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Abstract—In order to better engage with customers, retailers
rely on extensive customer and product databases which allows
them to better understand customer behaviour and purchasing
patterns. This has long been a challenging task as customer
modelling is a multi-faceted, noisy and time-dependent problem.
The most common way to tackle this problem is indirectly
through task-specific supervised learning prediction problems,
with relatively little literature on modelling a customer by directly
simulating their future transactions. In this paper we propose a
method for generating realistic sequences of baskets that a given
customer is likely to purchase over a period of time. Customer
embedding representations are learned using a Recurrent Neural
Network (RNN) which takes into account the entire sequence of
transaction data. Given the customer state at a specific point
in time, a Generative Adversarial Network (GAN) is trained to
generate a plausible basket of products for the following week.
The newly generated basket is then fed back into the RNN to
update the customer’s state. The GAN is thus used in tandem
with the RNN module in a pipeline alternating between basket
generation and customer state updating steps. This allows for
sampling over a distribution of a customer’s future sequence of
baskets, which then can be used to gain insight into how to service
the customer more effectively. The methodology is empirically
shown to produce baskets that appear similar to real baskets
and enjoy many common properties, including frequencies of
different product types, brands, and prices. Furthermore, the
generated data is able to replicate most of the strongest sequential
patterns that exist between product types in the real data.

Index Terms—Generative Adversarial Networks, Customer
embedding, Basket Generation, Retail

I. INTRODUCTION

Modern retailers collect, store and utilize massive amounts
of consumer behaviour data through their customer loyalty
programs. Sources such as customer-level transactional data,
customer profiles, and product attributes allow the retailer
to better service their customers by utilizing data mining
techniques for customer relationship management (CRM) and
direct marketing systems [1]]. Better data mining techniques
for CRM databases can allow retailers to understand their
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customers more effectively, leading to increased loyalty, better
service and ultimately increased sales.

Modelling customers is a complex problem with many
facets. First, a retailer’s loyalty data provides a censored
view into a customer’s behaviour because it only shows the
transactions for a single retailer, leading to noisy observations.
Second, the sequential nature of consumer purchases adds
additional complexity as changes in behaviour and long term
dependencies need to be taken into account. Finally, the large
number of customers (100M+) multiplied by the catalog of
products (100K+) results in a vast amount of transactional
data, but it is simultaneously very sparse at the level of individ-
ual customers. These complexities make modelling customers
a difficult problem even with modern techniques.

Indirect approaches to modelling customer behaviour for
specific tasks have been widely studied. Techniques that utilize
customer-level transactional data such as customer lifetime
value (2], recommendations [3]], [4]], and incremental sales [5]],
formulate these tasks as supervised learning problems. More
direct approaches to modelling customers have been through
simulators. There are a wide variety of applications for cus-
tomer marketing simulators from aiding in decision support [6]]
to understanding how behavioural phenomena affect consumer
decisions [7]]. Another notable application of customer sim-
ulators is in the context of direct marketing activities [8]—
[11]]. These methods use the customer simulator to understand
individual-level interactions between a customers and a mar-
keting agent. Typically, the goal is to find an ideal marketing
policy to maximize a pre-defined reward over time. However,
the primary focus of this work has been on techniques for
generating an optimal marketing policy with less focus on
generating realistic simulations of customer transactional data.

Generative modelling methods [[I2] have proven to be very
successful in learning realistic distributions from the data
in many different contexts. A relevant recent work by [13]]
presents a technique to generate realistic orders from an e-
commerce dataset. They provide a method to effectively learn
the complex relationships between customer and product to



generate realistic simulations of customer orders, but do not
take into account how customer behaviour changes over time
in their method.

In this work, we present a novel method to generate realistic
sequences of customer-level baskets of products over time us-
ing a customer-level retail transactions dataset. Our technique
is able to generate samples of both customers and traces of
their transaction baskets over time. This general formulation
of the customer modelling problem allows one to essentially
generate new customer-level transactional datasets that retain
most of the distributional properties of the original data. This
opens up possibilities for new applications such as generating a
distribution of likely products to be purchased by an individual
customer in the future to derive insights for better service, or
by providing external researchers with access to generated data
for a source dataset that otherwise would be restricted due to
privacy concerns.

The proposed method uses a multi-step approach to gener-
ating customer-level transactional data using using a combi-
nation of Generative Adversarial Networks (GAN) [12] and
Recurrent Neural Networks (RNN) [14]. First, we train a
RNN to generate a customer embedding by using a multi-
task learning approach. The inputs to the RNN are product
embeddings derived from their textual descriptions. This al-
lows one to describe the customer state given their previous
transactions. Next, to determine the number of products in the
next basket, we extract a sample based on historical basket
sizes of similar customers. A GAN trained by conditioning on
a customer embedding at the current time is used to predict the
next product in a basket for a given customer. This is repeated
until all products in the basket are filled. This provides a
single customer-level transaction basket. Finally, the generated
products are fed back into the RNN to generate the next state
of the customer and the process repeats.

Evaluation of GANs and generative models are difficult
in general [15]], [[16] especially for non-visual domains. We
demonstrate the effectiveness of the technique via several
qualitative and quantitative metrics. We first show that the
generator can reproduce the relative frequencies of various
product features including types, brands, and prices to within a
5% difference. We further show that the generated data retains
most of the strongest sequential patterns between products
in the real data set. Finally, we show that most of the real
and generated baskets are indistinguishable, with a classifier
trained to separate the two being able to achieve an accuracy
of only 63% at the category level.

II. BACKGROUND AND RELATED WORK
A. Transaction-Based Item and Customer Embeddings

Learning a representation of customers from their transac-
tional data is a common problem in retail data mining. Bor-
rowing inspiration from Natural Language Processing (NLP),
different methods try to embed customers into a common
vector space based of their transaction sequences. For instance,
[17] and [18] learn the embeddings by adapting the Paragraph
Vector-Distributed Bag-of-Words or the n-skip-gram models

IEEE ICDM Workshop on Data Mining for Services 2018

from [19]. The underlying idea behind these methods is that
by solving an intermediate task such as predicting the next
word in a sentence or the next item a customer will purchase,
one can learn general-purpose features that are meaningful
and have good predictive power for a wide variety of tasks.

For example, [2] examines the lifetime value of a cus-
tomer in the context of an e-commerce website. Towards that
end, they also use an n-skip-gram model to learn customer
embeddings and track its evolution over time as purchases
are made. [20] uses a stacked denoising autoencoder to learn
customer embeddings for improving their campaign decisions
or clustering clients into classes.

B. Item Prediction and Recommendation Systems

Various techniques from recommendation systems such as
collaborative filtering [4]], [21] have long been used to predict
a customer’s preference for items, although usually they are
not directly predicting a customer’s next purchase.

More recent advancements in deep learning have shown to
be quite practical in modelling a customer’s next purchase
over time. Techniques such as [22] mimic a recurrent neural
network (RNN) by feeding historical transaction data as input
to a neural network which predicts the next item. [3]] and [23]]
both use a RNN to predict the next basket of items to great
effect.

C. Generative Adversarial Networks

Generative Adversarial Networks (GANSs) [12] are a class of
generative models aimed at learning a distribution. The method
is founded on the game theoretical concept of two-player zero-
sum games, wherein two players each try to maximize their
own utility at the expense of the other player’s utility. By
formulating the distribution learning problem as such a game,
a GAN can be trained to learn good strategies for each player.
A generator G aims to produce realistic samples from this
distribution while a discriminator D tries to differentiate fake
samples from real samples. By alternating optimization steps
between the two components, the generator ultimately learns
the distribution of the real data.

In detail, the generator network G : Z — X is a mapping
from a high-dimensional noise space Z = R% to the input
space X on which a target distribution fx is defined. The
generator’s task consists of fitting the underlying distribution
of observed data fx as closely as possible. The discriminator
network D : X — RN [0,1] scores each input with the
probability that it belongs to the real data distribution fx rather
than the generator G.

The classical GAN optimization algorithm minimizes the
Jensen-Shannon divergence (JS) between the real and gen-
erated distributions. However, [24] suggests replacing the JS
metric by the Wasserstein-1 or Earth-Mover divergence. We
make use of an improved version of this algorithm, the
Wasserstein GAN (WGAN) with Gradient Penalty [25]. Its
objective is given below:

[D(x)] + [=D(x)] +p(A), 1)

mci;n max E

E
D z~fx(x) ~G(z)



where p(\) = A\(||VzD(@)|| — 1)?, 2 = ex + (1 — e)G(Z),
¢ ~ Uniform(0, 1), and Z ~ fz(z). Setting A = 0 recovers
the original WGAN objective.

D. Simulating Customer Behaviour

A customer’s state with respect to a given retailer (i.e. the
types of products they are interested in and the amount they
are willing to spend) evolves over time, and there exist a wide
variety of techniques used to model this state. In marketing
research, agent-based approaches such as [6], [7] have aided
in building simple simulations of how customers interact and
make decisions.

Data mining and machine learning approaches to model a
customer’s state in the context of direct marketing activities
have also been widely studied [8]. Techniques such as [9[]-[/11]]
model the problem in the reinforcement learning framework by
attempting to learn the optimal marketing policy to maximize
rewards over time. As part of their work, they use various
techniques to represent and simulate the customer’s state over
time. However, the method does not use the customer’s state to
generate its future orders, but rather consider it more narrowly
in the context of the defined reward.

More recently, [13] was the first to generate plausible
customer e-commerce orders for a given product using a
Generative Adversarial Network (GAN). Given a product
embedding, [13]] generates a tuple containing a product em-
bedding, customer embedding, price, and date of purchases,
which summarizes a typical order. The e-commerce GAN
has applications in providing insights into product demand,
customer preferences, price estimation and seasonal variations
by simulating what are likely potential orders. However, it only
generates realistic orders and does not directly model customer
behaviour over time.

III. METHODOLOGY

In this section, we present a novel methodology for gen-
erating realistic sequences of future transactions for a given
customer. The proposed pipeline involves a GAN module
and an LSTM module intertwined in a sequence of product
generation and customer state updating steps. The GAN is
trained to generate a basket of products conditioned on a time-
sensitive customer representation, while the LSTM models the
sequential nature of the customer’s state as it interacts with
products. Each of these components uses semantic embeddings
of customers and products for representational purposes, which
are defined in the first two subsections, while the training
of the GAN and generation of customer transactions are
presented in the latter two subsections.

A. Product Representations

To capture the semantic relationships between products that
exist independently of customer interactions, we learn product
representations based on their associated textual descriptions.
Specifically, a corpus is created wherein a sentence is defined
for each product as the concatenation of the product name
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and description. Preprocessing is applied to remove stopwords
and other irrelevant tokens. The resulting corpus contains
11,443 products and a vocabulary size of 21,894 words.
The word2vec skipgram model [19] is then trained on this
corpus using a context window size of 5 and an embedding
dimensionality of 128. Finally, each product representation
is defined as the arithmetic mean of the word embeddings
in the product’s name and description. This is similar to the
common practice of representing a sentence by the mean of
word vectors within the sentence [26]], and is motivated by the
observation that sums of word vectors produce semantically
meaningful vectors.

B. Customer Representations

To characterize customers by their purchasing habits we
learn customer embedding representations from their trans-
actional data. Inspired by [13], this is accomplished using a
Long-Short Term Memory (LSTM) [27] module. The LSTM
takes as input a sequence of transaction baskets for a given
customer, where each transaction basket is defined by a set of
product embeddings for a week of purchase. Products within
the same basket are ordered randomly during training. The
LSTM is trained to learn the customer’s sequential patterns via
a multi-task optimization procedure. Specifically, the LSTM
output is fed as inputs for the following three prediction tasks:

1) Predict whether or not a product is the last product in
the basket.

2) Predict the category of the next product.

3) Predict the price of the next product.

The LSTM is trained to maximize the performance of all
three subtasks by randomly and uniformly sampling a single
task in each step and optimizing for this task. After conver-
gence, the hidden state of the LSTM is used to characterize
a customer’s purchasing habits, and thus a customer’s state.
As a result, customers with similar behaviour will be closer
together in the resulting embedding space. Figure 1] illustrates
the process of learning this embedding.

C. Learning Product Distributions with a Conditional GAN

To learn the product distributions, we use a conditional
Wasserstein GAN [24]. In the optimization process the dis-
criminator and generator are involved in a min-max game. In
this game the discriminator aims to maximize the following
loss function:

max [E

ax E (DGl (hw)] +

E —D(x|(h,w
oo Fpp DB

+A(IVaD(@|(h, w)|| = 1)%,

where A\ is a penalty coefficient, & = ex + (1 —
€)G(z|(h,w)), and € ~ Uniform(0,1). The first term is the
expected score (which can be thought of as likelihood) of
seeing an product = being purchased by the given customer
and week (h,w). The second term is the score of seeing
product z being purchased by that same customer and week,
(h,w). Taken together, these first two terms encourage the
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Fig. 1: Embedding customers via multi-task Learning with an
LSTMs. The input is the sequence of products a customer
has purchased throughout their transactional history. After
convergence, the hidden state of the LSTM will characterize
a customer’s state.

discriminator to maximize the expected score of the real
products © ~ fx(x) given the context (h,w) and minimize
the score of the generated products x ~ G(z|(h,w)). The
third term in Eq. 2] is a regularization penalty to ensure that
D satisfies the 1-Lipschitz conditions.

The generator is trained to minimize the following loss

function:

max ENG(EZ(h)w))[D(th,w)] 3)
Intuitively, this objective aims to maximize the likelihood
that the generated product x ~ G(z|(h,w)) is plausible
given the context (h,w), where plausibility is determined
by the discriminator D(z|(h,w)). With successive steps of
optimization we obtain a G which will generate samples that
are more similar to the real data distribution.

While the generator learned from Eq. [3] can yield realistic
product embeddings, in practice one may wish to obtain
specific instances from a database P = {p;}_, of known
products. This can be useful, for instance, to obtain a product
recommendation for customer i at week w. Given a generated
product embedding G(z|(h,w)), this can be accomplished by
computing the closest product from the database according to
the Ly distance metric: p = argmin,  p ||G(z|(h, w)) — pi[3.
Note that other distance metrics such as cosine distance could
also be used for this purpose.

D. Generating Sequences of Products

In this subsection we develop a pipeline to generate a
sequence of baskets of products that a customer will likely
purchase over several consecutive weeks. The pipeline incor-
porates the product generator G to produce individual products
in the basket as well as the LSTM module to model the
evolution of a customer’s state over a sequence of baskets.

The procedure works as follows. Given a new customer with
a transaction history Bi, Bs, ..., B;, where each B; denotes
a basket for week w; and 7 > 1, we wish to generate a
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basket B, for the following week. We extract the customer
embedding at week w;, denoted h;, by passing the transaction
sequence through the LSTM module and extracting the hidden
state. We then find the & most similar customers from the
database of known customers by Lo distance from h;. This
is similar to the process of retrieving known products from
a database as described in the previous section. We then
determine the number of products to generate for him/her
in week w;. To accomplish this we uniformly sample from
the basket sizes of the k£ most similar customers’ baskets to
retrieve the number of products to generate, n;. The generator
network is then used to generate n; products via our generator,

This procedure can be extended to generate additional
baskets by feeding B;.; back into the LSTM, whose hidden
state is updated as if the customer had purchased B;;;. The
updated customer representation h;;; isS once again used to
estimate the basket size n;;; and fed into the generator
G(hiy1,w;11) which yields a basket of products for the
week w;y1. This cycle can be iterated multiple times to
generate basket sequences of arbitrary length, or alternatively
generate multiple sequences of baskets for the same customer.
The procedure is described in detail by the pseudo-code in
Algorithm [T] and illustrated in Figure [2] Note that all values in
Algorithm [T] are also indexed by the customer index ¢ which
has been omitted in this discussion for the brevity. To simplify
the notation, we also use the symbol B§ in Algorithm [I] to
denote the entire history of customer c.

In this manner we can effectively augment a new customer’s
transaction data by predicting their actions for an arbitrary
amount of time. The intuition behind the approach is that a
customer’s embedding representation evolves as they purchase
products, and therefore might share some common properties
with other customers through their purchase experience. One
can derive insights from this generated data by learning a
better characterization of their distribution of likely purchase
sequences into the future.

Algorithm 1 Sequence of basket generation

Input: LSTM L, generator G, set of historical basket
sequences for each customer {B§}S ;, hyperparameter k,
number of weeks W
forc=1,...,C do
Compute initial customer embedding h§ via L(B§)
for w=1,...,W do
Sample n¢, via k-nearest customers of hS,
Generate basket BS, of ng, products from G(hS,, w)
Update the customer embedding with the LSTM:
a1 = L(By,, hiy)-
end for
end for

IV. EXPERIMENTAL RESULTS

In this section we empirically demonstrate the effectiveness
of the proposed methodology by comparing the generated
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Fig. 2: Basket sequence generation process using the LSTM
and Generator modules.
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basket data against real customer data. Evaluation is first
performed with respect to the distributions of key metrics
aggregated over the entire data sets, including product cat-
egories, brands, prices, and basket sizes. Next we compare
sequential patterns that exist between products in both data
sets, and finally we examine the separability between the
real and generated baskets with multiple different basket
representations.

A. Experimental Setup

The basket generation methodology is evaluated using a
data set from an industrial partner which consists of 742,686
transactions over a period of 5 weeks during the summer of
2016. This data is composed of 174,301 customer baskets with
an average size of 4.08 products and price of $12.2. A total
of 7,722 distinct products and 66,000 distinct customers exist
across all baskets.

Figure [3] shows the product embedding representations ex-
tracted from textual descriptions as described in Section [[II-A]
projected into a 2-dimensional space using the t-SNE algo-
rithm [28]. Products are classified into functional categories
such as Hair Styling, Eye Care, etc, each of which corresponds
to a different color in Figure 3] We observe that products from
the same category tend to be clustered close together, which
reflects the semantic relationships between such products. At
a higher level we observe that similar product categories also
occur in close proximity to one another; for example the
categories of Hair Mass, Hair Styling and Hair Designer are
mapped to adjacent clusters, as are the categories of Female
Fine Frag and Male Fine Frag. This property is critical to
the basket generation scheme which directly generates only
product embeddings, while instances of specific products are
obtained based on their proximity to other products in the
embedding space.

The LSTM is trained on this data set with a multi-task opti-
mization procedure as described in section [[lI-B] (see Figure|T)
for 25 epochs. For each customer, we obtain an embedding
from the LSTM hidden state after passing through all of their
transactions. These embeddings are then used to train the
conditional GAN. The GAN was trained for 100 epochs using
the Adam [29] optimizer with the hyperparameters values of
a = 0.5 and f = 0.9. The discriminator is composed of
two hidden layers of 256 units each with ReLLU activation
functions, with the exception of the last layer which is free of
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Fig. 3: Visualization of product embeddings in a 2D space
(mapped using t-SNE)

activation functions. The generator uses the same architecture
except for the last layer which has a tanh activation function.
During training the discriminator is prioritized by applying
five update steps for each update step to the generator. This
helps the discriminator converge faster so as to better guide
the generator.

Once the LSTM and GAN are trained we run our basket
sequence generation. For each customer, we generate 5 weeks
of baskets following the procedure in Algorithm [T}

B. Feature Distributions

Figures ] Bl [6l and [7] compare the frequency distributions
of the categories, brand, prices, and basket sizes, respectively,
between the generated and real baskets. Additional metrics
are provided in Tables [[] and [l Note that for the brand, we
restrict the histogram plots to include only the top 30 most
frequent brands. We observe that in general our generative
model can reasonably replicate the ground-truth distribution.
This is further evidenced by Table [lI] which indicates that the
highest absolute difference in frequency of generated brands
is 5.6%. The lowest discrepancy occurs for the category
feature, where the maximum deviation is 3.2% in the generated
products. In addition, the generated basket size averages 3.85
products versus 4.08 for the real data which is a difference
of approximately 5%. The generated product prices are an
average of $3.1 versus $3.4 for the real data (a 10% differ-
ence). This demonstrates that the generation methodology can
mimic the aggregated statistics of the real data to a reasonable
degree. Note that we should not expect the two distributions
to match exactly because we are projecting each customer’s
purchases into the future, which won’t necessarily have the
same distributive properties.

C. Sequential Pattern Mining

Sequential pattern mining [30] (SPM) is a technique to
discover statistically relevant subsequences from a sequence
of sets ordered by time. One frequent application of SPM is
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in retail transactions where we wish to determine subsequences
of items across baskets customers have bought over time. For
example, given an set of baskets a customer has purchased
ordered by time: {milk, bread}, {cereal, cheese}, {bread,
oatmeal, butter}, one sequential pattern we can derive is:
{milk}, {bread, butter} because {milk} in the first basket
comes before {bread, butter} in the last basket. A pattern
is typically measured by its support, which is defined as the
number of customers containing the pattern as a subsequence.
We refer the reader to [|30|] for further details.

For this set of experiments, sequential pattern mining is per-
formed on the real and generated datasets via the SPFM [31]]
library using a minimum support of 1% of the total number
of customers. Figure [§] plots the percentage of the top-k most
common real sequential patterns that are also found in the
generated data as k varies from 1 to 1000. Here items are
defined at either the category or subcategory level, so that two
products are considered equivalent if they belong to the same
functional grouping. We see that for the category-level, we can
recover 98% of the top-100 patterns, while at the subcategory-
level, we can recover 63%. This demonstrates that our method
is generating plausible sequences of baskets for customers
because most of the real sequential patterns show up in the
generated data. Not all patterns are found however, which
might imply that the generated data might have some drift
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in the sequences due to the method of projecting customer’s
purchases into the future.

Table shows examples of the top sequential patterns of
length 2 and 3 from the real data at the subcategory level
that also appeared in the generated transactional data. The two
right columns show the support for both the real and generated
datasets, which is normalized by dividing by the total number
of customers. We can see that the generated data has higher
support for the patterns from generated data, indicating that it
may have an easier time replicating common patterns.

D. Basket Distributions

In this section we directly compare the generated and real
baskets based on the products they contain. For each basket of
products B; = {p; ; }Ijill we a define a vector representation
v; using a bag-of-products scheme. Let P denote the set of
all known products. Then v; is a |P|-dimensional vector with
vl(]) =1lifp; € B;or vfj) = 0 otherwise. P can be defined at
various levels of precision such as the product serial number,
the brand, or the category levels. At the category level, for
instance, two products would be considered equivalent and
correspond to the same index j if they belong to the same
category.

The resulting vectors are then projected into two dimensions
using t-SNE for visualization purposes. The distributions of
the real and generated data are plotted in Figures [9] For an
alternative viewpoint Figure [T0] plots the vectors projected



TABLE I: Statistics

Real Transactions | Generated Transactions

Average basket size 4.08 3.85

$3.1 $3.4

Average basket price

TABLE II: Discrepancies between real and generated data

Criterion Max absolute deviation (in %)
Category 3.2%
Brand 5.6%
Price 5.2%
Basket size* 4.1%

* this metric only applies for basket size < 20

using Principal Component Analysis (PCA). These plots qual-
itatively indicate that the distributions match quite closely.

This observation can be further analyzed quantitatively
by training a classifier to distinguish between points from
the two distributions. By measuring the prediction accuracy
of this classifier we obtain an estimate of the degree of
separability between the data sets. For our experiments we
randomly sample a subset of the generated points such that
the number of real and generated points are equal. This way
a perfectly indistinguishable generated data set should yield a
classification accuracy of 50%. We note that this classification
task is fundamentally unlike that which is performed by the
discriminator during the GAN training, as the latter operates
on the embedding representation of a single product while the
former operates on the bag-of-items representation of a basket.

The results are given in Table [IV|using a logistic regression
classifier. Each row corresponds to a different level of gran-
ularity in the definition of the bag-of-products representation,
with category being the most coarse—grained and sku being
the most fine—grained. We see that the classifier performs
quite poorly at the category levels, meaning that the generated
baskets of categories are quite plausible.

However, note that the bag-of-products representation does
not preserve the semantic similarity between products in that
any two products with different skus are perfectly separable
even if they have very similar functions and descriptions.
Therefore, we instead define the sku level basket representation
as the mean of embeddings of the products in the basket. This
is given in the last row of Table Note that these repre-
sentations come from the embeddings of the nearest neighbor
product rather than the output of the generator. As expected,
the classification accuracy is still quite low considering the
fine-grained level at which the prediction occurs.

TABLE IV: Separability between real and generated baskets.

Basket Representation Classification Accuracy
Bag-of-products category 0.634
Bag-of-products subcategory 0.663
Basket embedding sku-level 0.704

V. CONCLUSION

In this paper, we propose a novel method of generating
sequences of realistic customer baskets for customer-level

IEEE ICDM Workshop on Data Mining for Services 2018

100

—— Category
Subcategory
90
L 80
s
L5
=
Q
[
70
60

0 200 400 500 BO0
k

1000

Fig. 8: Generated pattern coverage of the top-k most common
real patterns

Real Generated

-40 -30 -20 -10 0 10 20 30 40 40 30 -20 -10 0 10 20 30 40
0 0

Fig. 9: Basket representations as bags-of-products vectors at
the category level, projected using t-SNE.

transactional data. After learning customer embeddings with
an LSTM, we generate a product basket conditioned on the
customer embedding using the generator from the GAN. The
generated basket of products is fed back into the LSTM to
generate a new customer embedding, and the process repeats.
We show that the proposed methods can replicate to a reason-
able degree the statistics of the real data distribution (category,
brand, price and basket size). As additional experiments,
we verified that common sequential patterns exist between
products in the generated and real data, and that the generated
orders are difficult to distinguish from the real orders.



TABLE III: Sequential patterns comparison between real and generated transaction data

Sequence Real support | Generated support
Hemorrhoid relief, Skin treatment & dressings 0.045 0.098
Skin treatment & dressings, Female fine frag 0.029 0.100
Facial moisturizers, Skin treatment & dressings 0.028 0.075
Shower products, Female fine frag 0.028 0.056
Hemorrhoid relief, Female fine frag 0.028 0.093
Skin treatment & dressings, Facial moisturizers 0.027 0.076
Skin treatment & dressings, Preg test & ovulation 0.027 0.082
Shower products, Skin treatment & dressings 0.026 0.056
Hemorrhoid relief, Preg test & ovulation 0.026 0.075
Female fine frag, Preg test & ovulation 0.025 0.081
Facial moisturizers, Hemorrhoid relief 0.025 0.069
Skin treatment & dressings, Skin treatment & dressings, Hemorrhoid relief 0.007 0.014

Generated

05

00

Fig. 10: Basket representations as bags-of-products vectors at

the category level, projected using PCA.
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