
User-Device Authentication in Mobile Banking
using APHEN for Paratuck2 Tensor Decomposition

Jeremy Charlier
University of Luxembourg

Luxembourg
jeremy.charlier@uni.lu

Eric Falk
University of Luxembourg

Luxembourg
eric.falk@uni.lu

Radu State
University of Luxembourg

Luxembourg
radu.state@uni.lu

Jean Hilger
BCEE

Luxembourg
j.hilger@bcee.lu

Abstract—The new financial European regulations such as PSD2
are changing the retail banking services. Noticeably, the monitor-
ing of the personal expenses is now opened to other institutions
than retail banks. Nonetheless, the retail banks are looking to
leverage the user-device authentication on the mobile banking
applications to enhance the personal financial advertisement.
To address the profiling of the authentication, we rely on
tensor decomposition, a higher dimensional analogue of matrix
decomposition. We use Paratuck2, which expresses a tensor as a
multiplication of matrices and diagonal tensors, because of the
imbalance between the number of users and devices. We highlight
why Paratuck2 is more appropriate in this case than the popular
CP tensor decomposition, which decomposes a tensor as a sum
of rank-one tensors. However, the computation of Paratuck2
is computational intensive. We propose a new APproximate
HEssian-based Newton resolution algorithm, APHEN, capable
of solving Paratuck2 more accurately and faster than the other
popular approaches based on alternating least square or gradient
descent. The results of Paratuck2 are used for the predictions of
users’ authentication with neural networks. We apply our method
for the concrete case of targeting clients for financial advertising
campaigns based on the authentication events generated by
mobile banking applications.
Index Terms—Tensor decomposition, Paratuck2, Neural net-
works, Recommender engines, Authentication

I. INTRODUCTION

Endorsed by the European objectives to promote the financial
exchanges between the Euro members, a new financial regu-
lation for Personal Finance Management (PFM) has entered
into force in 2018. PFM is the monitoring of the revenues
and the expenses of a bank account. PFM is achieved with
the use of a Personal Finance Application (PFA), otherwise
known as mobile banking application. The revised Payment
Service Directive, PSD2, allows every person having a bank
account to use a PFA from a third party provider to manage
its personal finance, and thus transform the banks into simple
vaults. Nevertheless, the retail banks now have the opportunity
to leverage the user-device authentication on their own mobile
banking application. Through the regular authentication, the
bank create a financial profile awareness for every clients.
They measure the frequency of the connections per day, the
time of the connections and the type of the mobile devices
used to authenticate such as a smartphone or a tablet. The
more frequently a client is authenticating to its mobile banking
application, the more likely he will have a high interest for
finance, and therefore, the more likely he will be interested

by financial recommendation. This client will be contacted in
priority to advert financial products for wealth optimization.
However, it is very common for the same person to use
several mobile devices for the same application. Therefore, the
devices generate dozens of authentication per day and create a
strong imbalance between the number of users and the number
of devices. Consequently, the modeling of the user-device
authentication is multidimensional and complex. To answer
this challenge, we rely on tensor decompositions, a higher
order analogue of matrix decompositions, since they have
proven to be powerful to model multidimensional interactions.
Particularly, we address the modeling of the imbalanced user-
device authentication with the Paratuck2 tensor decomposition,
which decomposes a tensor as a multiplication of matrices and
sparse tensors. We summarize the three main contributions of
the paper as follows:
• We have designed an innovative AProximate HEssian

Newton minimization algorithm, APHEN, applied to a
tensor decomposition, Paratuck2. The algorithm is able
to reduce at a minimum the numerical errors while deliv-
ering state of the art performance. Additionally, APHEN
does not require the full knowledge of the Hessian matrix
to achieve its superior convergence.

• We highlight the superior capabilities of APHEN and
Hessian-based resolution algorithms for complex tensor
decomposition such as Paratuck2 in comparison to other
popular resolution schemes, mainly exclusively studied
for the popular CP decomposition.

• Additionally, we have applied the unique advantages
of Paratuck2 for interactions modeling with imbalanced
data. We justify with numerical simulation the use of
Paratuck2 instead of the more popular CP tensor decom-
position, which decomposes a tensor as a sum of rank-
one tensors. In our application, one user can use several
computers, and thus, we have considered the imbalance
between the number of users and computers.

• Finally, we have developed an approach with the
Paratuck2 tensor decomposition and neural networks
for authentication monitoring. Based on Paratuck2, the
neurons predict the users’ authentication to estimate the
future financial awareness of the clients. Therefore, the
banks can better advertise their products by contacting
the clients which are the more likely to be interested.

ar
X

iv
:1

90
5.

10
36

3v
1

 [
cs

.N
A

]
 2

3
M

ay
 2

01
9

The remaining of this paper is organized as follows. Section 2
surveys the latest research publications related to user-device
authentication and tensor decompositions. Section 3 describes
the fundamentals of tensor decompositions, the APHEN al-
gorithm and the other popular resolution algorithms. Addi-
tionally, it introduces a basic knowledge of neural networks
and machine learning predictions. Section 4 illustrates the
convergence speeds of APHEN in comparison to the other
popular schemes. Then, Paratuck2 and neural networks are
used to predict the imbalanced users’ authentication with the
aim of improving the subscription rates to financial products
during the banks’ advertising campaigns. Finally, we conclude
the paper and we highlight pointers to future works in the last
section.

II. RELATED WORK

Literature on User-Device Authentication The user-device
authentication has significantly evolved for the past few
years thanks to the new technologies. A reliable user-device
authentication was proposed in [1], based on a graphical
user friendly authentication. In [2], the use of Location
Based Authentication (LBA) was studied. The development
of recent embedded systems within smart-devices leads to
new authentication processes which were considered as a
pure fiction only few years ago. In [3], the usage of the
embedded camera of smart-devices for authentication by face
recognition was assessed. The face image taken by the camera
of the mobile device was sent to a background server to
perform the calculation which reverts then to the phone. In a
similar approach, the use of iris recognition was proposed in
[4]. However, the authors showed this kind of authentication
was not the preferred choice of the end user. Additionally,
the sensors embedded into smart-devices allow other type
of biometric authentication. In [5], the different biometric
authentication that could be used with smart-devices were
presented, such as the pulse-response, the fingerprint or
even the ear shape. Although biometric or LBA solutions
might offer a higher level of security for authentication, their
extension toward a large scale usage is complex. In [6],
the authors developed the idea that public-key infrastructure
based systems, such as strong passwords in combination
with physical tokens, for example, a cell phone, would be
more likely to be used and largely deployed. Nonetheless,
it is worth mentioning that the most common procedure for
mobile devices authentication is still a code of four or six
digits [7].

Literature on Tensor Decomposition The interactions
modeling of the user-device authentication is multidimensional
and complex, both specificities of tensor analysis and tensor
decompositions. Tensor decompositions are an extension
to higher dimensions of the two dimensional matrix
decompositions [8], [9]. It is explained by the evolution
towards more extensive analysis in the presence of an
increasing number of features within the datasets. As a result,
different tensor decompositions, or tensor factorizations,

exist with different resolution algorithms for different
types of applications [10], [11]. Meanwhile, the scope of
the tensor application have skyrocketed. In [12], the CP
tensor decomposition was used for data mining and signal
processing. A low-rank approximation was developed for fast
computation that could be used on large datasets. The CP
tensor decomposition was also used in location-based social
networks for identification profiling [13]. In the experiments,
a certain number of anomalies were identified in the check-in
behavior of the users. Following the trend of social network
studies, the algorithm Tensorcat was specifically designed to
study interactions on social networks [14]. Different sources
were incorporated in coupled tensors for time-evolving
networks such as Twitter to predict the evolution of the
social network activity. Tensor predictive analytics have
also been addressed in [15]. A tensor factorization method
is described for spatial and temporal autocorrelations. The
analysis and the predictions are demonstrated on traffic
transporting data. Similarly, the Rescal tensor decomposition
has been used in [16] for the review of spam detection. The
approach highlighted the interactions between the reviewers
and the products, and it led to a better accuracy of spam
detection when compared to other methods. With similar
objectives, a specific algorithm was developed in [17] for
heterogeneous data relying on the Higher-Order Singular
Value Decomposition (HOSVD) to describe the frequencies
of various signals. To answer to the real-world problems
with the velocity of streaming data, multi-aspect streaming
tensor completion is underlined in [18]. Albeit the approach
allows to build dynamic tensors, it relies on the CP tensor
decomposition which lacks the linear independence of the
latent variables in each order [19].

In this paper, we extend the state of the art of the tensor
numerical resolution introduced for the CP decomposition in
[11], [20] and [21] by proposing APHEN, an APproximate
HEssian Newton resolution that does not require the complete
knowledge of the Hessian matrix, and therefore removing the
limitations of the computational cost of the Hessian matrix.
APHEN is capable of minimizing at a minimum the numerical
error at convergence while having similar or faster computa-
tion time than other popular resolution schemes. Additionally,
we highlight experimentally the limitations of CP [19] and
we propose the use of Paratuck2 for imbalanced data. Finally,
we rely on neural networks for the predictions of the users’
authentication for personalized financial recommendation oc-
curring during the advertising campaigns relying on mobile
banking application connections.

III. MODEL DESCRIPTION

In this section, we describe both the CP and the Paratuck2
tensor decompositions initially introduced in [8], [9] and [22].
Subsequently, we describe the error minimization algorithm
APHEN, which is at the core of our contribution. Finally, we
briefly describe neural networks applied to Paratuck2 for the
aim of the latent users’ authentication predictions.

A. CP and Paratuck2 Tensor Decompositions

Notation The terminology hereinafter follows the one de-
scribed by Kolda and Bader in [10] and commonly used.
Scalars are denoted by lower case letters, a. Vectors and
matrices are described by boldface lowercase letters and bold-
face capital letters, respectively a and A. High order tensors
are represented using Euler script notation, X. The transpose
matrix of A ∈ RI×J is denoted by AT . The inverse of a matrix
A ∈ RI×I is denoted by A−1.
Algebra Operations The outer product between two vectors,
u ∈ RI and v ∈ RJ is denoted by the symbol ◦.

u ◦ v =

u1v1 u1v2 · · · u1vJ
u2v1 u2v2 · · · u2vJ

...
...

...
...

uIv1 uIv2 · · · uIvJ

 = uivj (1)

The Kronecker product between two matrices A∈ RI×J and
B∈ RK×L, denoted by A⊗B, results in a matrix C∈ RIK×KL.

C = A⊗ B =

a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB

 (2)

The Khatri-Rao product between two matrices A∈ RI×K and
B∈ RJ×K , denoted by A�B, results in a matrix C of size
RIJ×K . It is the column-wise Kronecker product.

C = A� B = [a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK] (3)

Tensor Definition X is called a n-way tensor if X is
a n-th multidimensional array. It is expressed as X ∈
RI1×I2×I3×...×In .
Tensor Operations The square root of the sum of all tensor
entries squared of the tensor X defines its norm.

||X|| =

√√√√ I1∑
j=1

I2∑
j=2

...

In∑
j=n

x2j1,j2,...,jn (4)

The rank-R of a tensor X ∈ RI1×I2×...×IN is the number of
linear components that could fit X exactly.

X =

R∑
r=1

a(1)r ◦ a(2)r ◦ ... ◦ a(N)
r (5)

Definition of the CP Decomposition We motivate the use of
Paratuck2 over CP because of the imbalance in our dataset.
Effectively, CP lacks the linear independence of the factors in
each order [19]. The CP decomposition has been introduced in
[8], [9]. The tensor X ∈ RI×I×K is defined as a sum of rank-
one tensor. The number of rank-one tensors is determined by
the rank, denoted by R, of the tensor X. The CP decomposition
is expressed as

X =

R∑
r=1

a(1)
r ◦ a(2)r ◦ a(3)

r ◦ ... ◦ a(N)
r (6)

where a(1)r , a(2)r , a(3)
r , ..., a(N)

r are vectors of size
RI1 ,RI2 ,RI3 , ...,RIN . Each vector a(n)

r with n ∈ {1, 2, ..., N}
and r ∈ {1, ..., R} refers to one dimension and one rank of
the tensor X.
Definition of the Paratuck2 Decomposition Paratuck2 has
been introduced by Harshman and Lundy in [22]. The tensor
X ∈ RI×J×K is described as a product of matrices and tensors

Xk = ADA
k HDB

k BT with k = {1, ...,K} (7)

where A, H and B are matrices of size RI×P , RP×Q and
RJ×Q. The matrices DA

k ∈ RP×P and DB
k ∈ RQ×Q ∀k ∈

{1, ...,K} are the slices of the tensors DA ∈ RP×P×K and
DB ∈ RQ×Q×K . The latent factors P and Q are related to the
rank of each object set as illustrated in figure 1. More precisely,
the columns of the matrices A and B represent the latent
factors P and Q. The matrix H underlines the asymmetry
between the P latent factors and the Q latent factors. The
tensors DA and DB measures the evolution of the latent
factors regarding the third dimension.

B. APHEN and Approximate Derivatives

The Alternating Least Square (ALS) method is the most
commonly used method for tensor resolution as initially de-
scribed in [8], [9]. It has been applied by Bro in [23] to
Paratuck2. Nonetheless, with larger data sets, the convergence
performance of the ALS method decreases. To overcome this,
algorithms facing gradient resolution for tensors have emerged
[11], [19], [20]. However, it is well known that gradient
descent schemes are very sensitive to the initial guess and
the local minima. Therefore, we propose ApHeN, a resolution
scheme that relies on the Newton conjugate gradient but does
not require the knowledge of the complete Hessian matrix.
Last but not least, the algorithm is applied to the Paratuck2
tensor decomposition illustrated in figure 1.
The objective minimization function is denoted by f .

f(x) = min
X̂

||X− X̂|| (8)

The tensor X̂ is the approximate tensor of X built from the
decomposition with matrices A, H and B initially randomized.
The diagonal entries of the tensors DA and DB are set to 1
at the beginning of the minimization process.
The vector x is a flattened vector containing all the entries of
involved in the decomposition scheme to build X̂.

x =
[
a11 a12 · · · aIP da111 · · · daPPK db111 · · · bJQ

]T
(9)

A
DA H

DB BT

I

P

P

P

K K

P

Q
Q

Q

Q

J

Fig. 1: Paratuck2 decomposition of a three-way tensor with
dimension notations

Using the notation from equation 9, we can derive the gradient
and the Hessian matrix related to the CP decomposition.

The gradient, denoted by ∇f , is a vector containing all the
first derivatives of the function f with respect to x.

∇f = gradxf =

[
∂f

∂x1
,
∂f

∂x2
, · · · , ∂f

∂xn

]
(10)

The Hessian matrix, Hes, is the matrix containing the second
derivatives of the function f with respect to x.

Hes =

∂f

∂x21

∂f

∂x1∂x2
· · · ∂f

∂x1∂xn
∂f

∂x2∂x1

∂f

∂x22
· · · ∂f

∂x2∂xn
...

...
. . .

...
∂f

∂xn∂x1

∂f

∂xn∂x2
· · · ∂f

∂x2n

(11)

The Newton conjugate gradient algorithm minimizes the func-
tion f according to the below equation.

f(x) = f(x0) +∇f(x0)(x− x0)

+
1

2
(x− x0)T Hes(x0)(x− x0)

(12)

The variable x0 is the initial guess, ∇f the gradient of f and
Hes the Hessian matrix of f . If the Hessian matrix is positive
definite then the local minimum of the function is determined
by setting the gradient of the quadratic form to zero.

xopt = x0 −Hes−1∇f (13)

Since the gradient and the Hessian matrix are computed with
finite differences, the only prerequisite for Paratuck2 tensor
decomposition is the factorization equation (7). Thus, the
method can be transposed to other decompositions, such as
CP, by merely changing the tensor decomposition equation.
The approximate gradient is based on a fourth order formula
(14) to ensure reliable approximation [24].

∂

∂xi
f(x) ≈ 1

4!η

(
2f(x− 2ηei)− 16f(x− ηei)

+ 16f(x + ηei)− 2f(x + 2ηei)
) (14)

In formula 14, the index i = {1, ..., NR} is the index of
the variables for which the derivative is to be evaluated.
The variable ei is the i−th unit vector. The term η is the
perturbation and it is fixed small enough to achieve the
convergence of the iterative process.

Computing the exact inverse of the Hessian matrix arises
numerical difficulties. However, as described by Wright et al.
in [25], the Newton algorithm does not require a complete
knowledge of the Hessian matrix. During the computation
of the inverse of the Hessian matrix, the Hessian matrix is
multiplied with a descent direction vector resulting in a vector.
Therefore, only the results of the Hessian vector product is
required. Using the Taylor expansion, this product is equal to

the equation 15

∇2f(x) p =
∇f(x + η p)−∇f(x)

η
(15)

with η the perturbation and p the descent direction vector,
fixed equal to the gradient at initialization. As a result, the
extensive computation of the full Hessian matrix is bypassed
using only the gradient. Finally, the complete ApHeN
resolution scheme is presented in the algorithm 1.

Theoretical convergence rate APHEN is based on Newton’s
iterative method but it relies on an approximation of the
Hessian matrix instead of the exact Hessian matrix. The reason
is that although the exact Newton’s method convergence is
quadratic [25], the computation of the exact Hessian matrix is
too time consuming for tensor application. Therefore, APHEN
has a superlinear convergence such that

lim
n→∞

∥∥Bn −∇2f(x∗)pn

∥∥
‖pn‖

= 0 (16)

with x∗ the point of convergence, pn the search direction and
Bn the approximation of the Hessian matrix. Practically, the
convergence rate is described the equation below.

q ≈ log
|xn+1 − xn|
|xn − xn−1|

(log
|xn − xn−1|
|xn−1 − xn−2|

)−1 (17)

C. Latent Predictions on Paratuck2 Tensor Decomposition

Besides a Paratuck2 application of ApHeN for user-device
authentication, our contribution resides in latent predictions.
Following the tensor decomposition, latent variables are high-
lighted but modeled only past interactions. Hereinafter, the aim
is to leverage past information to predict the users’ authenti-
cation. We briefly describe machine learning regression and
neural networks used in our experiments.
Decision Trees (DT) are a widely used machine learning
technique [26]. They are used to predict the value of a variable
by learning simple decision rules from the data [27], [28].
However, their regression decision rules have some limitations.
Therefore, outpacing DT capabilities, neural networks in-
cluding Multi-Layer Perceptron (MLP), Convolutional Neural
Network (CNN) and Long-Short-Term-Memory (LSTM), and
their applications, have skyrocketed for the past few years [29].
MLP consists of at least three layers: one input layer, one
output layer and one or more hidden layer [30]. Each neuron
of the hidden layer transforms the values of the previous layer
with a non-linear activation function. Although MLP is applied
in deep learning, it lacks the possibility of modeling short
term and long term events. This feature is found in LSTM
[30]. The LSTM has a memory block connected to the input
gate and the output gate. The memory block is activated
through a forget gate, resetting the memory information.
However, for classification and computer vision, CNN is worth
considering. In a CNN, the neurons are capable of extracting
high order features in successive layers [31]. Through proper

classification, the CNN is able to detect and predict various
tasks including activities recognition [32], [33].

IV. EXPERIMENTS

First, we highlight the numerical advantages of APHEN in
comparison to other popular numerical schemes. Secondly, we
rely on APHEN for the interactions modeling of the user-
device authentication and their predictions.

A. APHEN vs Other Numerical Schemes

Hereinafter, we investigate the convergence behavior of
APHEN in comparison to other numerical resolution methods.
First, we define the concept of convergence rate and con-
vergence speed. Then, we compare APHEN with 6 different
algorithms applied to Paratuck2:
• ALS, Alternating Least Squares [23], [34]
• GD, Gradient Descent [25]
• NAG, Nesterov Accelerated Gradient [35]
• SAGA [36]
• Adam [37]

Algorithm 1: ApHeN algorithm applied to Paratuck2 decomposition for
a tensor X ∈ RI×J×K of latent factors (P,Q)

Data: tensor X ∈ RI×J×K , latent factors (P,Q)

Result: A,DA,H,DB ,B from tensor decomposition
1 begin
2 random initialization A∈ RI×P

3 random initialization H∈ RP×Q

4 random initialization B∈ RJ×Q

5 set DA
k ∈ RP×P equal to 1 for k = 1, ...,K

6 set DB
k ∈ RQ×Q equal to 1 for k = 1, ...,K

7 x0 ← flatten(A, DA, H, DB , B) as described in (9)
8 n = 0

9 /* Error Minimization Loop */

10 repeat

11 ∇fn =
∂

∂xi
f(xn) ←− gradient of f at xn with (14)

12 p0 = −∇fn ← initial descent direction
13 m = 0

14 ∇fn2 =
∂

∂xi
f(xn + ηpm)

15 ∇2f(xn)pm =
∇fn2 −∇fn

η
16 /* Search Direction CG Loop */

17 repeat
18 /* update rules as described in [25] */

19 pm ← CG method applied to ∇2f(xn)pm = −∇fn to
determine the search direction pm

20 m = m + 1
21 until maximum number of iterations or stopping criteria
22 pn ← pm

23 αn = argmin
xn,∇fn,pn

f ← Wolfe’s line search for optimal step

size
24 xn+1 = xn + αnpn

25 n = n+ 1

26 until maximum number of iterations or stopping criteria
27 return A,DA,H,DB ,B

• BFGS [38]–[41]
The simulations are conducted on a PC with an Intel Core
i7 CPU and 16GB of RAM. All the resolution schemes have
been implemented in Julia.

Convergence speed definition The definition of the
convergence rate in 17 does not illustrate the time evolution
between each iteration. Therefore, we define two notions:
the iteration-based convergence speed and the time-based
convergence speed. The convergence speed is defined as
the absolute value of the linear slope, denoted by |a|, of
each curve shown afterward according to the equation
y = ax + b. The bigger the convergence speed, the faster
convergence and the lower the numerical errors in the
tensor decomposition. Two types of convergence speed
are characterized: the iteration-based convergence speed
and the time-based convergence speed. The iteration-based
convergence speed, and the time-based convergence speed,
measures the evolution of the numerical errors according to
the iterations, and to the time, respectively.

Numerical Convergence Highlights Seven tensor sizes have
been defined, 5×5×5, 10×10×10, 15×10×10, 15×15×15,
25×20×15, 50×40×20 and 100×100×20, with respective
latent factors (2, 3), (3, 4), (5, 4), (5, 6), (10, 9), (15, 14) and
(3, 5). The tensor dimensions and the latent factors have been
chosen arbitrarily since the experiments have shown similar
results for any tensor for any combination of latent factors.
Each tensor entry is incremented by one in comparison to the
previous entry, with the initial entry fixed to one. Additionally,
for all the simulation, we define the convergence criterion such
that |f(xn)− f(xn−1)| (|f(xn)|)−1 < 10−6.
Figure 2 highlights the convergence speeds of the different
resolution schemes for a tensor of size 10×10×10 with latent
factors (3, 4). ALS, BFGS and APHEN show significant supe-
rior convergence speeds, both iteration-based and time-based.
The ALS scheme decreases the fastest at the beginning of the
process but it fails rapidly to determine the solution having
the lowest numerical errors. Although, APHEN has slightly
longer computation time than ALS, it is the only method
capable of determining the optimal solution. Surprisingly, all
the gradient schemes have significantly lower convergence
speeds including Adam.
Figure 3 highlights the accuracy and the execution time of the
different resolution schemes for a tensor of size 15×15×15.
The accuracy is defined as 100(1 − log ||X−X̂||

log ||X|| 1||X−X̂||>1).
APHEN has the best accuracy followed by ALS, BFGS, Adam
and the other schemes. BFGS and Adam have longer time of
execution than APHEN for a significantly lower accuracy at
convergence. ALS has a slightly faster execution time than
APHEN but APHEN has a better accuracy at convergence.
These graphical results are completed by the tables I and II.
The table I shows APHEN has the fastest convergence speeds
in all the simulation followed closely by ALS, BFGS and
Adam. The performance of the other schemes are significantly
lower. Furthermore, the table II highlights the superiority of

APHEN to determine the solution having the lowest numerical
residual errors at the convergence of the calculation.
To summarize, we showed APHEN provides faster conver-
gence speeds and lower residual errors for similar execution
time. Thus, we use APHEN with Paratuck2 in our work.

0 50 100 150 200 250 300 350 400
Iteration

0

2

4

6

8

10

N
u
m

e
ri

ca
l
E
rr

o
r

ALS
GD
NAG
Adam
SAGA
BFGS
ApHeN

0 10 20 30 40 50 60 70 80
Time

0

2

4

6

8

10

N
u
m

e
ri

ca
l
E
rr

o
r

ALS
GD
NAG
Adam
SAGA
BFGS
ApHeN

Fig. 2: Iteration-based and time-based convergences of the
different numerical resolution schemes applied to Paratuck2
for a tensor of size 10×10×10 with latent factors (3, 4)

B. User-Device Authentication Monitoring for Financial Rec-
ommendation

First, we discuss the completion and the resolution of the
tensor. Secondly, we rely on the results of Paratuck2 for the
predictions of the authentication with the neural networks.

User-Computer Authentication and Data Availability
For the sake of the reproducibility of the experiments, we
present the approach with a public data set. In 2014, the Los
Alamos National Laboratory enterprise network published
the anonymized user-computer authentication logs of their
laboratory [42], and available at https://csr.lanl.gov/data/auth/.
Each authentication event is composed of the authentication
time (in Unix time), the computer label and the user label
such as, for instance, ”1,U1,C1”. In total, more than 11,000
users and 22,000 computers are listed representing 13 GB of

ApHeN ALS BFGS Adam GD SAGA NAG
0

10

20

30

40

50

60

70

80

90

A
cc

u
ra

cy
 (

%
)

Accuracy (%)

0

200

400

600

800

1000

1200

1400

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

Execution Time (s)

Fig. 3: Accuracy of each resolution method (left column) with
their respective execution time (right column) at convergence
applied to Paratuck2 for a tensor of size 15×15×15 with latent
factors (5, 6)

data.

Construction of the user-computer authentication tensor
We randomly select 150 users and 300 computers within the
dataset representing more than 60 millions lines. The first
two months of authentication events have been compressed
into 50 time intervals, corresponding to 25 working days per
month. A tensor X ∈ RI×J×K of size of 150×300×50 is
built. The first dimension, denoted by I , represents the users,
the second dimension, denoted by J , the computers and the
last dimension, K, stands for the time intervals.

Limitations of the CP decomposition The CP decomposition
expresses the original tensor into a sum of rank one tensors.
Therefore, the user-computer authentication tensor is
decomposed as a sum of user-computer-time rank-one
tensors. However, in the case of strong imbalance, CP leads
to underfitting or overfitting one of the dimension [19].
Within the dataset, we can find 2 users that connect to at
least 20 different computers. Therefore, a rank equal to 2, one
per user, underfits the computer connections. A rank equal
to 20, one per machine, overfits the number of users. In the
table III, the underfitting is underlined by significant residual
errors at convergence. The overfitting is detected by a good
understanding of the data since the residual errors tend to
be small. Hence, the Paratuck2 decomposition is chosen to
model properly each dimension of the original tensor.

Paratuck2 Tensor Resolution Paratuck2 decomposes the
main tensor X ∈ RI×J×K into a product of matrices and
sparse tensors as shown in the figure 4. The matrix A
factorizes the users into P groups. We observe 15 different
groups of users, and therefore, P equals to 15. The sparse
tensor DA reflects the temporal evolution of the connections
of the P users groups. The matrix H represents the asymmetry

https://csr.lanl.gov/data/auth/

TABLE I: Convergence speed highlights of the different resolution schemes (bigger is better).

Convergence Tensor Latent Grad.-Free Hessian-Free Hessian Approximation
Type Size Factors ALS GD NAG Adam SAGA BFGS APHEN

Iteration 5×5×5 2×3 0.0367 0.0001 0.0059 0.0002 0.0002 0.0322 0.0676
Iteration 10×10×10 3×4 0.0231 0.0001 0.0028 0.0001 0.0042 0.0196 0.0490
Iteration 15×10×10 5×4 0.0212 0.0001 0.0029 0.0001 0.0043 0.0238 0.0451
Iteration 15×15×15 5×6 0.0135 0.0096 0.0001 0.0001 0.0001 0.0136 0.0268
Iteration 25×20×15 10×9 0.0136 0.0045 0.0001 0.0109 0.0001 0.0146 0.0250
Iteration 50×40×20 15×14 0.0132 0.0001 0.0017 0.0001 0.0001 0.0137 0.0232
Iteration 100×100×20 3×5 0.0856 0.0001 0.0001 0.0001 0.0001 0.0913 0.1032

Time 5×5×5 2×3 0.2706 0.1543 0.029 0.1514 0.0335 0.2364 0.2883
Time 10×10×10 3×4 0.0245 0.0157 0.0025 0.0152 0.0033 0.0245 0.0339
Time 15×10×10 5×4 0.0146 0.0107 0.0001 0.0076 0.0017 0.013 0.0156
Time 15×15×15 5×6 0.0055 0.0017 0.0001 0.0001 0.0005 0.0049 0.0058
Time 25×20×15 10×9 0.0042 0.002 0.0001 0.0020 0.0001 0.0037 0.0044
Time 50×40×20 15×14 0.0020 0.0015 0.0002 0.0020 0.0002 0.0022 0.0033
Time 100×100×20 3×5 0.0013 0.0005 0.0001 0.0001 0.0001 0.0013 0.0015

TABLE II: Accuracy of the different resolution schemes at convergence (bigger is better).

Tensor Latent Grad.-Free Hessian-Free Hessian Approximation
Size Factors ALS GD NAG Adam SAGA BFGS APHEN

5×5×5 2×3 80.8952 73.3299 8.6596 75.0865 10.0273 79.2534 99.9999
10×10×10 3×4 62.3542 50.3829 6.9655 62.7238 10.2185 66.3565 98.8941
15×10×10 5×4 70.2395 64.4161 5.8585 65.3552 11.2226 66.0316 88.0582
15×15×15 5×6 66.0539 62.1681 5.8687 59.9574 6.4757 61.6300 80.1714
25×20×15 10×9 65.4691 43.6754 4.5421 44.1859 10.5425 57.0254 68.5696
50×40×20 15×14 72.3543 50.3830 6.3749 62.7238 7.2364 66.3566 87.9709

100×100×20 3×5 49.4730 38.7512 2.8462 48.1267 3.6195 49.3348 55.7678

TABLE III: In CP, for imbalanced dataset, underfitting one
dimension is highlighted by significant residual errors. Over-
fitting is difficult to measure because of the low residual errors.
A good understanding of the data is required to estimate it.

Tensor Size Rank Residual Errors |f(xn)−f(xn−1)|
|f(xn)|

2×20×30 2 50.275 < 10−6

2×20×30 20 1.147 < 10−6

between the P users groups and the Q computers groups. We
notice 25 different groups of machines related to different
authentication profiles, and consequently, Q equals to 25. The
sparse tensor DB illustrates the temporal evolution of the
connections of the Q computers groups. Finally, the matrix B
factorizes the computers into Q latent groups of computers.

Latent Predictions for Financial Recommendation To
achieve higher subscription rates during the advertising cam-
paign of financial products, we explore the latent predic-
tions for targeted recommendation based on the future user-
computer authentication. The results of Paratuck2 contain
the users’ temporal information and the computers’ temporal

A
DA H

DB BT

into P groups
clustering I users

Evolution over time of
P users groups connections

between P and Q latent comp.
static asymmetry

Evolution over time of
Q computers groups connections

into Q groups
clustering J computers

Fig. 4: Paratuck2 decomposition applied to user-computer
authentication. The neural network predictions are performed
on the tensor DA.

information in the sparse tensors DA and DB , respectively.
Predicting the users’ authentication allows the banks to build
a more complete financial awareness profile of their clients for
optimized advertisement.
In figure 5, we highlight the results of the predictions of
the users’ authentication for a specific group of clients, cor-
responding with one specific latent factor P . Four different
methods have been used for the predictions, DT, MLP, CNN
and LSTM. All methods have been trained on a six weeks

period. Then, the users’ authentication for the next two weeks
are predicted with a rolling time window of one day. The
figure 5 highlights visually that the LSTM models the most
accurately the future users’ authentication. It is followed by
the MLP, the DT, and finally the CNN. We underline this
preliminary statement using six well-known error measures.
The Mean Absolute Error (MAE), the Mean Directional Ac-
curacy (MDA), the Pearson correlation, the Jaccard distance,
the cosine similarity and the Root Mean Square Error (RMSE)
are used to determine objectively the most accurate predictive
method. The table IV describes the error measures related to
the figure 5. As previously seen, the LSTM is the closest to the
true authentication since it has the lowest error values. Then,
the MLP comes second, the DT third, and the CNN last.
To conclude, with the aim to better target the clients that might
be interested by financial products during the bank’s advertis-
ing campaigns, we can conclude that LSTM combined with
Paratuck2 models the best the future users’ authentication. As
the majority of the user’s authentication are sequence-based,
it is legitimate to find out LSTM gives the best results for the
predictions. Effectively, each user has a recurrent pattern in
the authentication process depending on its activities of the
day. Therefore, by using APHEN for Paratuck2 and LSTM
for predictions, the bank gain a very competitive advantage
for the personalized products recommendation, based only on
its clients’ authentication on the mobile application.

40 42 44 46 48 50
Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
re

d
ic

ti
o
n
s

V
a
lu

e
s

Expected
DT
MLP
CNN
LSTM

Fig. 5: Two weeks prediction of the evolution of the latent
users’ authentication according to the different models used

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an Hessian-based algorithm,
APHEN, that does not require a full knowledge of the Hessian
matrix. It was applied to resolution of the Paratuck2 tensor
decomposition. APHEN reduces at a minimum the numerical
errors inherited from the tensor decomposition. Furthermore,
it has higher convergence speeds than other popular methods
such as NAG or Adam. We used derivatives approximation
evaluated with finite difference schemes to propose an accessi-
ble framework for all tensor decompositions. The experiments

TABLE IV: Latent predictions errors on the users’ authenti-
cation with decision tree and neural networks

Error Measure DT MLP CNN LSTM

MAE 0.0965 0.0506 0.1106 0.0379
MDA 0.1579 0.7447 0.5263 0.6842

Pearson corr. 0.8537 0.9598 0.8885 0.9753
Jaccard dist. 0.2257 0.1206 0.2648 0.0911
cosine sim. 0.9587 0.9891 0.9745 0.9914

RMSE 0.1306 0.0695 0.3140 0.0477

were conducted on tensors of different sizes with different
latent factors. Additionally, we showcased an application in
the context of mobile banking application. We used Paratuck2
and state of the art machine learning and neural networks
to profile and predict the latent users’ authentication. By
modeling the clients’ past and future authentication on their
mobile application, the banks are able to build a financial
awareness profile of their clients to advert different types of
products. The banks have realized the promising potential of
the clients’ digital behavior to face the increasing competition
coming from the new regulation directives.
As future work, we plan on showing the versatility of APHEN
to all tensor decompositions. We will compare APHEN’s
performance for all existing tensor decomposition against the
other existing tensor resolution algorithms specific to each
tensor decomposition. Then, we will assess the influence of
the line search and the performance of adaptive line searches
while improving the GPU compatibility of the algorithm to
increase the size of the experiments. Finally, the financial
recommendation depending of the user-device authentication
on a mobile banking application will be further extended. The
navigation usage, the time gap between each action and the
type of device used will be monitored to further improve
the bank’s advertising campaigns of their products to the
appropriate clients.

REFERENCES

[1] G. Skinner, “Cyber security for younger demographics: A graphic based
authentication and authorisation framework,” in Region 10 Conference
(TENCON), 2016 IEEE. IEEE, 2016.

[2] M. Adeka, K. O. Anoh, M. Ngala, S. Shepherd, E. Ibrahim, I. Elfergani,
A. Hussaini, J. Rodriguez, and R. A. Abd-Alhameed, “Africa: cyber-
security and its mutual impacts with computerisation, miniaturisation
and location-based authentication,” 2017.

[3] H. Li and X. Zhu, “Face recognition technology research and imple-
mentation based on mobile phone system,” in Natural Computation,
Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), 2016 12th
International Conference on. IEEE, 2016.

[4] N. Chhabra and R. Dutta, “Low quality iris detection in smart phone:
A survey,” 2016.

[5] R. Spolaor, Q. Li, M. Monaro, M. Conti, L. Gamberini, and G. Sartori,
“Biometric authentication methods on smartphones: A survey,” Psych-
Nology Journal, vol. 14, no. 2-3, 2016.

[6] M. Theofanos, S. Garfinkel, and Y.-Y. Choong, “Secure and usable
enterprise authentication: Lessons from the field,” IEEE Security &
Privacy, vol. 14, no. 5, 2016.

[7] X. Bultel, J. Dreier, M. Giraud, M. Izaute, T. Kheyrkhah, P. Lafour-
cade, D. Lakhzoum, V. Marlin, and L. Motá, “Security analysis and
psychological study of authentication methods with pin codes,” in IEEE

12th International Conference on Research Challenges in Information
Science (RCIS 2018), 2018.

[8] R. A. Harshman, “Foundations of the parafac procedure: Models and
conditions for an explanatory multimodal factor analysis,” 1970.

[9] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in
multidimensional scaling via an n-way generalization of eckart-young
decomposition,” Psychometrika, vol. 35, no. 3, 1970.

[10] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, 2009.

[11] E. Acar, T. G. Kolda, and D. M. Dunlavy, “All-at-once optimiza-
tion for coupled matrix and tensor factorizations,” arXiv preprint
arXiv:1105.3422, 2011.

[12] A. P. Da Silva, “Tensor techniques for signal processing: algorithms
for canonical polyadic decomposition,” Ph.D. dissertation, Université
Grenoble Alpes, 2016.

[13] E. Papalexakis, K. Pelechrinis, and C. Faloutsos, “Spotting misbehaviors
in location-based social networks using tensors,” in Proceedings of the
23rd International Conference on World Wide Web. ACM, 2014.

[14] M. R. de Araujo, P. M. P. Ribeiro, and C. Faloutsos, “Tensorcast:
Forecasting with context using coupled tensors (best paper award),” in
Data Mining (ICDM), 2017 IEEE International Conference on. IEEE,
2017.

[15] K. Takeuchi, H. Kashima, and N. Ueda, “Autoregressive tensor fac-
torization for spatio-temporal predictions,” in 2017 IEEE International
Conference on Data Mining (ICDM). IEEE, 2017.

[16] X. Wang, K. Liu, S. He, and J. Zhao, “Learning to represent review
with tensor decomposition for spam detection.” in EMNLP, 2016.

[17] Y. Qiao, K. Niu, and Z. He, “Signal processing on heterogeneous
network based on tensor decomposition,” in Network Infrastructure and
Digital Content (IC-NIDC), 2016 IEEE International Conference on.
IEEE, 2016.

[18] Q. Song, X. Huang, H. Ge, J. Caverlee, and X. Hu, “Multi-aspect
streaming tensor completion,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2017.

[19] E. Acar, D. M. Dunlavy, and T. G. Kolda, “A scalable optimiza-
tion approach for fitting canonical tensor decompositions,” Journal of
Chemometrics, vol. 25, no. 2, 2011.

[20] P. Paatero, “A weighted non-negative least squares algorithm for three-
way ’PARAFAC’ factor analysis,” Chemometrics and Intelligent Labo-
ratory Systems, vol. 38, no. 2, 1997.

[21] G. Tomasi and R. Bro, “A comparison of algorithms for fitting the
parafac model,” Computational Statistics & Data Analysis, vol. 50, no. 7,
pp. 1700–1734, 2006.

[22] R. A. Harshman and M. E. Lundy, “Uniqueness proof for a family
of models sharing features of tucker’s three-mode factor analysis and
parafac/candecomp,” Psychometrika, vol. 61, no. 1, 1996.

[23] R. Bro, “Multi-way analysis in the food industry: models, algorithms,
and applications,” Ph.D. dissertation, 1998.

[24] K. Schittkowski, “Nlpqlp: A new fortran implementation of a sequen-
tial quadratic programming algorithm for parallel computing,” Report,
Department of Mathematics, University of Bayreuth, 2001.

[25] S. Wright and J. Nocedal, “Numerical optimization,” Springer Science,
vol. 35, no. 67-68, 1999.

[26] R. Lior et al., Data mining with decision trees: theory and applications.
World scientific, 2014, vol. 81.

[27] T. Kim, Y. Yue, S. Taylor, and I. Matthews, “A decision tree framework
for spatiotemporal sequence prediction,” in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2015, pp. 577–586.

[28] L. Breiman, Classification and regression trees. Routledge, 2017.
[29] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A

survey of deep neural network architectures and their applications,”
Neurocomputing, vol. 234, pp. 11–26, 2017.

[30] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1.

[31] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in
the cat’s striate cortex,” The Journal of physiology, vol. 148, no. 3, 1959.

[32] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, and G. Penn, “Applying con-
volutional neural networks concepts to hybrid nn-hmm model for speech
recognition,” in Acoustics, Speech and Signal Processing (ICASSP),
2012 IEEE International Conference on. IEEE, 2012.

[33] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, “Time series
classification using multi-channels deep convolutional neural networks,”
in International Conference on Web-Age Information Management.
Springer, 2014.

[34] J. Charlier, R. State, and J. Hilger, “Non-negative paratuck2 tensor
decomposition combined to lstm network for smart contracts profiling,”
in Big Data and Smart Computing (BigComp), 2018 IEEE International
Conference on. IEEE, 2018, pp. 74–81.

[35] Y. Nesterov et al., “Gradient methods for minimizing composite objec-
tive function,” 2007.

[36] A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga: A fast incremental
gradient method with support for non-strongly convex composite objec-
tives,” in Advances in neural information processing systems, 2014, pp.
1646–1654.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[38] C. G. Broyden, “The convergence of a class of double-rank minimization
algorithms 1. general considerations,” IMA Journal of Applied Mathe-
matics, vol. 6, no. 1, pp. 76–90, 1970.

[39] R. Fletcher, “A new approach to variable metric algorithms,” The
computer journal, vol. 13, no. 3, pp. 317–322, 1970.

[40] D. Goldfarb, “A family of variable-metric methods derived by variational
means,” Mathematics of computation, vol. 24, no. 109, pp. 23–26, 1970.

[41] D. F. Shanno, “Conditioning of quasi-newton methods for function
minimization,” Mathematics of computation, vol. 24, no. 111, pp. 647–
656, 1970.

[42] A. Hagberg, A. Kent, N. Lemons, and J. Neil, “Credential hopping
in authentication graphs,” in 2014 International Conference on Signal-
Image Technology Internet-Based Systems (SITIS). IEEE Computer
Society, Nov. 2014.

	I Introduction
	II Related Work
	III Model Description
	III-A CP and Paratuck2 Tensor Decompositions
	III-B APHEN and Approximate Derivatives
	III-C Latent Predictions on Paratuck2 Tensor Decomposition

	IV Experiments
	IV-A APHEN vs Other Numerical Schemes
	IV-B User-Device Authentication Monitoring for Financial Recommendation

	V Conclusion And Future Work
	References

