1.
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The main contributions of this paper are:

• We propose a novel and flexible framework to compute

a large number of domain-specific features and generic

features from the noisy consumption time series of cus-

tomers for NTL detection.

• We retain the statistically meaningful features extracted

from the noisy consumption data and optimize different

classifiers to predict NTL.

• We present a novel approach to put the prediction results

into context by visualizing them in a 3D hologram that

contains information about customers and their spatial

neighborhood. This hologram can be visualized in a

Microsoft HoloLens.

The entire process in our proposed NTL detection system is

depicted in Figure 2. As an outcome, domain experts can put

the results generated by the classifiers into the context of the

data in order to make the final decisions of whether to inspect

specific customers. We are confident that this approach will

lead to an increase of both stability and reliability of power

grids by making better use of the limited number of inspections

as well as lead to a greater ROI of the limited number of

inspections.

II. RELATED WORK

State-of-the-art surveys on NTL detection are provided in

[2], [4]. A data set of ~22K customers is used in [5] for

training a neural network. It uses the average consumption

of the previous 12 months and other customer features such

as location, type of customer, voltage and whether there are

meter reading notes during that period. On the test set, an

accuracy of 0.8717, a precision of 0.6503 and a recall of

0.2947 are reported. Consumption profiles of 5K Brazilian

industrial customer profiles are analyzed in [6]. Each customer

profile contains 10 features including the demand billed,

maximum demand, installed power, etc. In this setting, a

SVM slightly outperforms k-nearest neighbors (KNN) and a

neural network, for which test accuracies of 0.9628, 0.9620

and 0.9448, respectively, are reported. We have discussed

the class imbalance and evaluation metric selection of NTL

detection in [7] and shown that a large-scale machine learning

approach outperforms rule-based Boolean and fuzzy logic

expert systems. Covariate shift refers to the problem of training

data (i.e. the set of inspection results) and production data

(i.e. the set of customers to generate inspections for) having

different distributions. We have shown in [8] that the sample

of inspected customers may be biased, i.e. it does not represent

the population of all customers. As a consequence, machine

learning models trained on these inspection results may be

biased as well and therefore may lead to unreliable predictions

of whether customers cause NTL or not. Furthermore, we have

shown that the neighborhoods of customers yield significant

information in order to decide whether a customer causes a

NTL or not [9], [10].

In the literature, different approaches for visualization of

NTL are reported. In order to support the decision making,

the visualization of the network topology on feeder level as

Fig. 2. Proposed NTL detection system: First, the data of previously inspected
customers is loaded, which consists of their consumption data as well the
inspection result. Second, a vast number of features are extracted from the
customers’ noisy consumption data. Third, these features are reduced in order
to retain the statistically meaningful ones. Fourth, using the set of reduced
features and the results of previously carried out inspections, classifiers are
trained in order to recognize NTL. Fifth, these classifiers are then used to
predict for customers whether they should be inspected for NTL or not.
Sixth, domain experts visualize the customers, their neighbors, inspection
results and other data such as the consumption data in a spatial 3D hologram.
Seventh, using their expert knowledge, they can review and amend the
recommendations made by the classifiers in order to choose the customers
for which an inspection appears to be justified from an economic point of
view. Last, the inspections are carried out by technicians.

well as load curves on transformer level is proposed in [11].

In addition, the density of NTL in a 2D map is visualized in

[12]. For analytics in power grids as a whole, the need for

novel and more powerful visualization techniques is argued

in [13]. The proposed approaches include heat maps and risk

maps. All methods for visualization of NTL proposed in the

literature focus only on 2D representations.

We are currently undergoing a paradigm shift in data

visualization from not only 2D to 3D, but rather to augmented

reality using holographic projections [14]. This shift allows

to better understand and experience data [15]. Users are not

constrained to looking at data on a screen, as they can interact

with the data, e.g. walking around holograms to get a better

understanding of Big Data sets. This comes with the benefit

of increased productivity as users can use their hands to turn

and manipulate objects rather than getting distracted caused

by a change of focus from the screen to the input devices

such as keyboards or mice [16]. A number of successful

applications of holographic projections have been described in

the literature including guided assembly instructions [17] as

well as a combination of different geographical information
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data sources in city management [16]. The literature also

discusses the limitations of 3D visualizations, such as that

users mistakenly may have greater confidence in the quality

of the data [18].

III. DETECTION OF NTL

A. Data
The data used in this paper comes from an electricity

provider in Brazil and consists of 3.6M customers. The data

contains 820K inspection results, such as inspection date,

presence of fraud or irregularity, type of NTL and inspection

notes. 620K customers have been inspected at least once and

the remaining ~3M customers have never been inspected.

Third, there are 195M meter readings from 2011 to 2016 such

as consumption in kWh, date of meter reading and number of

days between meter readings. From the 620K customers for

which an inspection result is available, only the most recent

inspection result is used in the experiments in Section IV.

The available data per customer m is a complete time series

of monthly meter readings of electricity consumption in kWh

over the last N months before the most recent inspection,

described as follows:

C(m) = [C
(m)
0 , ..., C

(m)
N−1],

where C
(m)
N−1 is the most recent meter reading before the

inspection. For greater N , less customers with a complete time

series are available. In contrast, for smaller N , less information

per customer is available.

B. Features
In this section, we describe the features that we compute

from a customer’s consumption time series C(m) for the

detection of NTL.
1) Difference Features: The intra year difference

intra year
(m)
d = C

(m)
d − C

(m)
d−K ,

for K = 12, is the change of consumption to the consumption

in the same month of the previous year. In total, there are

N − 12 intra year difference features.
The intra year seasonal difference

intra year seasonal
(m)
d = C

(m)
d − 1

3
×

d−K+1∑

k=d−K−1

C
(m)
k ,

for K = 12, is the change of consumption to the mean of the

same season in the previous year. In total, there are N − 13
intra year seasonal difference features.

The fixed interval

fixed interval
(m)
d = C

(m)
d − 1

K
×

d−1∑

k=d−K

C
(m)
k ,

for K ∈ {3, 6, 12}, is the change of consumption to the

mean consumption in a period of time directly before a meter

reading. In total, there are 3×(N−12) fixed interval features.

These features are inspired by [10], in which they are proposed

only for the most recent meter reading. Instead, we compute

these features for the entire consumption time series.

2) Daily Averages: A daily average consumption feature

during month d for customer m in kWh is:

daily avg
(m)
d =

C
(m)
d

R
(m)
d −R

(m)
d−1

. (1)

C
(m)
d is the consumption between the meter reading R

(m)
d

of month d and the previous one R
(m)
d−1 in month d − 1.

R
(m)
d − R

(m)
d−1 is the number of days between both meter

readings of customer m. In total, there are N−1 daily average

consumption features. This feature type is successfully used

in a number of publications on NTL detection [7], [19]–[22].

It is therefore also relevant to our research.
3) Generic Time Series Features: In order to catch more

characteristics of the consumption time series, we compute

222 generic time series features from it, comprising:

• Summary statistics, such as maximum, variance or kur-

tosis.

• Characteristics from sample distribution, such as absolute

energy, whether a distribution is symmetric or the number

of data points above the median.

• Observed dynamics, such as fast Fourier transformation

coefficients, autocorrelation lags or mean value of the

second derivative.

The full list of features is provided in [23].

C. Feature Selection
In total, 304 features are computed. In the subsequent

learning phase, only the meaningful features should be used.

One common dimensionality reduction method is the principal

component analysis (PCA). However, time series, and in

particular real-world data sets, are noisy, which can lead to

poor performance of PCA [24]. It is for that reason that we

do not use PCA for the feature selection. Instead, we employ

hypothesis tests to the features in order to retain the ones

that are statistically relevant. These tests are based on the

assumption that a feature xk is meaningful for the prediction

of the binary label vector y if xk and y are not statistically

independent [25]. For binary features, we use Fisher’s exact

test [26]. In contrast, for continuous features, we use the

Kolmogorov-Smirnov test [27].

D. Classifiers
1) Decision Tree: Decision tree learners such as ID3 or

C4.5 [28] recursively split the input space by choosing the

remaining most discriminative feature of a data set. To predict,

the learned tree is traversed top-down.
2) Random Forest: A random forest [29] is an ensemble

estimator that comprises a number of decision trees. Each tree

is trained on a subsample of the data and feature set in order

to control overfitting. In the prediction phase, a majority vote

is made of the predictions of the individual trees.
3) Gradient Boosted Tree: A gradient boosted tree [30] is

also an ensemble of decision trees. The ensemble is boosted

by combining weak classifiers (i.e. classifiers that work little

better than a random guess) into a strong one. The ensemble

is built by optimizing a loss function.
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TABLE I
MODEL PARAMETERS.

Parameter Values DT RF GBT LSVM

Learning rate [0.0001, 1] (log space) �
Loss function {AdaBoost, deviance} �
Max. number of leaves [2, 1000) � � �
Max. number of levels [1, 50) � � �
Measure of the purity of a split {entropy, gini} � �
Min. number of samples required to be at a leaf [1, 1000) � � �
Min. number of samples required to split a node [2, 50) � � �
Number of estimators 20 � �
L2 regularization [0.001, 10] (log space) �

TABLE II
NUMBER OF FEATURES BEFORE AND AFTER SELECTION.

Name #Features #Retained features

Daily average (AVG) 23 18

Fixed interval 36 34

Generic time series (GTS) 222 162

Intra year difference 12 12

Intra year seasonal difference 11 11

Total 304 237

4) Support Vector Machine: A support vector machine

(SVM) [31] is a maximum margin classifier, i.e. it creates

a maximum separation between classes. Support vectors hold

up the separating hyperplane. In practice, they are just a small

fraction of the training examples. Therefore, a SVM is often

less prone to overfitting than other classifiers, such as a neural

network [32]. The training of a SVM can be defined as a

Lagrangian dual problem having a convex cost function. By

default, the separating hyperplane is linear. Training of SVMs

using a kernel to map the input to higher dimension is only

feasible for several dozens of thousands of training examples

in a realistic amount of time [33]. Therefore, for Big Data sets

only a linear implementation of SVMs is practically usable

[34].

IV. EVALUATION

A. Metric

The performance measure used in the following experiments

is the area under the receiver-operating curve (AUC) [35]. It

plots the true positive rate or recall against the false positive

rate. It is particularly useful for NTL detection, as it allows

to handle imbalanced datasets and puts correct and incorrect

inspection results in relation to each other. The superiority of

the AUC over other metrics such as accuracy, precision or

recall with respect to the problem of NTL detection has been

witnessed in the literature [7].

B. Experimental Setup

We experimentally determined N = 24 months to work

the best for the following experiments. Using N = 24 allows

the consumption data to reflect seasonality in the experiments.

As a consequence, M = 150, 700 customers are retained for

the experiments. This data set is imbalanced: 100,471 have

a negative label (non-NTL), whereas 50,229 have a positive

one (NTL). Therefore, 33.33% of the customers used in the

following experiments have been found to cause NTL.
We train the decision tree (DT), random forest (RF), gra-

dient boosted tree (GBT) and linear support vector machine

(LSVM) classifiers as follows:

• Handling class imbalance: We handle the class imbalance

during training by assigning class weights to the examples

of both classes in the training set:

w0 =
#examples

# examplesC=0

, (2)

w1 =
#examples

# examplesC=1

. (3)

• Performing model selection: We want to find the model

which is able to distinguish between NTL and non-NTL

customers the best. For this, we optimize various param-

eters for every classifier. The complete list of parameters

and considered values per classifier is depicted in Table I.

We use randomized grid search, which samples from

the joint distribution of model parameters. In contrast to

grid search, randomized grid search does not try out all

parameter values. We use 100 sampled models in every

model selection.

• Handling overfitting: We also employ model selection

that splits the data set into k = 10 folds. This leads

to a more reliable model for NTL detection. The AUC

reported per model is the average of the AUCs of the k
test sets.

C. Implementation
All computations were run on a server with 80 cores

and 128 GB of RAM. The entire code was implemented in

Python using scikit-learn [34] for machine learning.

scikit-learn allows to distribute the training of the

numerous classifiers among all cores. Using this infrastructure,

the extraction of features took 6 hours. The feature selection

took only 1 minute. The extensive model selection of classi-

fiers took 4 days. In deployment, the training of classifiers will
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TABLE III
TEST PERFORMANCE OF CLASSIFIERS ON FEATURES FROM MEASURED CONSUMPTION DATA.

Clf.
GTS AVG DIF GTS+AVG GTS+DIF AVG+DIF GTS+AVG+DIF

Xall Xret Xall Xret Xall Xret Xall Xret Xall Xret Xall Xret Xall Xret

DT 0.64544 0.64625 0.64037 0.63985 0.63730 0.63792 0.64712 0.64705 0.64638 0.64647 0.64348 0.64312 0.64646 0.64765f

RF 0.65665c 0.65726c0.65083c 0.65248c 0.65529c0.65459c0.65800c 0.65835c 0.65911c 0.65896c 0.65858c0.65755c0.65747c 0.65977cf

GBT 0.63149 0.63125 0.63234 0.63186 0.62869 0.63019 0.63262 0.63322 0.63319 0.63358f 0.63261 0.63245 0.63354 0.63355

LSVM 0.63696 0.63656 0.54982 0.54933 0.55749 0.55843 0.63725 0.63689 0.63731 0.63693 0.57173 0.57432 0.63728 0.63760f

Test AUC for combinations of decision tree (DT), random forest (RF), gradient boosted tree (GBT) and linear support vector machine (LSVM)
classifiers trained on sets composed of general time series (GTS), daily average (AVG) and difference (DIF) features.
The best overall combination of classifier and feature set is highlighted.

Per combination of classifier and feature set, the better result on either a full feature set (Xall) or retained feature set (Xret) is highlighted .
c denotes the best classifier per feature set.
f denotes the best feature set per classifier.

perform significantly faster as the extensive model selection

needs to be performed only when a new data set is used. We

have also noticed that about 90% of the training time was spent

on the gradient boosted tree. Therefore, a significant speedup

can be achieved in deployment when skipping the training of

this classifier.

D. Feature Selection

We first compute the features described in Section III and

then perform the feature selection. In summary, there are three

types of features: (1) generic time series (GTS) features, (2)

daily average features (AVG) and (3) difference features (DIF)

composed of fixed interval, intra year difference and intra

year seasonal difference features. The numbers of features

before and after selection are depicted in Table II. In total,

237 out of the 304 features are retained. The relevance of

our hand-crafted difference features is confirmed: All intra

year difference and intra year seasonal difference features are

retained. In addition, 34 out of 36 fixed interval features are

retained. The 2 features are not retained for K = 3, which

is most likely due to the too short span of time they reflect.

As a matter of fact, daily average features are widely used in

the research literature on NTL detection. However, only 18

out of 23 daily average consumption features (i.e. 78%) are

retained. The 5 daily average consumption features that are not

retained are the ones for the first - i.e. the oldest - 6 months

of the 24-month window. The statistical feature check leads

to the conclusion that this type of feature is only useful for

about 1.5 years of our data for NTL detection. In addition,

73% of the generic time series features are retained after the

statistical relevance check. As these features are generic and

not particularly made for NTL detection, it is to no surprise

that the retention rate for these features is the lowest.

E. Classification Results

We train the four classifiers on each of the GTS, AVG and

DIF feature sets as well as on all combinations thereof. The

test performance of the best model per experiment returned

by the model selection is depicted in Table III. The best test

AUC of 0.65977 is achieved for training the random forest

classifier on the combination of the retained GTS, AVG and

DIF features. In general, the random forest classifier works the

best for every feature set. In total, we report the results of 28

experiments in Table III, both for the full feature sets as well

as the retained feature sets. In 16 experiments, the feature

selection leads to better results over using all features. Our

observation can be explained by the “no free lunch theorem”,

which states that no model is generally better than others [36].

However, our best result of 0.65977 is achieved for the retained

feature set.

Generally, we observe that a combination of two or three

feature sets leads to a better test result than for any of the

respective single feature sets. An example to demonstrate

this observation is as follows: The random forest classifier

achieves test AUCs of 0.65726, 0.65248 and 0.65459 for

the retained GTS, AVG and DIF features, respectively. It

then achieves test AUCs of 0.65835, 0.65896, 0.65755 and

0.65977 for the retained GTS+AVG, GTS+DIF, AVG+DIF and

GTS+AVG+DIF feature sets, respectively. Therefore, the test

AUCs for each of the combined feature sets are greater than

the test AUCs for any of the single feature sets.

F. Discussion

Previous works that employ the widely-used daily average

features established a baseline that only achieved an AUC of

slightly above 0.5 [7], [37], i.e. slightly above chance, on

real-world NTL detection data sets using linear classifiers.

First and foremost, we want to highlight that increasing the

performance of machine learning models on noisy real-world

data sets is far more challenging than doing so on academic

data sets that were created and curated in controlled envi-

ronments. Furthermore, a small increase of the performance

of a real-world model can lead to a major increase of the

market value of a company. Our framework presented in

this paper significantly outperforms the baselines established

in the literature. As a consequence, our models lead to a

better detection of NTL and thus to an increase of revenue

and profit for electricity providers as well as an increase

of stability and reliability in their critical infrastructure. Our

NTL detection framework allows other electricity providers to

apply our extensive feature extraction, feature selection and
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Fig. 3. Microsoft HoloLens [38].

model selection techniques to their data sets, which can lead

to potentially greater improvements of NTL detection in their

power networks.

It is to our surprise that the gradient boosted tree classifier

performs consistently worse than the random forest classifier

in our experiments. In the literature, the gradient boosted tree

is reported to often lead in a wide range of classification

problems [30]. However, our observation can also be explained

by the “no free lunch theorem”.

V. HOLOGRAPHIC VISUALIZATION OF NTL

The NTL detection approach presented in Section III and

evaluated in Section IV allows to predict whether customers

cause NTL or not. It can then be used to trigger possible in-

spections of customers that have irregular electricity consump-

tion patterns. Subsequently, technicians carry out inspections,

which allow them to remove possible manipulations or mal-

functions of the power distribution infrastructure. Furthermore,

the fraudulent customers can be charged for the additional

electricity consumed. Generally, carrying out inspections is

costly, as it requires physical presence of technicians. In order

to increase both the ROI of the limited number of inspections

and the reliability and stability of the power grid, electricity

providers in practice strongly rely on expert knowledge for

making the decision of whether to inspect a customer or not

[7]. As a consequence, electricity providers are reluctant to

move to large-deployments of NTL detection systems based

on machine learning. We therefore aim to combine automated

statistical decision making for generating inspection proposals

with incorporating knowledge of the domain experts at the

electricity providers for making the final decisions of which

customers to inspect.

A. HoloLens

Mixed reality smartglasses such as the Microsoft HoloLens

[38] depicted in Figure 3 allow users to combine holographic

projections with the real world. The Hololens offers their user

a new perception of 3D models and, perhaps, can provide a

new meaning to it. Visualization of data through holograms has

found its application in many areas. In medicine, future doctors

can study human anatomy by looking at a representation of

the human body and navigate through muscles, organs and

skeletons [39]. The HoloLens has the ability to perform the

holoportation, which allows to virtually place users to remote

locations to see, hear and interact with others. Users can walk

Fig. 4. Gesture interactions with the spatial hologram allow to select
customers as well as to zoom into or rotate holograms. We also provide
a future yellow label that depicts a borderline case, which requires a manual
check by domain experts.

Fig. 5. Zoomed and rotated view on the spatial hologram.

around holograms and interact with them using gaze, gestures

or voice in the most natural way. Spatial sound allows hearing

holograms even if they are behind the user, considering its

position and direction of the sound. Spatial mapping features

provide a real-world representation of surfaces, creating con-

vincing holograms in augmented reality.

B. Implementation

We created a 3D model using Google Earth Pro and

Blender. Our model allows us to visualize customers and their

neighborhood in a 3D spatial hologram that is depicted in

Figure 4. A movie was recorded to capture the scene and all

its objects from the different angles through Google Earth Pro.

Afterwards, images were extracted in Windows Movie Maker

from that movie at the best experimentally determined rate

of 1 frame/sec. Then, those images were loaded in Blender,

which in turn created a 3D FBX model. This model was

exported to Unity. Holographic effects were implemented

through HoloToolkit-Unity [40]. The GameObjects

that handle input events implement the IInputHandler
interface for tap and hold gestures. Classes that implement the

IManipulationHandler interface handle manipulation

gestures such as moving and rotating actions.

C. Results

This application is used by domain experts at the electricity

providers who perceive that customers are classified as either

regular (green) or irregular (red). Domain experts can walk

around a spatial hologram and observe the data from different

directions. Using their hand, they can also interact with the
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Fig. 6. Detailed view of a customer depicted by a green dot predicted to have
a regular power consumption pattern.

Fig. 7. Multi-view on multiple customers’ power consumption history.

hologram in different ways, such as zooming into or rotating

the hologram as depicted in Figure 5.

Domain experts can also learn more about a customer by

tapping on it with their finger. The spatial hologram then also

depicts the consumption profile of the respective customer over

a selected period of time such as the previous 12 months.

A customer with a predicted regular consumption profile is

depicted in Figure 6. This customer’s consumption has only

changed very little in the last 12 months. As a consequence, the

machine learning system classified this customer as non-NTL

(green). A customer with an irregular consumption profile is

depicted in Figure 1. This customer’s consumption has under-

gone a significant drop over the last few months. Therefore, the

machine learning system classified this customer as NTL (red).

In both cases, domain experts can compare their observations

with the prediction made by the machine learning system. If

the prediction is not plausible, domain experts can choose not

to follow the recommendation and therefore decide whether to

inspect a customer. Our visualization allows domain experts

to take the neighborhood of customers into account in order

to decide which customers to inspect. Aside from the actual

spatial visualization of satellite images of a neighborhood,

domain experts can also visualize the consumption profile of

neighbors as visualized in Figure 7 for comparing customers

in order to decide whether to inspect a customer.

D. Discussion

Our holographic spatial visualization of customers and their

neighborhood comes with the benefit of increased productivity.

It has previously been shown that the neighborhoods of cus-

tomers yield significant information in order to decide whether

a customer causes a NTL or not [9], [10]. There are many

interpretations of this fact. For example, fraudulent customers

may share their knowledge with neighbors or there may be a

correlation between electricity theft and the level of prosperity

of a neighborhood. Our system allows to increase the ROI

of inspections as well as to increase both the reliability and

stability of the power grid by incorporating expert knowledge

in the decision making process. Also, domain experts can use

their hands to turn and manipulate objects rather than getting

distracted by a change of focus from the screen to the input

devices such as a keyboard or mouse.

VI. CONCLUSION AND FUTURE WORK

In this work, we have proposed a novel system for detecting

non-technical losses (NTL) for a real-world data set of 3.6M

customers. In the first stage, a machine learning system learns

to predict whether a customer causes NTL or not. In order

to do so, we have proposed to extract a number of domain-

specific features from the noisy consumption data. We have

shown the statistical relevance of these features over generic

time series features. As a consequence, our machine learning

system allows to detect NTL better than previous works

described in the literature. In the second stage, we put the

prediction results into context by visualizing further data of the

customers and their neighborhoods in a spatial hologram using

a Microsoft HoloLens. Using this hologram, domain experts

can then review and amend the suggestions of which customers

to inspect. As a result, they can make the final decisions of

which customers to inspect in order to increase the ROI of the

limited number of inspections.

We have previously referred to the main challenges to solve

in order to advance NTL detection. We believe that covariate

shift is one of the main impediments in advancing NTL

detection. It has been argued that covariate shift is currently

one of the main impediments in a wide range of real-world

Big Data machine learning problems [41]. Therefore, reducing

the covariate shift in the data should be a future priority in

the detection of NTL. We therefore expect our models to

perform better after the reduction of covariate shift. In order

to make the visualization ready for large-scale production,

we are planning to integrate other 3D data sources as well

as to add compression algorithms such that large maps can

be transferred to the HoloLens. We are also interested in

visualizing other quantities, such as prosperity levels or credit

worthiness, in the spatial holograms. We are also interested in

exploring unsupervised methods in the future in order to build

system that perform with only the availability of consumption

data.
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