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Abstract— Mapper is an algorithm that summarizes the
topological information contained in a dataset and provides an
insightful visualization. It takes as input a point cloud which
is possibly high-dimensional, a filter function on it and an open
cover on the range of the function. It returns the nerve simplicial
complex of the pullback of the cover. Mapper can be considered
a discrete approximation of the topological construct called Reeb
space, as analysed in the 1-dimensional case by [Carriere et al.,
2018]. Despite its success in obtaining insights in various fields
such as in [Kamruzzaman et al., 2016], Mapper is an ad hoc
technique requiring lots of parameter tuning. There is also no
measure to quantify goodness of the resulting visualization, which
often deviates from the Reeb space in practice. In this paper, we
introduce a new cover selection scheme for data that reduces the
obscuration of topological information at both the computation
and visualisation steps. To achieve this, we replace global scale
selection of cover with a scale selection scheme sensitive to local
density of data points. We also propose a method to detect
some deviations in Mapper from Reeb space via computation
of persistence features on the Mapper graph.

Index Terms—Data Visualization; Topology; Mapper

I. INTRODUCTION

Real-world data is often very high dimensional and hence
not visualizable. The Mapper algorithm, developed in [Singh
et al., 2007], is a method to visualize such data in low
dimensions while trying to remain true to the topological
structure of data in the higher dimension. The algorithm
returns a simplicial complex1 which is a representation of
data via a far less number of nodes than the number of data
points. Through this visualization, it becomes convenient to
gain insights from data.

The Mapper algorithm begins by applying a function f :
X → Z on the input space X . The resulting lower dimensional
image space Z is covered by a set of bins that overlap each
other, with every part of Z included in at least one bin. Then,
a clustering algorithm is applied within the f−1 of each bin.

*This work was completed during internship at Adobe Systems, Noida.
This paper was accepted at ICDMW
1 [Hatcher, 2002] provides a rigorous mathematical treatment of simplicial

complexes.

The nerve of these set of clusters, computed as in II, is called
Mapper. The Mapper restricted to only its nodes and edges is
called the Mapper graph.
Although the Mapper algorithm has been highly successful, it
is difficult to work with due to a large number of parameters
involved in the choices of lens function, type of cover and clus-
tering algorithm. [Carriere et al., 2018] have studied parameter
selection in the case where Z = R. They prove that in the 1-
dimensional setup, the Mapper graph statistically converges to
a geometric structure called the Reeb graph, which encodes
the topological information of the original space. This, in turn,
gives a method to tune its parameters to best approximate the
Reeb graph.
Even with best parameters Mapper provides a visualization of
data at a fixed scale at which the cover was constructed. Since
our input space is a high dimensional discrete point cloud
and not a continuous space, the best parameters still provide
an approximation to its topology and it is possible that more
insights are available when data is viewed at different scales.
[Dey et al., 2016] address this issue by proposing Multiscale
Mapper, where data is seen along a tower of covers. But still,
each cover in the tower is at a scale which views all parts of the
data through the same lens irrespective of the data distribution
being different in different regions. In this paper, we propose
an algorithm which allows us to view denser and sparser parts
of the data at separate scales in the same visualization. This,
unlike the current Mapper algorithm, is not restricted to one
global scale; hence, it prevents the shattering of sparser data
subsets under finer scales that are suitable for denser data
subsets. Further taking inspiration from [Munch and Wang,
2016], [Carriere et al., 2018] we can characterize the output of
Mapper (with lens function f ) as good when it approximates
the Reeb space (a generalisation of the Reeb graph in higher
dimensions) under f .

A. Contributions

The main contributions of this paper are as follows:
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1) We propose Multimapper in III, which combines locally
optimal Mappers into a single simplicial complex. A
crucial issue with parameter selection is that the same
choice of parameters might not be locally optimal for
each part of data. Denser parts of the data might only
reveal their detailed geometry at a finer scale, at which
the sparser parts might shatter. Multimapper thus gives
a more accurate representation of the data compared to
any single global choice of Mapper parameters.

2) In IV we present a data-agnostic method of partially
characterising parts of Mapper which are provably dif-
ferent from the corresponding Reeb graph. It will also
help in identifying locally optimal scales for the cover
used in Mapper.

3) Lastly in V we propose brick cover, a covering scheme
that is computable as efficiently as the box-like cuboidal
cover and produces a lower dimensional simplicial
complex, i.e. at most 2-simplices under a 2-dimensional
lens function. Thus it gives a visualisation without loss
of topological information contained in the Mapper
output. Under standard covering schemes, which are
made of boxes i.e. n-fold direct product of intervals in
Rn, the Mapper might include higher order simplices
that cannot be visualized.

In II, we first briefly introduce the mathematical notions
behind Mapper and then discuss our contributions towards
improvement on Mapper algorithm. We have implemented all
our experiments using 2-dimensional lens function; however, a
vast majority of it is generalizable to higher dimensions. Since
R-valued lens functions limit the topological information to
only edges; it is more informative to use higher dimensional
lens function. But in dimensions greater than 3, we get
higher-order simplices that are hard to visualize, so we
restrict ourselves to 2 dimensions.

II. THEORETICAL BACKGROUND AND EXISTING WORK

Below, we establish the required topological terminology.

Definition 1. An open cover U = {Uα : α ∈ A} of a space X
is a collection of open sets such that each point in the space
is in at least one of these open sets.

In this paper, we shall refer to the individual elements of
open cover as bins. We can conceptualize covering as putting
each element in one or more of these bins.

Definition 2. A k-simplex is the smallest convex set containing
a given set of k + 1 affinely independent points, where
u0, u1, . . . , uk are called affinely independent if u1−u0, u2−
u0, . . . , uk − u0 are linearly independent.

Definition 3. An m-simplex σ′ is said to be an m-face of a
k-simplex σ if m < k and the vertices of σ′ are a proper
subset of the vertices of σ.

Definition 4. A simplicial complex K is a set of simplices
such that:

• A face of a simplex from K is also in K
• ∀σ1, σ2 ∈ K,σ1 ∩ σ2 is a face of both σ1 and σ2

For an example, 1-simplex is a line segment, 2-simplex a
triangle, 3 simplex a tetrahedron and so on. And for a 3-
simplex (tetrahedron), 0-faces are its vertices, 1-faces are its
edges, and 2-faces are its triangular sides.

Definition 5. Given a cover U of a space X , the nerve N(U)
is a simplicial complex constructed as follows:
• The vertices (nodes) of N(U) correspond to bins of U
• For each k + 1 bins of U that have mutual non-empty

intersection in X , N(U) contains a k-simplex with the
corresponding nodes as its vertices.

The Mapper algorithm is motivated by the Nerve Theorem
[Hatcher, 2002, Corollary 4G.3], originally proposed by Pavel
Alexandrov.

Theorem 1 (Nerve Theorem). If U is an open cover of a
paracompact space X such that every non-empty intersection
of finitely many sets in U is contractible, then X is homotopy
equivalent to the nerve N(U).

An intersection being contractible intuitively means that
we should be able to continuously shrink it to a point in
X . Finally, homotopy equivalent is a mathematical notion of
the shape being similar – which tells us that if the required
conditions are satisfied, then the nerve would give us the
shape of X itself.

In the context of data analysis, we work with a point cloud
lying in Rn n ∈ N , which is a metric space. Every metric
space is paracompact as proved in [Steen et al., 1978], hence
the assumption of paracompact space is satisfied in our case.
We can compute topological properties of point cloud by
assuming that it is sampled from a paracompact space in Rn
which we refer to as X .

Mapper Algorithm: based on these ideas, the algorithm
works as follows:

1) Given a point cloud X , we project it onto a lower
dimension space Z by a lens function f . We create a
cover U on the image. The pre-image of each bin under
f then gives us a cover f−1(U) of X:

f−1(U) = {f−1(Uα) : Uα ∈ U} (1)

2) We obtain a modified pullback cover f∗(U) of X from
the bins of f−1(U). The pullback of U under f is defined
as

f∗(U) = {C : ∃V ∈ f−1(U), C ∈ P(V )} (2)

where P(V ) is the set of path connected components of
V . In the discrete setting, path connected components
are approximated by clusters. Hence in practice, we
obtain f∗(U) by clustering within each bin of f−1(U).



3) We compute the nerve of f∗(U) in X . This nerve is the
Mapper M(X,U , f) of X .

Thus

Definition 6. Given a space X , a lens function f , and a cover
U of f(X), the Mapper is defined as

M(X,U , f) = N(f∗(U)) (3)

The 1-skeleton of Mapper is a graph consisting of simplices
till 1 dimension from Mapper. Hereafter we shall omit X,U , f
wherever they are clear from context.

Mapper has been applied in a wide range of usecases to get
useful insights. The data analytics company Ayasdi have exten-
sively used TDA to provide solutions in various fields [Ayasdi,
2018], like finance [Ayasdi, 2016], healthcare [Ayasdi, 2015],
sports [Beckham, 2012] and machine learning [Ayasdi, 2017].
[Kamruzzaman et al., 2016] have used Mapper to study envi-
ronmental stressors on plant phenotypes. [Vejdemo-Johansson
et al., 2012] have used Mapper to identify voting patterns
in the US House of Representatives, and have comparatively
presented a marked improvement on the classification possible
compared to Principal Component Analysis [Pearson, 1901].
However, the parameters in Mapper, i.e. f (lens function),
r (bin diameter) and g (bin overlap) require tuning by trial
and error, and hence involve some implicit knowledge of the
data. Moreover, once the Mapper graph is obtained, insight
mining is primarily done by human intervention. These are
significant roadblocks in the goal of using Mapper to gain
insights from truly unsupervised big data. We have made
progress in automating these processes.
Our work results from [Dey et al., 2016], who introduced
and significantly developed the notion of Multiscale Mapper.
This technique is based on building a tower of covers of
various scales, and studying the variations in the resulting
tower of nerves. Below, we define Multiscale Mapper and
related terminology as presented in [Dey et al., 2016].

Definition 7. A tower of W of objects with resolution
res(W) = r ∈ R is a collection W = {Wε}ε ≥ r of objects
Wε together with maps wε,ε′ : Wε → W ′ε so that wε,ε′ = id
and wε,ε′′ = wε′,ε′′ ◦ wε,ε′ for all r ≤ ε ≤ ε′ ≤ ε′′

Definition 8. Given two covers U = {Ua}a∈A, V = {Vb}b∈B ,
a map of covers from U to V is a set map ξ : A→ B such that
∀a ∈ A,Ua ⊆ Vξ(a). By abuse of notation, ξ also represents
the induced map U → V .

Definition 9. A tower W where the objects Wε are covers
and the maps wε,ε′ are maps of covers, W is called a tower
of covers.

Definition 10. Given two simplicial complexes K,L, a sim-
plicial map from K to L is a map ξ : K → L such that:
• For each vertex vK ∈ K, ξ(vK) ∈ L is also a vertex
• For each simplex σ with vertices {v0, . . . , vk}, ξ(σ) ∈ L

with vertices {ξ(v0), . . . , ξ(vk)}.

Note that if ξ is not injective on vertices, then a k-simplex
might map to a k′-simplex, k′ < k.

Definition 11. A tower W where the objectsWε are simplical
complexes and the maps wε,ε′ are simplicial maps, W is called
a tower of simplicial complexes.

Definition 12. Given a space X , lens function f , and a tower
of covers U = {Uε}εoff(X), we define a Multiscale Mapper

MM(X,U, f) = {M(X,U , f) : U ∈ U} (4)

As in the case of Mapper, we omit X,U, f from notation
wherever it is clear from context.
The following facts establish that the successive relationship
between covers of f(X) in U naturally corresponds to a
successive relationship of Mappers within MM(U).
• A map of covers ξ : U → V induces a simplicial map
N(ξ) : N(U)→ N(V) by the following rule : if a vertex
u ∈ N(U) corresponds to U ∈ U and a vertex v ∈
N(V) corresponds to V ∈ V such that ξ(U) = V , then
N(ξ)(u) = v.
Moreover, if U ξ−→ V ζ−→ W are maps between covers,
then N(ζ ◦ ξ) = N(ζ) ◦ N(ξ). Thus a tower of covers
induces a corresponding tower of simplicial complexes
i.e. the nerves of each cover.

• A map of covers ξ : U → V induces a map of covers
between their respective pullbacks under a function f

f∗(ξ) : f∗(U)→ f∗(V) (5)

Definition 13. The pullback under f : X → Z of a tower
of covers U = {Uε}ε of Z is defined as

f∗(U) = f∗({Uε}ε) = {f∗(Uε)}ε (6)

and is itself a valid tower of covers via the induced maps.

III. A SELECTIVE MAGNIFICATION SCHEME –
MULTIMAPPER

It is possible, and we have seen in experiments, that the
same cover might not be ideal for every part of the data. For
example, in Fig. 1, the coarsest refinement hides local structure
that appears at finer scales, but the graph also begins to break
into more components, which obscures global relationships
between the data in each component.
To solve this issue, we have developed a technique which

takes the locally best scale for each region of the data,
and glues them together to represent the entire data more
accurately than a single global scale.
For scale selection, we use the notion of Multiscale Mapper.
However, the varying scales in Multiscale Mapper is applied
globally, which means that two regions with different density
would not be appropriately represented at any one level. There-
fore we propose a Mapper graph which is an amalgamation
of Mapper graphs computed on various regions of interest.
We apply Multiscale Mapper on each region of interest as a
way of selecting scales. It is a different question to identify
these regions and the appropriate scale of its cover in the first



(a) Bin size = 1/5th of image diameter (b) Bin size = 1/8th of image diameter (c) Bin size = 1/10th of image diameter

Fig. 1: Mapper graphs obtained using Keplermapper [van Veen and Saul, 2017] via 2D t-SNE lens on UCI [Dheeru and
Karra Taniskidou, 2017] Dota 2 Games Results Data Set restricted to games involving playable character Dazzle.

place – we discuss a possible approach in IV using the idea
of Multiscale Mapper.
To consistently combine the locally suitable Mappers, we
implement our idea as a repeated rescaling of selected regions.
Intuitively it can be understood as magnification/compression
of a Mapper in relatively sparser/denser regions respectively.
Our first approach slices relevant bins of the cover to obtain
smaller bins; our second approach is more sophisticated and
uses a nerve-like computation to glue together various locally
suitable Mappers. The latter has the advantage of being
compatible with all covering schemes, including the brick-like
cover proposed in V.

A. Local Refinement via Cover Slicing

The covering process can be broken into two parts, deciding
the type of partition and then overlap percentage. Our aim
in this section is to modify the underlying partition in a
manner that the required regions are covered by smaller bins
than before. Once we have identified regions in the Mapper
M that are to be magnified, we perform the steps below.
It is specifically illustrated using cuboidal bins, but can be
generalized to other shapes by redefining the chopping in Step
3.

1) Let S be the set of nodes we wish to magnify; X̃ be the
region of the original data corresponding to these nodes,
i.e.

X̃ = ∪w∈SCw (7)

where Cw is the cluster corresponding to a node w.
2) Now we look at the image of X̃ under the original lens

function f , i.e.
Z̃ = f(X̃) (8)

3) P be the partition of the image, Z = f(X), that gave
rise to the Mapper M . Then define a subset:

P ′ = {P ∈ P : P ∩ Z̃ 6= ∅} (9)

i.e. those parts of the partition which contain some part
of Z̃.

4) Obtain a refinement P ′′ of P by slicing each box along
each dimension. For example, a 1D interval would be
halved; a 2D box would be sliced into four equal 2D
boxes, as shown in Fig 2. This is a refinement by 2
– slicing into m pieces along each axis would be a
refinement by m.

5) Obtain a new Mapper M̃ with the same lens function,
but with a cover built from:

P̃ = (P \ P ′) ∪ P ′′ (10)

M̃ thus shows the data corresponding to Z̃ M , and the
remaining parts of the data at the same scale as M . This
process can be repeated at various regions of the data to view
each region at a suitable scale.

B. Handling Degeneracy via Multimapper

A major drawback of the previous approach is degeneracy of
f i.e. f may map distant parts of X very closely, in the image
Z. Hence, if we magnify a region X̃ in the above method,
since we go via its image Z̃, we would actually magnify
f−1(Z̃) = f−1(f(X̃)), which is potentially a larger region
and having other parts distant from X̃ . Hence undesirable parts
of the Mapper would be magnified as well. We wish to avoid
this effect of f ; but we want to retain the convenience of
constructing the cover via pullback under f . Moreover, we

Fig. 2: Original bins sliced to obtain smaller bins. As shown
here, the process can be repeated.



would want to not only zoom in on denser parts, but zoom out
on sparser parts that might have shattered.
Our one-shot solution to these requirements is the notion of
Multimapper. Multimapper is constructed as follows:

1) As before, given a Mapper graph M , with nodes V
and some nodes S to be magnified, we identify the
corresponding data subset and image subset:

X̃ = ∪w∈SCw
Z̃ = f(X̃)

(11)

where Cw is the cluster corresponding to a node w.
2) Let C be the set of clusters corresponding to the nodes of

M . The region we want to ‘preserve at original scale’,
i.e. not magnify, is:

X ′ = X \ X̃ (12)

From this we discard those clusters which lie entirely in
X̃ to obtain:

C′ = {C ∈ C : C ∩X ′ 6= ∅}
such that : ∪C∈C′C ⊇ X ′

(13)

3) We define a new cover on Z̃ as per our choice and re-
quirement. Unlike in III-A, this need not be a restriction
of the old cover of Z.

4) We cluster within the inverse images of each new bin,
to obtain a new set of clusters C̃, such that:

∪C∈C̃C = X̃ (14)

Effectively, it is again a Mapper construction restricted
on X̃ with a new cover on Z̃.

5) Now we have obtained an overall set of clusters

Ĉ = C′ ∪ C̃
such that : ∪C∈ĈC = X

(15)

We compute a new nerve M̂ according to Ĉ: the nodes
correspond to clusters in Ĉ, and a k-simplex is added
for every k + 1 clusters of Ĉ that have a simultaneous
intersection.
This nerve-like computation ensures that M̂ :
• matches M on V \ S, via nerve computation on C′
• replaces the induced sub-complex on S with a copy

of M̃ , via nerve computation on C̃
• glues these two parts in a manner faithful to the

topology of X , by imitating the nerve construction
on simultaneous intersections involving both C′ and
C̃

The above process can be repeated at various regions, with
locally suitable choices of covering scheme, bin size, and
clustering algorithm. The resulting structure is a Mapper-like
simplicial complex which we call Multimapper.
Conceptually, Multimapper breaks up the original point cloud
into subsets that may or may not intersect. For each region, it
computes the Mapper that is of a suitable scale for that region.

Definition 14 (Multimapper). Given a finite collection of
subsets X ⊂ 2X such that ∪Y ∈XY = X and covers
{UY }Y ∈X such that ∀Y ∈ X ,UY ⊇ Y , we can define the
corresponding Multimapper:

M(X , {UY }Y ∈X ) = N(∪Y ∈X f∗(UY )) (16)

This piecewise approach makes Multimapper quite flexible,
we can freely choose different local Mappers for different
regions, while retaining the global relationships between them.
Fig. 3(b) shows an example of applying Multimapper on a
specific region of dataset. Fig. 3(c) shows the graph obtained
by applying Multimapper repeatedly on separate regions and
creating a single visualization by gluing them all. We can see
it reveals new structure in the magnified regions as well as
prevents the shattering of graph which was happening in case
of Mapper with similar bin size as can be seen in Fig. 1(c).
Via the stability results in [Dey et al., 2016], we further know
that Multimapper is locally as stable as Multiscale Mapper;
and of course, since it after all arises from a cover, it is globally
as stable as Mapper.

IV. DETECTING A BAD MAPPER

[Singh et al., 2007] refer to the Reeb graph as a geometric
representation suitable for obtaining information directly, and
introduce Mapper as a generalization of Reeb graph. Later,
[Carriere et al., 2018] have shown that in the ideal setup, Map-
per with a 1-dimensional lens function statistically converges
to the Reeb graph of the original space under the lens function.
A general convergence result of Mapper to a generalization of
Reeb graph called the Reeb space has been conjectured, and
[Munch and Wang, 2016] have studied a category-theoretic
version of this relationship.
The ideal convergence would not occur in case of real data
since real data is a discrete point cloud. However, we can
measure the correctness of a Mapper via its closeness to the
Reeb space. We can thus reasonably demand that a good
enough Mapper of a discrete point cloud, under a particular
lens function f , should be similar in shape to the Reeb space
(under f ) of the connected paracompact space it approximates.

Definition 15 (Reeb space). Given a continuous map f : X →
Y between topological spaces X and Y , the Reeb space
Rf (X) of X with respect to f is X/ ∼ where the equivalence
relation ∼ on X is defined as p ∼ q iff p and q lie in the same
connected component of f−1(c) for some c ∈ Y .

When Y = Rn, the connected components are same as
path connected components [Sutherland, 2009], and this is
sufficient for our real-world setting. When Y = R, the Reeb
space is called the Reeb graph.

The Mapper algorithm is constructed using the Nerve Theo-
rem, and we have characterized its goodness by its closeness to
the Reeb space. Thus, to partially characterize bad Mappers i.e.
Mappers far from the Reeb space, we can try to find regions
of the Mapper where the contractibility hypotheses of Nerve
Theorem is violated.
Checking for contractibility, however, is complicated in a real



(a) Bin size = 1/5th of image diameter. In
white : nodes selected for magnification

(b) magnification of selected region. Bin
size in selected region = 1/10th of image
diameter.

(c) Final Multimapper graph. Bin size for
magnification = 1/10th of image diameter.

Fig. 3: Mapper graphs of the Dota 2 Data Set from Fig. 1, using Keplermapper [van Veen and Saul, 2017] with 2D t-SNE
filter (left); Multimapper graphs (b) and (c) which reveals new geometry.

world setting, especially since our actual space is a point cloud.
To adapt our method to the real world, let us recall the
association between the continuous and discrete ideas:
• Continuous ↔ Discrete
• Paracompact space ↔ Point cloud
• Path connected components ↔ Clusters
• Nerve ↔ Mapper
We know that if a space has more than one path connected

component, it cannot be contractible – shrinking two separate
pieces to the same point would require shrinking across the
gap between them, which violates continuity. Translated to the
point cloud setting, this means that if a data subset has mul-
tiple clusters, the corresponding space cannot be contractible.
Hence, a sufficient condition for non-contractibility can be
checked using the following general characterization:
Given a Mapper on a set of nodes V

∃σ ∈M,σ = σ(S), S ⊆ V, β0(∩v∈SCv) > 1 (17)

where:
• σ(S) is the simplex on the vertices S
• For some topological space A, β0(A) is the number of

connected components in A
• Cv is the cluster corresponding to the node v of the nerve.

This motivates our approach, which we illustrate via 1-
simplices (edges). However, the same technique can be iterated
over all simplices in M . The most naive approach of identify-
ing components in discrete setting is via any known clustering
algorithms. We propose such a method next, followed by a
modification on it that is independent of clustering algorithms.

Clustering-Dependent Version

Procedure: Given a Mapper M , for each edge (u, v),
Cu ∩ Cv 6= ∅, we cluster within Cu ∩ Cv using a clustering
algorithm like DBSCAN which does not fix the number of
clusters a priori. If more than one cluster is obtained, we report
it as a violation. Finding even a single violation is sufficient
for the Mapper to be classified as bad.

Explanation: If an edge e = (u, v) leads to a violation,
it means that the continuous space Cu ∩ Cv approximates
has more than one path connected component. Hence the
Reeb space of Cu ∩ Cv , obtained by collapsing each path
connected component, will also have more than one connected
component. But the Mapper restricted to Cu ∩Cv is precisely
the edge e, which is a single connected component. Hence
in the region of data corresponding to Cu ∩ Cv , the Mapper
deviates in shape from the Reeb space.

A. Our Algorithm: Clustering-Independent Version

In the above naive approach, we depend on clustering
to approximate path connected components. Thus we are
constrained by the choice of clustering algorithm and its
parameters, and must optimize this on a case-by-case basis
as these are not generalizable to any dataset. To remove
this dependency, we propose a method of approximating path
connected components that is independent of clustering.
The well-known TDA method of persistence, which is usually
applied directly on the point cloud [Ghrist, 2008], can be
translated to the Mapper setting via Multiscale Mapper – [Dey
et al., 2016] have given an algorithm that, given a tower
of covers, computes the persistence diagram of the resulting
Multiscale Mapper. They have also provided an approximate
computation suitable for the discrete point cloud setting.
Hence, given U = {Uε}ε, a Multiscale Mapper MM(U) and a
void H that appears in some M(Uε) ∈ MM(U)

1) birth(H) = min{ε : H appears in M(Uε)}
2) death(H) = max{ε : H appears in M(Uε)}

Hence, for every 0-void, i.e. connected component, 1-void,
i.e. circular hole and so on, that appears in MM(U), we get a
birth-death pair, a range of scales at which it is visible in the
corresponding Mappers.
We consider a topological feature, e.g. a void, to be truly
present in the shape of the data if it remains, or is persistent,
for a large range of scales. If βεm is the number of m-voids at



scale ε, we remove the noisy features and calculate the true
number of m-voids βm i.e. the persistent ones as:

φm : N→ N
β 7→ |{ε : βεm = β}|

βm = arg max(φm)

(18)

Since β0 is the number of connected components, persis-
tence on Mapper via Multiscale Mapper gives us a cluster-
independent way to compute the number of connected com-
ponents in the data. This gives us the following procedure for
detecting violations:
Given a Mapper M(X,U , f), for each edge (u, v), we
construct a tower of covers on Cu ∩ Cv , beginning from
f∗(U)|Cu∩Cv

and decreasing the scale of cover up to a
threshold of refining f∗(U)|Cu∩Cv

by 2.
Thus in practice, where U|f(Cu∩Cv)

has cuboidal2 bins of
diameter ε0 and U′ must be finite, we define covers of the
form Uε of f(X) to have the same partition rule as U , but
with bin size ε. Thus the tower of covers of f(Cu ∩ Cv) is:

U′ = {Uε}ε∈N,0.5ε0≤ε≤ε0 (19)

From this we obtain the pullback tower f∗(U′) of covers of
Cu ∩ Cv . On this, using persistence via Multiscale Mapper
as illustrated in [Dey et al., 2016], we can compute β0, the
persistence and hence true number of components. If β0 > 1,
we report a violation. To increase efficiency in implementation,
we will compute only zeroth dimension persistence diagram.

V. REDUCING OBSCURED INFORMATION VIA BRICK-LIKE
COVER

Construction of a cover from the implementation perspec-
tive for the Mapper algorithm can be conceptualized in two
steps:

1) Construction of a partition
2) Growing each piece of the partition to introduce overlap,

hence obtaining bins.
The most well-known, standard box-like cover partitions the
image space into n-cuboids, where n is the projected dimen-
sion. Hence with a 1-dimensional lens, we get line segments;
with a 2-dimensional lens, we get rectangular boxes; and so
on. In such a setup, 2n bins can intersect where 2n pieces
of the partition meet; hence simplices in the nerve can have
dimension up to 2n. However, simplices of dimension > 2
are difficult to visualize. Because of this, the visualization we
create will be truncated at 2- or 3-simplices, and not represent
the complete information contained in the Mapper.
Hence, it would be desirable to build covers such that the visu-
alization represents all the topological information contained
in Mapper through simplices of visualizable dimensions. This
requires us to explore non-cuboidal lattices for the partition.
As suggested in [Singh et al., 2007], hexagonal lattices are
a natural choice – in 2D, for example, hexagonal bins can
intersect only 3 at a time; hence the Mapper would have at
most 2-simplices.

2Cuboidal bins may be arranged in the standard way or as suggested in V.

Fig. 4: Bins built on brick-like mesh. Notice how at most 3
bins intersect at once.

The Brick Cover

Constructing bins over a hexagonal lattice is computation-
ally difficult even in 2 dimensions. Our proposed 2D covering
is more efficient and achieves the same goal with a few
realistic constraints. Our partition of the 2D plane uses offset
rectangles, as in a brick wall. The underlying vertices are still
a hexagonal lattice, which gives us an advantage over the usual
rectangles: at most 3 bricks can meet at a vertex. At overlap
below 50%, this translates to a maximum of 3-fold intersection
of bins. Given the sparse nature of high-dimensional data,
overlap below 50% is a reasonable notion of nearness.
The idea of using non-cuboidal bins can be extended to higher
dimensions: for example, cuboidal lattice in 3D gives up to 8-
fold intersections, while hexagonal lattice in 3D gives only
up to 6-fold intersections. We claim that our proposed brick-
like cover gives the lowest possible maximum simultaneous
intersections among all 2D covers that use cuboidal bins. This
is because:

1) For the underlying partition of a cuboidal cover, let a
‘mesh point’ be a point at which some pieces of the
partition meet, and at least one piece has that point as a
vertex. At a mesh point:

• The total angle contributed by pieces incident on it
must equal 2π.

• A piece having the mesh point as its own vertex,
contributes π/2, other surrounding pieces contribute
π. Hence 2 pieces cannot form a mesh point, since
neither piece could have the said point as its own
vertex.

• Thus, at a minimum, we are forced to build 2π as
π + π/2 + π/2, as in a brick-like mesh.

2) We are left to choose the ‘offset’, i.e. by how much the
successive rows of pieces are shifted from each other.
We assume that the overlap is added to the top right
of the underlying pieces. Then, between two successive
rows:

• If the top row is shifted to the right by p%,
then an overlap greater than p% would lead to 4-
intersections. So we must maximize p. But this is
the same as the bottom row being shifted to the
left by (100 − p)%, so an overlap greater than



(100 − p)% would also cause 4-intersections. So
we must maximize (100− p).

• Symmetrically, when the top row is shifted to the
left by p, we again need a simultaneous maximiza-
tion of p and (100− p).

• Hence we must choose p = (100− p) = 50, which
gives us the proposed cover.

VI. CONCLUSION

In this paper, we proposed improvements upon the existing
Mapper algorithm solving many of its shortcomings partially.
We have given a partial characterization of undesirable outputs
of the Mapper algorithm and proposed a flexible method that
corrects the choice of scale locally in a manner sensitive to
the density of various data subsets. In all these methods, we
have retained the unsupervised nature and stability of Mapper.
Moreover, replacing the standard covering scheme with our
brick-like cover reveals more topological information in a
visualizable way. Our methods produce a visualization that
is more true to the actual shape of data, via the Reeb space
characterization, than the standard Mapper. Our contributions
pave the path towards an automatic one-shot Mapper output
which is the best visualization in terms of being close to
the topological structure of data without any need of manual
parameter optimization. This improves the efficacy of its
applications in analysis and visualization of high dimensional
big data.
An interesting direction of future work that we mean to pursue
is to study the relationship between successive applications of
the Multimapper algorithm. Moreover, our method to detect
deviations from Reeb space in Mapper via violations of Nerve
Theorem hypothesis can be more powerfully implemented if
a discrete analog of contractibility was reasonably defined,
similar to how clusters are used to approximate connected
components. Finally, a characterization of the best cover
possible in any given dimension for the given data would be
useful.
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