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Abstract—Driving is an activity that requires considerable
alertness. Insufficient attention, imperfect perception, inadequate
information processing, and sub-optimal arousal are possible
causes of poor human performance. Understanding of these
causes and the implementation of effective remedies is of key
importance to increase traffic safety and improve driver’s well-
being. For this purpose, we used deep learning algorithms to
detect arousal level, namely, under-aroused, normal and over-
aroused for professional truck drivers in a simulated environ-
ment. The physiological signals are collected from 11 participants
by wrist wearable devices. We presented a cost effective ground-
truth generation scheme for arousal based on a subjective
measure of sleepiness and score of stress stimuli. On this
dataset, we evaluated a range of deep neural network models for
representation learning as an alternative to handcrafted feature
extraction. Our results show that a 7-layers convolutional neural
network trained on raw physiological signals (such as heart rate,
skin conductance and skin temperature) outperforms a baseline
neural network and denoising autoencoder models with weighted
F-score of 0.82 vs. 0.75 and Kappa of 0.64 vs. 0.53, respectively.
The proposed convolutional model not only improves the overall
results but also enhances the detection rate for every driver in the
dataset as determined by leave-one-subject-out cross-validation.

Index Terms—Arousal Detection, Deep Learning, Driving Sim-
ulator, Convolutional Neural Network, Wearable Sensors

I. INTRODUCTION

Driving is a complex task involving several motor and

cognitive abilities. Inadequate human performance is a major

cause of road traffic accidents. Imperfect perception, insuffi-

cient attention, inadequate information processing, and sub-

optimal arousal is mentioned as possible causes for poor

human performance. For instance, driver drowsiness or fatigue

caused by extended hours of driving, as well as situations of

cognitive overload, can significantly impair a driver’s ability

to react appropriately to relevant events [1]. Understanding of

these causes and the implementation of effective remedies is of

key importance to increase traffic safety and driver well-being.

The physiological arousal level can be described as the

available capacity to perform the task in timely and effective

manner. The potential threat of both under-arousal as well as

over-arousal is reflected in many human performance models

(e.g. see [2] for an overview). The more complex models

take at least the relationship between task demands, workload,

* Corresponding author. This work is done while A. S. was an intern at
Philips Research, Eindhoven.

effort and performance into account. Among them, workload

is considered a multidimensional, multifaceted concept that is

difficult to define and quantify using a single representative

measure [3]. However, in the context of driving a simple

model consisting of a single dimension —here referred to as

arousal— may suffice.

Over a century ago, Yerkes and Dodson [4] established

a law stating that the relationship between performance and

level of arousal has an inverted U-shape (see Fig. 1). If

physiological signals reliably reflect a possible threat of under-

arousal or over-arousal before a decline in driving performance

becomes noticeable, they may form the basis for an effec-

tive remedy. The rapid development of wearable sensors to

record physiological parameters; over the past years makes

the development of effective solutions more feasible than ever

before. Moreover, the solutions built by leveraging raw signals

collected from non-invasive wearable devices, such as Photo-

plethysmogram (PPG) sensor for heart rate, is more feasible to

use in an everyday situation than an Electroencephalography

(EEG) and Electrocardiography (ECG). Another reason for

using physiological signals as opposed to driving behaviour

and vehicle data is that they are found to be more indicative

of driver’s state as compared to driving behaviour [5].

In earlier research, significant work has been done to detect

stress and fatigue using machine learning and signal process-

ing methods, on both simulator and on-road datasets [6]. These

proposed techniques for driver state detection mainly rely on

hand-crafted features to classify physiological signal segments

(e.g. as either stressed or fatigued). The process of manual

feature engineering is cumbersome and requires extensive
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Fig. 1. Illustration of Yerkes-Dodson law [1].
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domain knowledge. Furthermore, the generated features are

not guaranteed to be optimally discriminant to solve the task

at hand and hence require usage of feature selection or di-

mensionality reduction techniques. Several recent studies have

shown that better performance can be achieved when feature

extraction is performed jointly along with training models

in an end-to-end fashion. For instance, Sutskever, Vinyals

and V. Le [7] proposed an approach for sequence learning

to extract discriminant features for machine translation task.

Therefore, end-to-end learning via deep learning algorithms

has the potential to have a significant impact on problems

involving multivariate time series datasets. It can substitute

manually designed feature extraction procedures and deep

models can automatically learn variations and trends in the

signal.

The main contributions of this paper are following:

• Tackling stress and drowsiness together as a problem

of physiological arousal detection, using only raw data

collected from wearable devices.

• A ground truth generation scheme for physiological

arousal by combining self-assessment questionnaire of

sleepiness and score of task-induced stimuli from a

stressful task.

• Finding a robust deep neural network architecture for

arousal classification.

• Empirically exploring the effect of techniques to resolve

data imbalance with a deep neural network.

The rest of the paper is structured as follows: Section II

presents the background and related studies for stress and

fatigue detection in professional drivers. The experimental

setting for data collection, arousal ground truth generation,

and signal segmentation is provided in Section III. The arousal

classification problem formulation, explanation of widely used

deep neural networks, and model architectures are presented

in Section IV. Subsequently, the results of performed exper-

iments are provided in Section V. The paper is concluded

in Section VI by highlighting the main findings, discussing

limitations of the current work and providing directions for

future research.

II. RELATED WORK

Many physiological measures correlate with specific mental

or cognitive state [8]; amongst others, based on activity pat-

terns of brain, heart, skin conductivity and eyes [9]. However,

as comprehensively discussed by Fairclough [10], the rela-

tionship between physiological measures and psychological

meaning is complex. Here, we will focus on the general

patterns related to underload and overload (or under-arousal

and over-arousal) and on brain patterns, while later on we will

discuss studies concerned with driving in more detail with a

focus on heart and skin conductance indices.

Indices for underload are mainly based on the theta and

alpha power in the EEG. Generally, increased theta power cor-

relates with poor performance in sleep deprived subjects [11].

Lal and Craig [12] concluded, based on an extensive review,

that changes in theta and delta activity are strongly linked to

transition to fatigue. Stampi, Stone and Michimori [13] showed

the usefulness of alpha activity as an index for sleepiness.

More precisely, they validated the Alpha Attenuation Test

(AAT) as an index for sleepiness with sleep deprived subjects.

The AAT is based on the observation that, when operators

get sleepier, alpha activity with eyes open increases and

decreases with eyes closed. Other valid indices for underload

may be based on heart rate and Heart Rate Variability (HRV).

Generally, a drop in heart rate or an increase in HRV can occur

at the beginning of a drowsiness state [12]. It is important to

notice that both indices are influenced by a variety of factors,

including physical movement, mental activity, and emotional

state [14]. Finally, and far less explored, body temperature

is also linked to arousal as it reflects on the person’s state,

reflecting the autonomic responses [15].

Driving studies are also relevant, because cognitive studies

do not necessarily generalize and may be different from the

stationary states (see [16] for a review).

1) Under-aroused (Underload): Several authors used sim-

ulation environments to investigate the physiological effects of

sleep deprivation or long hours of continuous driving. Lal and

Craig [17] showed that delta and theta activity increased during

fatigue, and heart rate decreased. Liang, Wen Chieh, et al. [18]

found decreased heart rate, systolic pressure, LF/HF, and palm

temperature; and increased HRV and parasympathetic indices

HF(AU) and HF(NU) after 120 minutes of simulated driving.

Other authors analysed physiological recordings taken during

real driving. Raggatt and Morrissey [19] report a lower heart

rate after 9 to 12 hours of driving as did [20] for twelve

train drivers during monotonous stretches. Opposite effects on

heart rate were reported by Apparies, Riniolo and Porges [21],

who followed truck drivers on a route that lasted between 8
and 10 hours and found increased heart rate and decreased

HRV. Under conditions of increasing sleep deprivation (up

to 34 hours), Furman, G. Dorfman, et al. [22] report on 59
Falling Asleep (FA) events. The mean heart rate and overall

variability decrease during FA events by 2.2 SD and 2.9 SD

below regional means.

2) Over-aroused (Overload): The patterns reported for

(over) load are generally more consistent across studies than

those reported above for underload. Mehler, Bruce, et al. [5]

examined the sensitivity of heart rate, skin conductance, and

respiration rate as measures of the (over) load in a simulated

driving environment. These physiological signals increased

with increasing task demand. Similar results were found for

heart rate and skin conductance [23] and these patterns are

similar for simulated and real driving [24], [25]. What we

should notice, though, is that the majority of the studies on

(over) load employ a secondary cognitive task to vary task

load. Brouwer, Dijksterhuis, and van Erp. [26] points out

that the physiological effects of mental effort as manipulated

through cognitive task difficulty differ from effects of mental

effort as manipulated through a visuomotor task such as lane

keeping in a simulated driving. Most notably [27] demonstrate

that, heart rate, HRV, and respiration may not be affected by

task difficulty of visuomotor tasks, like driving.
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III. DATASET AND METHODOLOGY

A. Data Collection Protocol

We collected heart rate, skin conductance, skin temperature

and accelerometer data from 11 participants (professional

truck drivers) using wrist-worn devices. The heart rate with

a frequency of one Hz was derived from PPG sensor data and

other physiological signals were recorded at a frequency of 10
Hz. The experiment was realized with driving simulation soft-

ware and participants received standardized instructions from

an audiotape. Two experimental factors were manipulated:

namely stress and sleepiness. The high stress was induced

by means of secondary arithmetic subtraction task. It is a

component of widely used Trier Social Stress Test [28], where

a user has to perform serial subtraction verbally in a loud

manner and have to start over from the last correct answer, if

a mistake is made. Likewise, in a fatigue trial, Karolinska

Sleepiness Scale (KSS) was used for evaluating subjective

sleepiness of each driver. It spans nine levels and asks the

user to provide the number that most closely represents their

sleepiness level at the moment. The KSS appears to be most

widely used a sensitive and reliable measure of sleepiness [29].

Moreover, studies show a significant correlation between the

KSS and objective measures of driving performance such

as standard deviation of the lateral position and blink dura-

tion [30]. This makes it a feasible measure to derive ground

truth for supervised models as compared to video-coding,

which requires substantial human effort and have high chances

of bias being included in the generated labels.

The experiment consisted of six major steps that are given in

Fig. 2. Before the start of the experiment, participants filled-

in the KSS and other related forms. The first experimental

trial consisted of normal driving (baseline condition) for 15
minutes. Afterwards, each subject was asked twice to count

1 − 60 as a moderate stress activity with a very small

interval between two activities. After a one-minute period of

normal driving and to induce high stress, the subject was

asked to count backward from a random number in steps of

7 in approximately 30 seconds. After that the subject was

asked to count backward again from another random number.

The process was repeated for approximately 5 minutes. The

length of the stress simulation task was 25 minutes, including

baseline. In the break period (which varied from driver to

driver), participants filled-in the KSS form for the second time.

Then, the second experiment (named sleepiness or fatigue)

phase started and lasted 90 minutes. In this trial, no secondary

tasks were applied. Every 10 minutes, a KSS prompt was given

(on tablet) to the drivers to collect their sleepiness level. At

the end of the experiment, drivers filled-in the KSS and other

required forms for the last time, and devices were removed.

Post 
driving 
(21 mins)

Fatigue 
trial

(90 mins)

Break
(15 mins)

Stress 
trial 

(25 mins)

Practice 
trial 

(15.5 mins)

Pre 
driving
(15 mins)

Fig. 2. Sequence and duration of events in a simulator study.

B. Ground Truth Annotation

To derive the ground truth labels for arousal, we followed

the experimental protocol and used stress and KSS ratings.

The data collected during baseline, moderate and high-stress

trial was assigned labels of 1, 2 and 3, respectively. Moreover,

the data points during instruction periods were simply assigned

the label of zero to avoid wrong labeling. During a 90 minutes

fatigue trial, drivers were asked every 10 minutes for a KSS

score. Furthermore, the two KSS scores provided by the

drivers at the start of the experiment and before the break

were also used. The values are linearly interpolated between

the start and the break, to get a discrete range of KSS scores

that we used for arousal ground truth labeling. The KSS scores

from 1 to 5 were considered to be in “alert” state, whereas, 6
to 9 were considered as “sleepy” state.

Let s denote the stress label and k represents the set of KSS

scores. Then the arousal label l can be determined as follows:

l =

⎧⎪⎨
⎪⎩

under-aroused, if s ∈ {1, 2, 3} and k ∈ {6, 7, 8, 9}
normal, if s ∈ {1, 2} and k ∈ {1, 2, 3, 4, 5}
over-aroused, if s = 3 and k ∈ {1, 2, 3, 4, 5}

C. Pre-processing and Segmentation

Physiological signals vary significantly from person to

person and depend on several factors such as age and diet

etc. [31]. Hence, it becomes important to minimize this

variation. We minimally preprocess the dataset to let deep nets

extract key non-linear features. The biometric signals of each

driver are mean normalized (or applied z-score normalization)

by baseline to have zero mean and unit-variance. The mean

and standard deviation is calculated from the normal baseline

driving of 15 minutes. The day-to-day variations that can be

caused by several different factors, such as, mood fluctuations

are not considered in this work as the total duration of the

simulation task was approx. two hours.

We upsampled the heart rate using linear interpolation to

match the frequency of physiological signals to 10 Hz. The

upsampling is performed to keep the dataset size large enough

and avoid losing meaningful information. Likewise, we used

sliding window approach to extract signal segments with fixed

step size of 10 seconds. The windows of 10, 30, 60 and

90 seconds (each having 100, 300, 600 and 900 samples

respectively) are considered to find the optimal one.

IV. AROUSAL CLASSIFICATION

In the following section, we first briefly explain the problem

definition followed by a short explanation of deep neural

networks. We then describe architectural choices including

how to represent the raw physiological signal input for deep

nets. Finally, several specific design possibilities and details

of techniques for handling data imbalance are specified.

A. Problem Definition

We considered the problem of arousal detection as a su-

pervised sequence classification. In this task, the objective

is to assign a single label to an input sequence. Generally,
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Fig. 3. Baseline neural network architecture.

such problems are solved by a) performing high-level feature

extraction from sequences and using traditional classifiers

such as Logistic Regression. b) employing distance based

algorithms such as Dynamic Time Warping or c) probabilistic

methods like Hidden Markov Model. In this work, we em-

ployed deep learning methods that incorporate characteristics

of antecede techniques. For example, convolutional neural

network hierarchically learns complex nonlinear features com-

posed of an earlier ones and act as a replacement for hand-

crafted feature engineering. The rest of the section explains

deep nets working on physiological signals in detail.

B. Neural Network and Denoising Autoencoder

We used plain 4-layers Neural Network (NN) and Denois-

ing Autoencoder (DAE) as our baseline models. The fully

connected layers of the NN model had 256, 128, 64 and 32
neurons, respectively. The sigmoid function is applied as a

nonlinearity, whereas, the softmax function is used in the

last layer to get normalized output probabilities. In the second

baseline model, the DAE is used for unsupervised pre-training

to learn initial signal representation. The architecture of the

DAE was similar to that of the NN, where, dropout [32] is

used to introduce noise in the input with a probability of 0.2,

and L2 penalty is used on the weights of the encoders. Instead

of sigmoid, softsign is used as nonlinearity in the encoder

and the decoder of the network. Afterward, the decoder

is replaced with 2-layer NN with sigmoid as nonlinearity,

resulting in a six layers feed-forward network, which is trained

end-to-end. The input data fed into the network corresponds to

a flattened vector of physiological signals. Each input segment

xixixi ∈ IRt∗s was of the selected windows size t (e.g. 60
seconds) extracted using sliding window for biometric signal s
concatenated together. The NN model architecture is depicted

in Fig. 3 and the DAE model with fully connected layers is

shown in Fig. 4. The mean squared error and negative log-

likelihood are used as objective functions for unsupervised

and supervised model training, respectively.

C. Convolutional Neural Network

Convolutional neural networks (CNN) are generally used as

feature extractors on various types of data including images,

text, and time-series. We represent the input for CNN model

as a multidimensional array with the number of time steps as

the width and the number of physiological signals as input

features. Let n be the total number of examples (after signal

segmentation), t be the number of samples or time steps and s
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Fig. 4. Baseline architecture of denoising autoencoder for unsupervised pre-
training with fully connected neural network.

denote the number of physiological parameters, the resulting

input tensor X will be of shape n × t × s. We first applied

depthwise convolution to extract individualistic features from

each physiological signal. It is performed independently over

each input channel i.e. heart rate, skin conductance etc. Sub-

sequently, several temporal convolutions and average pooling

operations are applied to learn a wide range of complex

features. The CNN model had three convolution-average-

pooling blocks, with a depthwise convolution in the first stage

followed by standard convolution-average-pooling, densely

connected layer having 512 neurons and a softmax classi-

fication layer (see Fig. 5). The exponential linear unit [33]

(elu = exp(x) − 1 if x ≤ 0; x otherwise) is used as

nonlinear activation function in convolution layers, whereas,

sigmoid activation is used in a densely connected layer. The

L2 regularization is used on the weights of the convolution

layers and dropout with a probability of 0.2 is used on a

densely connected layer to avoid over-fitting and improve

model generalization.

D. Recurrent Neural Network

Recurrent neural network is a connectionist model that has

the capability to capture sequential time dependencies in the

input data. It can preserve the state from an arbitrarily large

window and overcome major limitations of the standard neural

network. In this work, we employed Gated Recurrent Unit

(GRU) [34] based RNN model. The hidden state dimension

was 128 and retained across batch training iterations (or also

called stateful). The input data fed into RNN was of the same

dimensions as CNN model i.e. X ∈ IRn× IRt× IRs. The last

output from the model is fed into a fully connected layer with

256 neurons and tanh activation function, which later passed

as input to softmax layer.

E. Hybrid Models

The convolutional and recurrent models capture a local and

global view of the data, respectively. A natural question to

ask, whether these two models can be combined into a unified
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Fig. 5. Convolutional neural network architecture.

model for learning both local representation and long-range

dependencies in the signals. Therefore, we also created two

hybrid architectures by integrating CNN and RNN together

(see Fig. 6). We took inspiration for second hybrid architecture

from work on learning representation from EEG [35]. In the

first variant, we dropped softmax and fully connected layer

of CNN model and fed last layer output into the RNN. This

can be seen as having a recurrent connection over an entire

window, instead of on each sample. The output from the

last stage of the recurrent layer is fed into a fully connected

layer having 512 neurons, which then pass on to softmax
for classification. In the second variation, RNN input was

the same as first version but we added another convolution

layer, to convolve over existing learned features from CNN.

Afterward, the last output from recurrent layer along with the

output of new convolution layer was concatenated and fed

into a fully connected layer. These hybrid models were trained

from scratch without using any trained weights from existing

models.

F. Tackling Data Imbalance

Generally, supervised learning techniques work well with

reasonably balanced datasets, where, a representation of each

class is uniform [36]. In our case, the over-aroused class

is underrepresented due to a short duration of the stressful

task as compared to sleepiness trial. To resolve this, we

applied over-sampling, threshold-moving and cost sensitive

loss function techniques and performed the experiments with

CNN CNN CNN CNN CNN CNN CNN

GRU GRU GRU GRU GRU GRU GRU

Fully Connected Layer

Softmax Layer

CNN

Fig. 6. Attempted hybrid architecture B of convolutional and recurrent neural
networks.

convolutional neural network model discussed in Section IV-C.

The mentioned techniques for resolving class imbalance are

briefly reviewed here.

1) Threshold-Moving: The idea behind threshold-moving

is to first define a cost matrix, which describes the mis-

classification cost of assigning an instance from one class

to another. The normalized probabilities from the deep net

are then modified according to equation (1) and class label

with maximum probability is selected [36]. By using this

method, network architecture and training procedure is not

modified in any way, and the cost sensitivity is introduced

during evaluation phase which can be seen as an advantage.

ŷj
∗ =

∑NC
i=1 yj × CM [j, i]

C
(1)

Where yj are original output probabilities from a softmax
layer, NC is total number of classes, CM is a cost matrix, C is

a sum of costs for each class and ŷj
∗ and act as normalization

term to keep 0 ≤ ŷj
∗ ≤ 1.

2) Over-Sampling: Synthetic Minority Over-sampling

Technique (SMOTE) is an oversampling technique that ran-

domly generates additional data points by interpolation from

the minority class samples. This method directly changes the

distribution of the dataset to have an equal number of examples

for every class and proved to be effective in learning from

imbalanced data [37]. Moreover, in order to minimize the class

overlap, congested borderline data points of opposite classes

that have minimal distance between them are removed.

3) Weighted Categorical Cross Entropy: The deep neural

network can be enabled to learn imbalance property of the data

by having a cost sensitive loss function. The categorical cross

entropy loss function is modified as proposed by [38] to reflect

equal error from both majority and minority classes. The prior

class probabilities are incorporated into a categorical cross

entropy [see equation (3)], resulting in a modified objective

function given by equation (2):

− 1

NC × n

n∑
i

m∑
k

yi,k
log ŷ(xi, yi;W )

p(yi)
(2)

Where NC shows the number of classes, n is the batch

size, m represents a total number of classes and p(yi) denotes

the prior probability of the class. For detailed mathematical

treatment of the loss function please see [38].
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TABLE I
OPTIMAL COST MATRIX.

j
Under-aroused Normal Over-aroused

Under-aroused 0 1 8
i Normal 1 0 9

Over-aroused 1 1 0

V. RESULTS

The model evaluation strategy and empirical findings of our

experiments are presented in this section.

The processed segmented data of each driver was randomly

split in a stratified manner. 80% of the data were used for

model training and validation, whereas, the remaining 20%

were hold-out for final model evaluation. To determine the

performance of the learned model for each driver, we used

Leave-One-subject-Out Cross-Validation (LOOCV). Weighted

F-score and Kappa measures are calculated as they are effec-

tive performance measures; when data is imbalanced.

In order to apply SMOTE on the current multiclass problem,

we considered samples from majority classes as belonging to

one class. For example, for generating samples of the over-

aroused class, we combined data points of under-aroused and

normal in one class. Likewise, in order to avoid generating

a large number of synthetic data points that are not really

representative of actual data points, we oversampled the over-

aroused and normal classes by 25% and 50%, respectively.

It is essential to note that the data is oversampled before

the signal segmentation process and the smoted data is used

only for training while the non-smoted is used for evaluation

in LOOCV. Likewise, for threshold-moving, we experimented

with four different cost matrices. Table I shows the cost matrix

that provided better results with the CNN model as compared

to the others.

We adopted Xaiver method proposed by [39] for initializa-

tion of models’ weights. Moreover, negative log-likelihood1

is used as an objective function for multiclass classification

problem, it is given by equation (3).

L = − 1

n

n∑
i

m∑
k

yi,k log(ŷi,k) (3)

Where n represent number of training examples, m denotes

the number of classes, yi is the true label and ŷi is the model’s

output.

We first evaluated baseline models as their classification per-

formance is compared with other, more complex architectures.

The cross-validation results of various deep models trained

on physiological signal segments of different window sizes

are summarised in Table II. The NN model reached average

validation F-score and Kappa of 0.75 and 0.53 respectively,

for a window size of 30 seconds. Likewise, the pre-training

using denoising autoencoder with two additional layers used

for supervised training achieved F-score 0.76 and 0.55 Kappa

for 30 seconds window size. These results show some im-

provement over a plain neural network possibly due to more

layers; in addition to pre-training of the model.

1Also known as Categorical Cross Entropy.

The proposed CNN architecture outperformed baseline

models, recurrent GRU and some hybrid architectures; and

significantly improved results across drivers. This suggests

that 1-D convolutions are able to extract important features in

physiological signals than shallow baseline models which do

not take temporality into account. It achieves values of 0.82
for the F-score and 0.64 for Kappa during cross-validation.

Likewise, on a hold-out test set to attain 0.81 F-score and

0.64 Kappa for 60 seconds window size. To find the optimal

architecture, we explore several specific design choices such

as activation functions and pooling type (such as max pooling,

ReLU activation etc.). We selected the architecture configura-

tion that gave us an overall improvement on evaluation metrics

(with low standard deviation) but also improved results for

each driver. The reason that CNN is superior over RNN is

in the the very large input sequence length and the recurrent

connection on a sample by sample basis which slowed the

learning in recurrent model, considerably.

The hybrids of convolution and recurrent networks are eval-

uated to overcome the issue of having a recurrent connection

over each sample. In the first variant, the learned features

from the convolution model are fed into the RNN followed

by fully connected layer. In the second variation, in addition

to feeding CNN features into RNN, we also fed those features

into a fully connected layer. The hybrid architectures did not

perform significantly better than the proposed CNN model (F-

score 0.82 of CNN vs 0.744 and 0.747 of hybrid a and b
respectively) and improved very little over baseline models.

The techniques to solve data imbalance are evaluated using

the optimal CNN model. The goal was to see if the detec-

tion rate of minority classes can be improved. The overall

averaged results are not improved but the detection rate for

the over-aroused class was slightly higher when over-sampled

(SMOTE) dataset was used with the CNN model. However, we

believe that a possible reason for the limited improvement in a

case of SMOTE, is that synthetic data points also have a class

overlap issue and they do not truly represent training examples.

Likewise, threshold-moving also did not improve much, as

finding an optimal cost matrix can be seen as an optimization

process in itself. Furthermore, the weighted categorical cross

entropy loss function is assessed to handle data imbalance

during a model learning process. We noticed that a batch size

greater than 15 is feasible for optimization to begin smoothly

due to the division term involved in the formula. The results

achieved using this loss function did not improve much on the

earlier achieved results using negative log-likelihood.

VI. DISCUSSION & CONCLUSION

The goal of this paper was to apply widely used deep

learning algorithms as an alternative to handcrafted feature

extraction for arousal classification. The manual feature en-

gineering is a requirement of traditional machine learning

algorithms, which is a cumbersome process and limited by the

researcher’s ability to create discriminant features. Moreover,

we used physiological parameters of professional truck drivers

collected from wearable devices during a simulation study. We
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TABLE II
SUMMARISED RESULTS OF THE ATTEMPTED DEEP NEURAL NETWORK ARCHITECTURES FOR DIFFERENT WINDOW SIZES.

Model Window Size Validation F-score Validation Kappa Test F-score Test Kappa

Neural
Network

10 0.749 0.517 0.757 0.526
30 0.757 0.531 0.757 0.535
60 0.740 0.517 0.739 0.522
90 0.747 0.538 0.760 0.568

Denoising
Autoencoder

10 0.736 0.524 0.748 0.538
30 0.762 0.558 0.763 0.563
60 0.763 0.549 0.761 0.553
90 0.729 0.548 0.727 0.529

Convolutional Neural
Network (CNN)

10 0.766 0.551 0.761 0.547
30 0.801 0.627 0.799 0.628
60 0.821 0.642 0.817 0.649
90 0.827 0.640 0.814 0.625

GRU - Recurrent
Neural Network

10 0.685 0.416 0.678 0.422
30 0.689 0.448 0.684 0.445
60 0.731 0.449 0.714 0.476
90 0.689 0.462 0.679 0.454

Hybrid
Architecture - A

10 0.704 0.464 0.688 0.431
30 0.735 0.547 0.725 0.545
60 0.718 0.564 0.705 0.557
90 0.744 0.610 0.735 0.590

Hybrid
Architecture - B

10 0.742 0.490 0.706 0.453
30 0.738 0.544 0.723 0.526
60 0.740 0.570 0.740 0.570
90 0.747 0.595 0.738 0.559

CNN - SMOTE

10 0.749 0.554 0.733 0.524
30 0.775 0.610 0.770 0.610
60 0.770 0.630 0.770 0.630
90 0.787 0.649 0.773 0.621

CNN - Threshold
Moving

10 0.729 0.526 0.740 0.537
30 0.757 0.552 0.767 0.570
60 0.796 0.596 0.802 0.616
90 0.810 0.617 0.804 0.606

CNN - Weighted
Categorical

Cross Entropy

10 0.690 0.480 0.693 0.484
30 0.700 0.526 0.686 0.507
60 0.736 0.585 0.749 0.601
90 0.733 0.588 0.721 0.567

presented a ground truth generation scheme for arousal based

on a subjective measure of sleepiness and a score of stress

stimuli. This scheme is cost effective and efficient as compared

to using video decoding for ground truth labels generation.

The convolutional neural network trained on raw physi-

ological signals (i.e. heart rate, skin conductance and skin

temperature) outperformed baseline neural network and de-

noising autoencoder models with a weighted F-score of 0.82
vs. 0.75 and a Kappa of 0.64 vs. 0.53, respectively. More-

over, the Convolutional Neural Network (CNN) outperform

Gated Recurrent Unit (GRU) and hybrid models of CNN +

GRU/dense layers. The proposed convolutional model not only

improve the overall results, but enhanced the detection rate

for every driver in the dataset as determined by leave-one-

subject-out cross-validation. Likewise, several specific design

choices were evaluated for a convolutional neural network

to find a robust architecture, we found elu activation and

average pooling to give optimal results as compared to other

configurations. Due to the short duration of the stressful task

and a varying degree of drowsiness, the dataset was imbal-

anced. We empirically explored three methods for resolving

this imbalance in the dataset. Using SMOTE, the synthetic

data generation improved the detection rate of a convolutional

neural network on over-aroused class but only very slightly.

The major limitation of the presented models is the difficulty

in differentiating between normal and over-arousal data points.

One rationale could be because of the high class overlap

between normal and over-aroused classes. More specifically,

normal arousal data points were mostly comprised of baseline

and no drowsiness signal during the sleepiness trial; hence

they shared a similar characteristic with the over-aroused class.

Likewise, as the physiological signals show huge interper-

sonal variation. For this reason, we suggest that the initial

model should be personalized for each driver by training on

one’s newly collected data after deployment in production.

Moreover, we did not perform comparison of deep neural

networks with conventional feature extraction methods due to

the unavailability of raw inter-beat-intervals that are required

to calculated HRV features. Likewise, we suggest performing

similar analysis with larger dataset (30+ drivers) to verify the

significance of the results.

The purpose of the developed model should be nudging the

drivers to improve their alertness and safety. Therefore, the

model can be deployed locally on a smartphone for use in

a real-life situation; while preserving privacy. It provides an

opportunity to update an initial global model by aggregating

local models of various drivers. The federated learning [40]

approach can be naturally applied to this case as it takes
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non-IID and unbalanced nature of training data into account.

However, getting the ground truth labels for arousal can

be tricky in such a situation. We suggest using subjective

measures, for instance, asking the user explicitly or looking in-

combination with behavioural data like app usage to determine

the correct labels. Lastly, another important future direction

could be to understand the decision-making process of deep

models trained on time-series datasets.
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