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Abstract—The problem of unsupervised learning node embed-
dings in graphs is one of the important directions in modern
network science. In this work we propose a novel framework,
which is aimed to find embeddings by discriminating distributions
of similarities (DDoS) between nodes in the graph. The general
idea is implemented by maximizing the earth mover distance
between distributions of decoded similarities of similar and
dissimilar nodes. The resulting algorithm generates embeddings
which give a state-of-the-art performance in the problem of link
prediction in real-world graphs.

Index Terms—Graph node embeddings, representation learn-
ing, Wasserstein distance, unsupervised learning, link prediction

I. INTRODUCTION

The quality of machine learning methods largely depends
on the particular representation (or features) chosen for the
data. The majority of modern machine learning methods work
with the objects represented as numerical vectors. In some
problems, such as object recognition on images and video,
speech recognition and natural language processing, the initial
feature space formally can be considered as a vector space.
The obstacle is that it has a complex structure and a very
high dimension which requires the construction of methods to
transform the original representation into a more concise and
informative one. Problems with objects of a discrete nature
(in particular, with graphs) also require that informative con-
tinuous numerical representations have to be found. Recently
network representation learning attracted a lot of attention
which lead the development of many new methods (e.g., see
recent reviews [3], [8]).

The essence of the network representation learning problem
(or embedding problem) is to represent a graph, a subgraph or
a node as a point in low-dimensional Euclidean space; in such
a form they can be further used in traditional machine learning
pipelines. In what follows we will focus on node embeddings.
A usual assumption is that nodes can be represented in a space
with dimension d < n, where n is the number of nodes in the
graph. The obtained embeddings can be further used for node
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classification [7], community detection [6], link prediction [1]
or visualization [5].

The majority of now existing graph embedding algorithms
focus on proximity preserving embeddings, in which the
nodes positioned in a close network proximity are considered
to be similar and their embedding points should be placed
close to each other in embedding space. We base our re-
search on this assumption and, meanwhile, use the area of
representation learning for images as source of inspiration.
Recently the histogram loss approach was proposed [18],
where the embeddings are learned by minimizing a certain
distance between inter- and intra-class similarity distributions.
We extend their approach to graphs by introducing a more
suitable distance between the distributions which is inspired
by a Wasserstein distance. We demonstrate the efficiency of
the proposed approach on a series of experiments with real-
world graphs.

II. RELATED WORK

Currently the methods of learning mode representations
in graphs are rapidly developing. The earlier approaches are
based on classical dimension reduction and on finding node
embeddings via matrix factorization [2], [14]. Matrix factoriza-
tion can be really time consuming for large graphs, and a usual
way to speed-up embedding learning is to use random walks
over the graph. The idea is to find such vector representations
of vertices which can describe well the probabilities of par-
ticular vertex sequences in these walks. This idea is the base
for the whole family of methods, including DeepWalk [15],
LINE [16] and node2vec [7]. Note that all these methods use
internally the algorithm word2vec [12], which is based on the
optimization of the logistic-like loss and was initially proposed
for word embeddings. Further developments of random walk-
based methods mainly focus on various schemes of random
walk through the graph, which allow them to take into account
various structural features of graphs. Recently, many attempts
were made to adopt neural networks to graph-structured data
(see [4], [19] among many others). In the next section we
specify the considered framework and further discuss some
related embedding learning approaches.



III. LEARNING GRAPH EMBEDDINGS IN UNSUPERVISED
WAY

We start by formalizing the problem of node representation
learning in graphs following [8]. We observe an undirected
and unweighted graph G = (V, E) with n = |V| vertices and
denote by A € {0,1}"*" the adjacency matrix of graph G
with n nodes. We also assume that certain similarity matrix
is given S = [s;;]; ., where the value s;; determines how
similar the nodes ¢ and j are, and, respectively, how close their
embeddings should be. The considered framework consists of
several important parts:

1) encoder function which maps nodes to the latent repre-
sentations

E:V = RY

2) decoder function which maps pairs of node embeddings
to node proximity measure

D: RIxR? — R;

3) loss function £ which measures how close reconstructed
proximity values D(&;,E;) are to the corresponding
reference values s;;.

In what follows we discuss different types of encoders and
loss functions as the choice of them largely distinguishes
modern embedding learning algorithms.

A. Loss functions

We describe two important types of losses considered in the
literature.

1) Pairwise loss: in this case, the goal of optimization
is to minimize the sum of reconstruction errors for pairwise
similarities of nodes £(D(&;, )), sij):

L(O) = Z E(D(&,gg‘),sij),

(1,5)€Q

where decoder is usually considered to be non-parametrized
and optimization is done over the parameters of encoder ©.

2) Nodewise autoencoder loss: this approach was recently
proposed by [17], where the authors consider the similarity of
node embeddings as distributions:

L(©) = UD(E,"),s:),
i=1

where D(&;,-) and s; are vectors of decoded similarities
and observed similarities of ¢-th node respectively. One of
the possible choices for the loss function is Kullback-Leibler
divergence. A similar approach is considered in [4], [20],
where autoencoders were constructed considering the classical
Lo loss.

B. Encoders

The standard approach is the so-called embedding lookup,
where

& = Zey, (1

where Z € R?*" is an embedding matrix and e; is a vector
with 1 on the i-th place and zeros elsewhere.

The other possible approach is to treat the local neighbor-
hood of the node as a feature vector and consider

& = flay), )

where a; is the i-th column of the adjacency matrix A and
f:R* — R? is some function. The particular choice of
function f might be a neural network [4], [20].

Also one can consider linear function f:

& = Wa; + b, 3)

where W € RY*™ is a parameter matrix, b € R? is
an intercept vector and a full set of encoder parameters is
© = (W, b). If adjacency matrix A has rank at least d then
the expressive ability of such an encoder is exactly equal to
the one in a direct embedding approach (1).

IV. DISCRIMINATION OF SIMILARITY DISTRIBUTIONS

In this paper we introduce a different approach which
considers a whole set of similarities between nodes and
works out a discriminative loss between the distributions
of D(&;,€&;) in the pairs of similar and non similar nodes.
Currently, this approach assumes that the graph is sparse
so that similarity matrix S = [Sij]?-:l is also sparse (we
consider either adjacency matrix S = A or second order prox-
imities S = A?). Consider the set of all positive similarities
LT ={D(&;,&;): si; > 0} and the set of all pairs of nodes
with zero similarity L~ = {D(&;,&;): s;; = 0}.

Our main assumption is that the embedding should allow
us to distinguish between similar and non similar nodes. In
particular, decoded similarities should be higher for similar
nodes. If we treat respective positive similarity s;; as a weight
for the considered decoded similarity value D(&;, £;), then we
consider distributions P* = PT(0) and P~ = P~ (0) of
decoded similarities in L™ and L~, respectively, and define
the loss function as

L(©) = -D(P*(6),P(0)), )

where D is a distance between distributions. It might be KL-
divergence, Hellinger distance or, for example, Wasserstein
distance. Thus, our aim is to maximize the distance between
distributions of positive and negative pairs.

We are going to proceed with linear encoder (3) and suggest
to use Pearson correlation as a decoder function D:
EXE;

D& &) = ————.
&) = TETeT



In this case D(E;,&;) €
purposes.

For the implementation of discriminative loss (4) we fol-
low [18] and approximate distributions of decoded similarities
in L™ and L~ by histogram estimators P+ and P~ with linear
slope in each bin.

As a distance between distributions we suggest to use 1-
D Wasserstein distance (also known as an “earth mover dis-
tance”, EMD) which for the histogram case can be computed
as [11]:

[—1,1] which is convenient for our

EMD(P*, P~

Z il

where IV}, is the number of bins in the histogram and

i + -
=3 o~ )
S AP 1P~

However, in our case it is required that the distribution of
similar pairs PT should be to the right from the distribution of
dissimilar pairs P~. The following simple modification allows
to avoid unnecessary local optima:

EM Dy gy (P*, P~

Z ©i. )

Maximization of modified Wasserstein distance (5) makes
distribution PT concentrating near 1, while distribution P~
concentrates near —1. However, it is natural to assume that
nodes, which are far away in the graph, should have the
embeddings that are independent from each other rather than
opposite. That is why we propose to keep in the computation
of Wasserstein distance only the part P_,, of negative distri-

bution P~ corresponding to nonnegative decoded similarities
Finally, our objective function becomes
L(©) = EM Dasym(Peu(©), PT(9)), (6)

which can be optimized via gradient-based methods to find
optimal embedding configuration. The gradient of Wasserstein
distance between histograms is easily computable, see [11],
[18].

V. EXPERIMENTS

In this section we will discuss the experimental evalua-
tion of the proposed algorithm. The whole algorithm was
implemented in Tensorflow', while optimization of the func-
tional (6) over parameters (embedding matrix W and vector
b) was performed via stochastic gradient descent.

The further speedup of the algorithm was achieved by
subsampling set L™ (the so-called negative sampling [12])
which is necessary as real-world graphs are usually sparse
with |[L~| > |L*|.

IThe code of the algorithm and all the experiments is available
at “https://github.com/premolab/GraphEmbeddings.

Name Number nodes ~ Number edges
Books about US Politics [9] 105 441
American College Football [13] 115 613
Email EU [21] 986 25552
Facebook [10] 4039 88234

TABLE I
LIST OF REAL-WORLD NETWORKS USE IN OUR EXPERIMENTS.

A. Experimental setup

For the experiments we used several real-world networks
with number of nodes varying from 100 to 4000. The infor-
mation about the datasets is summarized in the Table I.

In our experiments we focus on the link prediction problem
which offers an universal way to estimate the quality of the
embedding for any network as it does not require any addi-
tional data except for the graph itself. The solution pipeline
starts with constructing the embedding based on the part of
graph edges and then checks how well the missing edges can
be predicted basing on the embeddings. More precisely, the
pipeline is as follows:

1) The set of all edges E is randomly divided into two
parts: Eipqin and Eiesi?.

2) The embedding {&,, v € V} is constructed basing on
the SUbgraPh gtruin = (V) Etrain)-

3) Define variables

) Lif (u,v) € B,
Yo =3 0,if (u,0) ¢ E,

Xuv = <gu7 E1J>7

where (-,-) means concatenation.

4) Construct classifier (logistic regression in our
experiments) basing on the training data set
{(Xuw: Yur), (u,v) IS Eirain} and  estimate
the classification quality on the test set

{(Xuv, yuv)a (u, 7}) € Etest}-

B. Results

We compare the results of the proposed algorithm (DDoS)
with several state-of-the-art algorithms belonging to different
subcategories of embedding algorithms: random walk based
algorithms (DeepWalk [15]), direct matrix factorization ap-
proaches (HOPE [14]) and a neural network based autoen-
coders (SDNE [19])).

The results are summarized in Table II. As we can see, in the
majority of cases DDoS embeddings allow us to achieve better
results than their competitors. Interestingly the usage of the
parametrized encoder (3) instead of the embedding lookup (1)
has resulted in a much faster convergence of the algorithm,
see Figure 1.

| E|

2In our experiments we set | Eyrain| = |Etest| = T'



Dataset d | HOPE | DeepWalk | SDNE | DDoS
Books 4 0.89 0.87 0.78 0.90
about 8 0.90 0.89 0.79 0.90
US Politics | 16 0.92 0.90 0.81 0.90
32 0.93 0.90 0.75 0.90
American 4 0.75 0.85 0.77 0.87
College 8 0.86 0.90 0.82 0.90
Football 16 0.90 0.91 0.84 0.91
32 0.92 0.92 0.84 0.93
4 0.74 0.81 0.89 0.90
Email EU 8 0.83 0.86 0.90 0.92
16 0.90 0.89 0.92 0.93
32 0.93 0.90 0.93 0.93
4 0.84 0.94 0.96 0.97
Facebook 8 0.92 0.98 0.96 0.98
16 0.96 0.99 0.97 0.99
32 0.97 0.99 0.98 1.00

TABLE II

LINK PREDICTION RESULTS (ROC-AUC VALUES).
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Fig. 1. Steps of loss optimization for the parametrized encoder (3) and the
embedding lookup (1) in orange and blue respectively.

VI. CONCLUSIONS AND OUTLOOK

In this work we propose a simple but powerful approach for
constructing the graph embeddings based on discrimination
of similarity distributions. We show the way to implement
the general idea by using maximization of a specially tuned
Wasserstein distance. The series of experiments with the link
prediction in real-world graphs convincingly demonstrate the
superiority of the proposed approach over its competitors.

Our works offers a number of directions for further devel-
opment. Among them is the scalability of the algorithm that
should be improved first of all. It can be achieved by com-
bining the proposed criterion with sampling graph nodes via
random walks. The other direction is to test DDoS embeddings
in other network analysis tasks such as community detection
and semi-supervised node classification. Extensions to directed
and weighted graphs also seem to be of a great interest. Finally,
the usage of a non-linear encoder (2) parametrized by a neural
network can be a promising direction for further investigation
and improvement.
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