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Abstract—We consider an online decision making setting
known as contextual bandit problem, and propose an approach
for improving contextual bandit performance by using an adap-
tive feature extraction (representation learning) based on online
clustering. Our approach starts with an off-line pre-training on
unlabeled history of contexts (which can be exploited by our
approach, but not by the standard contextual bandit), followed
by an online selection and adaptation of encoders. Specifically,
given an input sample (context), the proposed approach selects
the most appropriate encoding function to extract a feature vector
which becomes an input for a contextual bandit, and updates
both the bandit and the encoding function based on the context
and on the feedback (reward). Our experiments on a variety of
datasets, and both in stationary and non-stationary environments
of several kinds demonstrate clear advantages of the proposed
adaptive representation learning over the standard contextual
bandit based on "raw" input contexts. 1

Index Terms—multi-arm bandit, contextual bandit, online
learning, autoencoder, representation learning, online clustering

I. INTRODUCTION

Sequential decision making is a common problem in many
practical applications where the agent must choose the best
action to perform at each iteration in order to maximize the
cumulative reward over some period of time. One of the key
challenges is achieving a good trade-off between the exploration
of new actions and the exploitation of known actions. This
exploration vs. exploitation trade-off in sequential decision
making problems is often formulated as the multi-armed
bandit (MAB) problem: given a set of bandit “arms” (actions),
each associated with a fixed but unknown reward probability
distribution [Auer et al., 2002a; Lai and Robbins, 1985], an
agent selects an arm to play at each iteration, and receives
a reward, drawn according to the selected arm’s distribution,
independently from the previous actions.

A particularly useful version of MAB is the contextual multi-
armed bandit (CMAB), or simply the contextual bandit problem,
where at each iteration, before choosing an arm, the agent
observes an N -dimensional context, or feature vector. Over
time, the goal is to learn the relationship between the context
vectors and the rewards, in order to make better prediction
which action to choose given the context [Agrawal and Goyal,
2013], as an important problem setting in reinforcement
learning [Bouneffouf et al., 2017a; Lin et al., 2019, 2020a,b,c].

1The data and codes to reproduce all empirical results can be accessed at
https://github.com/doerlbh/ABaCoDE.

For example, the contextual bandit approach is commonly
used in various practical sequential decision problems with side
information (context), from clinical trials [Villar et al., 2015],
to speaker recognition systems [Lin and Zhang, 2020a,b], to
recommender system [Mary et al., 2015], where the patient’s
information (medical history, etc.), or a speaker’s voice profile,
or an online user’s purchase profile provide a context for making
a better decision about a potential treatment or a speaker identity
or an ad to show, and the reward represents the outcome of
the selected action, such as, for example, success or failure of
a particular treatment option.

However, in certain real-life applications, before the online
decision-making starts, an agent may have an access to a
unlabeled context history (i.e., contexts without the associated
rewards), which can be potentially used as a prior knowledge to
improve the subsequent online decision-making. For instance,
in medical decision-making settings, the doctor may have an
access to medical records of different patients, which can be
used to gain a better understanding of the patients population.
A different example of unlabeled context history can occur in
an online recommender setting, where the system may have
some previous information about the users, although the reward
feedback (e.g., whether the user clicked on the suggested link
or not) might be missing.

Having an access to unlabeled data makes it possible to pre-
train some model of the input (contexts) in an offline mode, and
use it later to improve the online decision making. For example,
we can learn an autoencoder to map the raw inputs into
potentially better representations. Moreover, when the inputs
are non-homogeneous, we may want to cluster the unlabeled
data and learn separate representations for each cluster. Then, in
the online mode, we can decide which representation to use for
a given context; such context-driven representation selection
has a potential to further improve the subsequent decision-
making. These representation models (e.g., autoencoders) can
(and should) continue to be updated online as more contexts
become available, especially in nonstationary environments
abundant in practical applications, where both the context and
reward distributions can change in various ways.

Motivated by the above scenarios, we consider here a con-
textual bandit setting, called Contextual Bandit with Represen-
tation learning and unlabeled History (CBRH). In this setting,
first of all it is assumed that (1) there is some set of unlabeled
contexts available for pre-training, before the online decision-
making starts, which allows for an initial clustering and encoder
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construction; (2) the bandit’s performance can be improved by
learning a good context representation (embedding) rather than
using the raw input, the (3) embedding functions are pre-trained
on the unlabeled history and adaptively selected (and updated)
based on the context during the online decision-making. Next,
we propose an algorithm for the above CBRH setting, called
Adaptive Bandit with Context-Driven Embeddings (ABaCoDE),
which implements online, clustering-based encoding selection
and learning coupled with Thompson-Sampling approach.

We evaluate our approach on several types of nonstationary
environments and demonstrated that (1) using embeddings,
in general, considerably improves performance of contextual
bandit; and (2) moreover, in several cases, adaptive, context-
dependent type of embeddings are much better than just one,
“uniform” embedding.

Overall, the lesson learned is that the embedding based
approach propose here can be a useful tool for improving the
performance of contextual bandit; it is helpful to have an access
to some “unlabeled” history of contexts to create a reasonable
initial embeddings to start with, and to keep augmenting them
with respect to new instances arriving in online mode.

To summarize, our approach has several advantages over
the standard contextual bandit: it can exploit the unlabeled
context history to learn useful context representations; it allows
for a flexible, adaptive online selection of context-specific
representations, as well as for continuous learning/adaptation
of such representations.

II. RELATED WORK

The multi-armed bandit problem has been extensively studied.
Optimal solutions have been provided using a stochastic
formulation [Auer et al., 2002a; Lai and Robbins, 1985], a
Bayesian formulation [Agrawal and Goyal, 2012; Bouneffouf
and Féraud, 2016; Thompson, 1933], or using an adversarial
formulation [Auer and Cesa-Bianchi, 1998; Auer et al., 2002b].
However, these approaches do not take into account the context
which may affect to the arm’s performance. In LINUCB [Chu
et al., 2011; Li et al., 2010] and in Contextual Thompson
Sampling style (CTS) algorithms [Agrawal and Goyal, 2013;
Bouneffouf et al., 2017b], the authors assume a linear de-
pendency between the expected reward of an action and its
context; the representation space is modeled using a set of
linear predictors. This assumption is not used in Neural Bandit
[Allesiardo et al., 2014]. However, these algorithms assume
that the agent can observe the reward at each iteration, which
is not the case in many practical applications, including those
discussed earlier in this paper.

Authors in [Bartók et al., 2014] studies considering some
kind of incomplete feedback called "Partial Monitoring (PM)",
which is a general framework for sequential decision making
problems with incomplete feedback that allows the learner,
when it is possible, to retrieve the expected value of actions
through an analysis of the feedback matrix, both of which are
assumed to be known to the learner.

In [Gajane et al., 2016] authors study a variant of the
stochastic multi-armed bandit (MAB) problem in which the

rewards are corrupted. In this framework, motivated by privacy
preserving in online recommender systems, the goal is to
maximize the sum of the (unobserved) rewards, based on
the observation of transformation of these rewards through a
stochastic corruption process with known parameters.

We can say that our setting is similar to the online semi-
supervised learning [Lin, 2020b; Ororbia et al., 2015; Yver,
2009], which is a field of machine learning that studies learning
from both labeled and unlabeled examples in an on-line setting.
However, in their setting the true label is received at each
iteration, while in our setting a bandit feedback is assumed,
i.e., if classification was incorrect, the agent will not know
what the correct label was, only that its decision was incorrect.

III. BACKGROUND

This section introduces some background concepts our
approach builds upon, such as contextual bandit and Thompson
Sampling.

The contextual bandit problem
Following [Langford and Zhang, 2008], this problem is defined
as follows. At each time point (iteration) t ∈ {1, ..., T}, an
agent is presented with a context (feature vector) xt ∈ RN

before choosing an arm k ∈ A = {1, ...,K}. We will denote
by X = {X1, ..., XN} the set of features (variables) defining
the context. Let rt = (r1t , ..., r

K
t ) denote a reward vector,

where rkt ∈ [0, 1] is a reward at time t associated with the arm
k ∈ A. Herein, we will primarily focus on the Bernoulli bandit
with binary reward, i.e. rkt ∈ {0, 1}. Let π : X → A denote a
policy. Also, Dc,r denotes a joint distribution over (x, r). We
will assume that the expected reward is a linear function of
the context, i.e. E[rkt |xt] = µTk xt, where µk is an unknown
weight vector (to be learned from the data) associated with
the arm k.

Contextual Thompson Sampling
In this setting, we consider the general Thompson Sampling,
where the reward rit for choosing arm i at time t follows a
parametric likelihood function Pr(rt|µ̃i). Following [Agrawal
and Goyal, 2013], the posterior distribution at time t + 1,
Pr(µ̃i|rt) ∝ Pr(rt|µ̃i)Pr(µ̃i) is given by a multivariate
Gaussian distribution N (µ̂i(t + 1), v2Bi(t + 1)−1), where
Bi(t) = Id +

∑t−1
τ=1 xτx

>
τ , and where d is the size of the

context vectors xi, v = R
√

24
ε dln( 1

γ ) with R > 0, ε ∈]0, 1],

γ ∈]0, 1] constants, and µ̂i(t) = Bi(t)
−1(

∑t−1
τ=1 xτrτ ). At

every step t, the algorithm generates a d-dimensional sample
µ̃i from N (µ̂i(t), v2Bi(t)−1), for each arm, selects the arm i
that maximizes x>t µ̃i,and obtains reward rt.



Algorithm 1 The Contextual Thompson Sampling Algorithm

1: Initialize: for i = 1, ..., k, Bi = Id, µ̂i = 0d, fi = 0d.
2: for t = 1, 2, ..., T do
3: Receive context xt
4: for i = 1, ..., k, sample µ̃i from the N(µ̂i, v

2B−1i )
5: Choose arm it = argmax

i⊂I
x(t)>µ̃i

6: Receive reward rit
7: Bi = Bi + xtx

T
t , fi = fi + xtr

i
t, µ̂i = B−1i fi

8: end

IV. PROBLEM FORMULATION

Using the notation introduced in the previous section,
we now define our novel bandit setting: Contextual Bandit
with Representation learning and unlabeled History (CBRH)
(outlined in Alg. 2), based on the following key assumptions.

First, we assume that a context xt ∈ RN is mapped into
its representation zt ∈ RNi using an embedding function
ei(xt), selected from a set E = {e1, ..., ek} of currently
available embedding functions. Second, we assume that the set
of embedding functions E can be modified online. And third,
an access to a set D of unlabeled contexts, i.e. contexts without
the associated rewards, is assumed. This dataset can be used, for
example, for pre-training embedding functions e(x). We then
define a set Π = ∪ei∈E{π : RN → A, π(x) = π̂i(ei(x))} of
compound-function policies, where the function π̂ : RNi → A
maps zt = ei(xt) to an action in A. The objective is to learn
a hypothesis π over T iterations maximizing the cumulative
reward.

Algorithm 2 The CBRH Problem Setting

1: Obtain unlabeled set of contexts D
2: Learn a context representation model
3: Repeat
4: (xt, rt) is drawn according to distribution Dc,r

5: Choose encoding ei ∈ E
6: Compute representation zt = ei(xi)
7: Choose an arm kt = π̂I(zt)
8: The reward rkt is revealed
9: Update policy π(·) = π̂i(ei(·))}

10: t = t+ 1
11: Until t=T

V. ADAPTIVE BANDIT WITH CONTEXT-DEPENDENT
EMBEDDINGS (ABACODE)

We now describe an adaptive, context-driven embedding
selection approach to solving the CBRU problem introduced
in the previous section. It has two variants, based on online-
and offline clustering, respectively; the choice is controlled
by a Boolean input parameter isOnline in Algorithm 3. Two
more inputs include: an unlabeled pre-training dataset D, as
well as the number of embeddings k. The algorithm processes
the input contexts sequentially, one by one, but at the end of
each mini-batch of data it updates the embeddings to reflect
possible changes in the data distribution.

Algorithm 3 Adaptive Bandit with Context-Dependent Embeddings
(ABaCoDE)

1: Input: unlabeled dataset D, a set of unlabeled contexts for
pre-training; k, the number of clusters (and corresponding
embeddings); a Boolean variable isOnline.

2: Initialization:
3: Cluster D into k clusters: C = {c1, ..., ck}
4: For each cluster, train an autoencoder to construct a set

of encoding functions (embeddings): E = e1, ..., ek
5: Initialize the contextual Thompson Sampling parameters

of bandit B (line 1 in Alg. 1).
6: while there is a next data mini-batch M, do
7: foreach xt from M do
8: if isOnline then updateCluster(C, xt, cj)
9: e = selectEmbedding(cj)

10: z = e(xt) (encoded context/representation)
11: contextualBandit(B, z) (lines 4-7 in Alg. 1)

end
12: if not(isOnline) then recomputeClusters(C,B)
13: updateEmbedding(M,C)

end

The initialization step consists of clustering the pre-training
dataset D into k clusters (line 3), training an autoencoder
for each cluster, which results into k encoding (embedding)
functions (line 4), and initializing parameters of the contextual
Thompson Sampling bandit, used later to make classification
decisions based on embedded context (line 5).

Next, the algorithm switches to the online mode, processing
an online stream of incoming samples (contexts). As mentioned
above, we assume that at the end of each fixed-length time
window, i.e. a fixed-size mini-batch of data, we update our
embeddings.

Within each data mini-batch M (line 7), once the next
input sample xi arrives, it is first assigned to one of the
existing clusters cj (line 8), associated with the corresponding
embedding function ej . Next, an online clustering is performed
if isOnline is true, i.e. the centroid of the cluster cj is
recomputed, but no changes are made to other clusters (line 9).
Otherwise, there are no changes to clusters, until the end of the
batch, as we will see shortly. Based on the cluster assignment
cj , the corresponding embedding function ej is used to compute
the representation vector z for given input xi (line 10); given
the context z, the contextual bandit B makes a decision (line
11), obtains the reward ri (line 12), and updates its parameters
(line 13) using the contextual Thompson Sampling described
in the previous section.

After the end of the mini-batch M is reached (line 14),
if isOnline was false, the clusters will be recomputed from
scratch using all data points received so far (however, no such
re-clustering is performed if the online clustering was selected).
Finally, the embeddings (i.e., their corresponding autoencoder
parameters) are updated respectively using the updated set of
clusters C.

In the next section, we present empirical results comparing



both online and offline clustering methods outlined above with
two baseline approaches:
• Contextual Bandit (CB): as the baseline, we use the

standard contextual multi-armed bandit with Thompson
Sampling, based on the raw input (i.e., no embeddings).

• universal embedding (uE): a universal embedding denotes
a single embedding computed based on all data, and
always recomputed to include the data from the most
recent mini-batch; no clustering is performed.

• mini-batch embedding (mE): this is our offline clustering
approach presented in Algorithm 3, when isOnline is
false.

• online embedding (oE): this is the online version of our
algorithm described above, i.e. isOnline is true.

VI. EMPIRICAL EVALUATION

A. Datasets

We evaluated our approach on four imaging datasets: MNIST
[LeCun, 1998], STL-10 [Coates and Ng, 2011], CIFAR-10
[Coates et al., 2011], Caltech-101 Silhouettes-28 [Griffin et al.,
2007] and Warfarin [Consortium and others, 2009] (for details
of each dataset, see Table I). To simulate an online data stream,
we draw samples from each dataset sequentially, starting from
the beginning each time we draw the last sample. At each round,
the algorithm receives reward 1 if the instance is classified
correctly, and 0 otherwise. We compute the total number of
classification errors as a performance metric. However, Warfarin
dataset is different, as it was actually produced in a real bandit
setting, rather than classification setting.

Bandit vs. classification feedback: important distinction. It
is important to keep in mind that the bandit feedback (cor-
rect/incorrect classification) makes the classification problem
significantly more challenging, as compared to the standard
supervised learning, since the true label is never revealed in
bandit setting unless the classification is correct. Thus, the
classification accuracy in a bandit setting is expected to be
lower than in the supervised learning setting – which is not
due to inferiority of bandit decision making algorithm versus
classifiers, but due to increased problem difficulty, i.s. the lack
of feedback about what the correct decision should have been.
Recall that such bandit feedback is often a much more realistic
model of agent’s interaction with the world, especially in online
decision making applications such as online advertisement,
clinical trials, and so on, which do not fit into classification
framework.

However, for empirical evaluation purposes, it is common
to use available classification datasets to simulate an online
environment with the bandit feedback (i.e., simulating the
situation where the bandit receives, for example, 1 or 0 for
correct or incorrect decision, but is not told what the correct
decision should have been when he receives 0; such feedback
is different from standard online classification feedback in case
of non-binary classification)). We use several classification
datasets here for such simulations.

We now describe some details of the experiments. For
MNIST, we took 10,000 samples from the original test dataset

TABLE I: Datasets

Datasets History Instances Features Classes
MNIST 10 000 20 000 784 10
STL-10 20 000 10 000 1 000 10
CIFAR-10 2 000 10 000 3 072 10
Caltech-101 S 671 8 000 784 101
Warfarin 528 5 000 93 3
mix: MNIST/Warfarin 10 528 10 000 93 13

(clearly, not using them later for testing) to pre-train the
encodings, and 60,000 samples from the training dataset to
simulate the online bandit with 10 arms corresponding to
different digits. For STL-10, 100,000 samples of unlabeled data
are used to pre-train the encodings; then the 5,000 test samples
together with 8,000 training samples are combined to simulate
the online bandit, again with 10 different arms corresponding
to image classes2. For Caltech-101 Silhouettes-28 dataset, out
of the original 8671 samples, 671 are used for pre-training
and 8000 for online learning with 101 different arms (class
labels). For CIFAR-10 dataset, 10,000 test set samples are used
for pre-training, and 50,000 training samples are left for the
online bandit with 10 arms (classes). For Warfarin dataset, 528
test set samples are used for pre-training, and 5,000 training
samples are left for the online bandit with 3 arms (classes).

B. Nonstationary Environments

We simulated several types of nonstationarity using the above
datasets (as in [Lin, 2020a]). As mentioned before, we assume
that the input data arrive in batches, and the data distribution
(i.e., the joint distribution of the context and reward) may
change across those batches, while remaining stationary within
each batch. We used the batch size of 1,000, and varied the
number of embeddings k, using k = 2, 4, or 8, presenting
average results over all k.

1) Nonstationary context: varying cluster distribution: To
simulate changes in the context (input) distribution, we first
clustered all samples in the corresponding pre-training data
subset into k clusters. Next, we generate a sequence of batches,
where each batch contained a certain fraction of samples from
different clusters, and these fractions were changing across the
batches, i.e. the probability distribution of cluster membership
was changing, simulating nonstationary input.

2) Nonstationary context: negative images: Another type
of input nonstationarity involved introducing negative images
as inputs with same semantics but different textures. Namely,
with probability p, the negative image of the original image
was presented as an input. Experiments were performed
in two settings: half (p = 0.5) and rand (0 < p < 1
randomly assigned for each mini-batch), in both stationary
and nonstationary context conditions, with both shuffled and
unshuffled rewards (described later).

3) Nonstationary reward: multi-task environment: Another
type of nonstationarity was assuming that input samples may
come from different domains (tasks), and thus can be associated

2To speed up the computation, we squeezed input 27648-dimensional vectors
into 1000-dimensional ones via linear stretching.



with different subsets of labels (arms). For example, we
combined 5,000 randomly selected training samples from each
of the two selected domains, MNIST and Warfarin datasets,
and extended the set of possible labels (arms) to include 10
labels from MNIST and 3 labels from Warfarin. We used linear
stretching to make the input dimensions equal across the two
domains. The algorithm had to assign a label to each input
without any information about which domain the input came
from.

4) Nonstationary reward: shuffled class labels: We further
explored the multi-task setting by introducing a different type
of nonstationary reward, where the class labels were shuffled,
i.e. randomly permuted, in each batch.

C. Results

We explored different combination of the above nonstation-
arities. Table II summarizes our results for the nonstationary
context due to varying cluster distribution, and for mixed-
domain (multi-task) settings, with unshuffled reward function.
As we can see, on three out of six datasets, baseline was still
outperforming our embeddings. However, if we consider the
mean accuracy in the entire set of experiments, the top three
algorithms were: universal embedding (mean accuracy 28.83%),
baseline (mean accuracy 27.78%), mini-batch embedding (mean
accuracy 27.58%), respectively, suggesting the advantage of
representation learning (embedding computation). Moreover, if
we take a look at the whole iteration history, for example, for
MNIST dataset (Figure 1), we observe that initially, the baseline
CB (solid line) is considerably worse than embedding-based
approaches, and requires a large number of iteration to finally
catch up with them. Figures 2 and 3 show the history of reward
accumulation for the STL-10 and CIFAR-10, demonstrating
that the baseline is consistently outperformed by embedding
selection methods.

TABLE II: Nonstationary Environment with Unshuffled Labels

Datasets baseline uE mE oE
MNIST 37.24 34.44 29.00 22.32
STL-10 10.29 15.81 14.77 13.43
CIFAR-10 9.62 14.30 13.30 11.73
Caltech-101 S 1.18 1.14 1.09 1.06
Warfarin 62.58 56.70 56.10 56.92
mix: MNIST/Warfarin 45.76 50.58 51.21 47.74

TABLE III: Nonstationary Environment with Shuffled Labels

Datasets baseline uE mE oE
MNIST 12.19 33.75 29.04 23.83
STL-10 10.05 16.64 15.10 12.77
CIFAR-10 10.23 14.83 13.13 11.60
Caltech-101 S 1.00 1.09 1.23 1.30
Warfarin 40.66 55.10 50.56 54.44
mix: MNIST/Warfarin 23.54 49.33 50.67 49.15

Next, Table III summarizes our results with shuffled reward
function, for the nonstationary context due to varying cluster
distribution, and for mixed-domain (multi-task) settings. Based
on the mean accuracy in the entire experiment, the top three
algorithms were: universal embedding (mean accuracy 28.46%),

TABLE IV: Negative Environment with Unshuffled Labels

Datasets baseline uE mE oE
MNIST half-stat 13.50 14.70 14.02 16.18
MNIST rand-stat 13.72 17.14 15.53 17.70
MNIST half-nonStat 14.45 25.09 23.82 26.90
MNIST rand-nonStat 14.05 24.38 25.90 28.43
STL-10 half-stat 10.06 10.42 10.33 10.04
STL-10 rand-stat 9.77 12.34 12.33 10.41
STL-10 half-nonStat 9.88 10.99 12.29 11.56
STL-10 rand-nonStat 9.85 12.99 13.67 11.55
Caltech-101 S half-stat 0.98 10.04 7.98 6.94
Caltech-101 S rand-stat 0.94 10.93 8.40 11.68
Caltech-101 S half-nonStat 1.04 1.20 1.23 0.96
Caltech-101 S rand-nonStat 0.96 1.09 1.20 0.99

TABLE V: Negative Environment with Shuffled Labels

Datasets baseline uE mE oE
MNIST half-stat 10.22 14.59 13.86 14.79
MNIST rand-stat 9.87 17.84 14.35 17.32
MNIST half-nonStat 10.78 23.02 22.33 26.84
MNIST rand-nonStat 11.27 27.34 24.87 28.36
STL-10 half-stat 9.66 11.51 10.73 10.60
STL-10 rand-stat 9.95 11.44 12.37 11.17
STL-10 half-nonStat 10.31 11.86 13.17 11.19
STL-10 rand-nonStat 9.2 12.62 12.49 11.59
Caltech-101 S half-stat 1.11 8.71 6.21 7.93
Caltech-101 S rand-stat 0.94 10.36 9.11 3.38
Caltech-101 S half-nonStat 1.06 1.03 1.00 1.29
Caltech-101 S rand-nonStat 1.08 1.05 1.13 1.16

mini-batch embedding (mean accuracy 26.62%), online em-
bedding (mean accuracy 25.52%), respectively. Furthermore,
in this experiment, our embedding-based approaches always
outperformed the baseline, suggesting that in a setting where
reward functions are nonstationary, in addition to the non-
stationary input environment, the advantage of representation
learning is quite significant, as compared to standard CB (mean
accuracy 16.28%). Note that, with nonstationary (shuffled)
labels, the reward accumulated by the baseline CB remains
significantly below the reward of embedding-based approaches,
at all iterations (Figures 4-6). Thus, in a more challenging
setting with both context and reward nonstationarities, the
embedding-based approaches clearly outperform the standard
contextual bandit.

Table IV summarizes our results for the nonstationary online
learning setting with negative environments and unshuffled re-
ward. Based on the mean accuracy in the entire experiment, the
top three algorithms were: online embedding (mean accuracy
12.78%), universal embedding (mean accuracy 12.61%), mini-
batch embedding (mean accuracy 12.23%), respectively. Again,
the embedding-based approaches are always superior to the
baseline CB; online embedding achieved the best performance
among all methods on MNIST, while universal and batch
embeddings were taking their turns outperforming the baseline
on other datasets and settings.

Finally, Table V summarizes our results for the nonstationary
online learning setting with negative environments and shuffled
reward function. Based on the mean accuracy in the entire
experiment, the top three algorithms were: universal embedding
(mean accuracy 12.61%), online embedding (mean accuracy
12.14%), mini-batch embedding (mean accuracy 11.80%),



Fig. 1: MNIST unshuffled, k = 2 Fig. 2: STL-10 unshuffled, k = 2 Fig. 3: CIFAR-10 unshuffled, k = 2

Fig. 4: MNIST shuffled, k = 2 Fig. 5: STL-10 shuffled, k = 2 Fig. 6: CIFAR-10 shuffled, k = 2

Fig. 7: MNIST unshuffled half-
nonStat

Fig. 8: MNIST unshuffled rand-
nonStat

Fig. 9: MNIST unshuffled half-
stat

Fig. 10: MNIST unshuffled rand-
stat

respectively, further confirming the advantage of adaptive
encoding over standard CB (mean accuracy 7.12%). In addition,
the difference of textures under the same semantics introduced
in this experiments demonstrated that embedding selection
outperforms single universal embedding in most nonstationary
cases.

Figures 7-14 visualize the details of reward accumulation
over time by different methods, on MNIST data and all the
settings from the Tables IV and V. The performance gap
between the embedding-based approaches and the baseline is
especially large in those settings. Furthermore, we can see
that both adaptive, context-dependent embedding approaches
(oE and mE) consistently ourperform the single-embedding
approach (uE), with the online embedding emerging as the best
one, especially with increasing number of iterations.

VII. CONCLUSIONS

We introduced an extension of the contextual bandit problem
motivated by several real-world applications in non-stationary
environments, including recommendation systems, health mon-
itoring and medical diagnosis, and others. In this setting,
which we refer to as Contextual Bandit with Representation
learning and unlabeled History (CBRH), a set of unlabeled
contexts is available prior to online decision making, which
allows, instead of using the raw context, to learn context
representations. Next, during the online phase, embeddings are
selected adaptively, depending on each context, and updated
based on the contexts observed so far. We propose two specific
algorithms for the CBRH problem, based on online and offline
clustering, which combine online embedding selection and
learning with contextual Thompson Sampling bandit. The



Fig. 11: MNIST shuffled half-
nonStat

Fig. 12: MNIST shuffled rand-
nonStat

Fig. 13: MNIST shuffled half-stat Fig. 14: MNIST shuffled rand-
stat

algorithms are evaluated in several types of nonstationary
environments and compared to the standard contextual bandit,
as well as universal (single) embedding, on several datasets.
Overall, we observe clear advantages of the embedding-based
approaches over the standard contextual bandit; moreover, the
proposed adaptive embedding selection and learning methods
frequently outperform the universal embedding in multiple
nonstationary settings.
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