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Abstract—This paper proposes a white box method of pre-
dicting critical alarms so they can be mitigated and understood
by engineers. Forecasting these alarms will avoid outages and
maintain the agreed service level which is beneficial to both the
provider of telecommunication services and the consumers. The
paper evaluates several item set mining approaches on a set of
alarms of the British Telecom (BT) national telecommunication
network and proposes a novel transformation of the data to
enable the discovery of patterns undetectable by current item
set mining approaches. The result is a method for rule induction
that predicts alarms with high precision using a wide range of
features.

I. INTRODUCTION

The goal of this work is to develop a method that allows
the expressive forecasting of events in a telecommunication
network. Telecommunications pay a vital role in our day to
day lives and faults can be costly to both the provider and the
consumer [28]. Amongst other reasons, service outages impact
customer satisfaction and increase churn rates [9], fines are
issued if promised service levels are not sustained and a level
of service is required for national security [5]. It is important,
therefore, to keep outages to a minimum.

Predicting the most severe events ahead of time would aid
in both of these aspects. Additional benefits include:

• Given sufficient warning there could be an automated or
manual intervention to avoid an outage

• A prediction would give an engineer a head start in
remedying the issue.

• It would lighten the workload of both network monitors
and network engineers.

• There are large potential savings from a reduction in
the work load of engineers, call centers and through the
reduction of churn rates [30].

In pursuit of this goal a range of techniques from the litera-
ture were applied with little success. An alternative system is
needed to address these shortcomings. The developed system
must forecast events ahead of time using human readable rules.

The contributions from this paper are a method of trans-
forming algorithms designed for classification into forecasters
and an empirical evaluation of new and existing algorithms
when applied to the BT data set. This is a collection of alarms
generated over a period of 2 months that represent warnings
and faults on devices of varying severity. The data has several
features that describe both the nature of the alarm and the
device to which it pertains. Loosely speaking, the outcome of
the research is a rule based method to forecast network alarms
with a high precision.

Section II contains a description of the telecommunication
domain and other approaches from the literature that have
been developed for similar problems. This includes a number
of approaches utilising different forms of item set mining as
this is prolific throughout the field. Section III describes and
evaluates some experiments using existing item set mining
approaches on the BT data set. The problems with these
approaches lead to the development of a new method that
is laid out in Section IV and evaluated in Section V. Finally
some discussion, conclusions and further work can be found
in Section VI.

II. RULE INDUCTION AND TELECOMMUNICATION
NETWORKS

In this section a brief description of telecommunication
networks is provided as well as some of the existing works
on forecasting events within the domain. The purpose of this
review is to identify methods that are applicable to the BT
data set.

A. Telecommunication Networks

The core network of the UK’s telecommunication network
is a collection of IP devices that are responsible for routing
traffic from the exchange up until the network edge. Core
nodes are placed in full mesh linking together a number
of sub-networks. To limit the amount of routing needed to
deliver these packets across the country, devices are grouped



into SVLANs designated for carrying a subset of packets
labelled with the corresponding SVLAN tag. If devices fail
then network protocols govern the re-routing of traffic to avoid
outages, placing greater strain on other parts of the network.
This can result in increased packet loss, increased latencies
and potentially further device failures. Though most outages
occur outside the core network, in the ‘last mile’ between the
cabinet and the home, the core network must be resilient to
prevent more larger scale issues [13].

A level of service must be maintained for customer sat-
isfaction. Falling below this service level can result in an
increased customer churn rate and action from the regulatory
body the Office of Communications (Ofcom). Because of their
importance there have been a number of approaches focused
on increasing the resilience of telecommunication networks.
A selection of these are described in Section II-C. These are
grouped into those that produce descriptions of the alarms and
those that produce predictions.

B. Alarm Description in Telecommunication Networks

For engineers to understand and act on a forecasted alarm
it is important to produce these forecasts in a descriptive way.
Rule Induction is an inherently expressive modelling approach
where models take the form of trees or rule sets. Rule sets
require no additional interpreting or transformation to make
them human readable. The trained model is a set of human
readable rules whose Left Hand Side (LHS) are matched in
turn against an instance to assign a label. The following is
an overview of a number of Rule Induction applications with
specific focus on telecommunications.

The authors of [11] applied ITRULE to generate rules for
an expert system in order to automate network management
and the networks response to alarms. [22] presents a very
general method of detecting a root cause using topology data
by finding the most likely failed component between pairs of
links. The output is a hypothesised failed link in what is termed
a silent failure or black hole, a similar problem is described
in [18] and combated using a modified Bayesian Network.

TASA [14] produces episodic rules from alarm data with the
goal to provide new insight into alarm relations, the method
of producing these rules is similar to Apriori and Association
Rules Mining (ARM). The LHS of these rules are alarm
predicates defined as any ’expression that can be evaluated
from a single occurrence of an alarm’, not simply alarm types
but any combination of an alarm’s features. These predicates
have either a strong or weak ordering within their set and are
given to the system by the user along with the desired window
width, experimentally found to be between 5 seconds and 10
minutes. The method depends on finding frequent patterns with
sufficient support before enriching them with additional alarm
features.

Two final approaches that focus on describing relations are
mentioned here. TP Mining [6] searches for repeated event
patterns within a time window and promotes those with a
high Topographical Proximity (TP), a metric derived from
the relative position of a source device to other devices. As

geographical data is provided for a number of devices in the
BT data set this method of rule promotion could be beneficial,
the suitability of the approach will depend on presence of
patterns with sufficient support in the event data. The authors
of [19] use Ant Colony Optimisation to produce time based
rules, these are rules created by traversing a matrix of all
feature values starting with a time to reach a target class, pro-
ducing and evaluating IF-THEN rules with the nodes selected.
Node selection is biased towards the arbitrary ordering of the
features within the graph and a high dimensionality would
make the method very computationally expensive. Further
more there is an assumption that the time of alarm generation
is always a defining feature which may not hold.

C. Alarm Prediction in Telecommunication Networks

In this section an number of existing methods of predicting
alarms in a telecommunication network are evaluated. Fre-
quent Pattern Mining, which appeared throughout the literature
in Section II-B features prominently again. In light of this, this
section is split between Apriori based and alternative Frequent
Pattern Mining approaches.

1) Apriori Based Approaches: The authors of [16][24]
focus their work on alarm prediction in the Pakistan Telecom
network. They approach the problem with Decision Trees, an
adaptation of Association Rules (termed temporal rules), and
Neural Networks. To predict the chosen network events (in this
case limited to three types), Apriori is used to identify patterns
leading up to the event in a restricted time window. The data
is separated according to device type and a large number of
alarms deemed non-critical are filtered out before processing.
The rules produced are non-descriptive and the restriction to
producing rules by device type is a more narrow problem than
the one we are presented with.

The authors of [29] produced a genetic algorithm named
Timeweaver that specialises in predicting rare events from
a telecommunications alarm data set. It follows a two step
pattern very similar to Apriori and details a bespoke language
enabling patterns to be produced from ordered events, un-
ordered events and wild-cards.

The authors of [20] investigated an enhancement to the
algorithm TASA, mentioned above, using sliding windows to
find both Association Rules and Episodic Rules.

Episodes are frequently occurring sequences of event types
that exist within a window that occur in a time interval. TASA
produces human readable rules along with a confidence value.
Expert domain knowledge is then required to analyse the great
quantity of rules produced by this system before it is applied to
a live system. The system has been evaluated by these same
domain experts and, amongst the Episodic Rules produced,
several unknown patterns have been reported.

2) Alternative Frequent Pattern Approaches: As well as
the Apriori methods above there are a number of alternative
approaches. The authors of [33][21] use a Markov based
codebook approach as an alternative to Association Rule
Mining Approaches. It is used to manually identifying problem
alarms (alarms of interest) and labelling the succeeding alarms



as potential symptoms. This method is concerned with root
cause analysis rather than prediction but is included here
as it discovers patterns within noisy alarm data. Correlation
graphs are formed from the ordering of the symptoms, with
some aggregation for repeated sub-sequences, these are then
vectorised and presented as a codebook. Hamming distance is
used to detect re-occurrences of each code in the network with
some resilience to noise. The authors claim a significant speed
increase over rule based systems though no empirical evidence
of this is presented. eXpose [17] learns dependency rules using
the J-measure to help diagnose faults. The J-measure

is a measure of the theoretical information content of an IF-
THEN rule. exPose uses the information within packet traces
as its basis for rule learning, it gathers these within time
windows of 1 second, network packets being far busier than
the telecommunication data set which consists of many sparse
alarm channels. Relations between packets sent through the
network are assumed to be unidirectional (as communications
are nearly always two way) and so the unweighted J-measure
is used . The J-measure is further modified to remove the
negative component so as to only score positive relations
between events (i.e dismissing the relation between event A
happening and event B not happening). The rule set is also
pruned to keep rules where the following conditions hold:

• The rule has sufficient support
• The LHS and Right Hand Side (RHS) occur with similar

frequency

As this work focused on packet traces the inter-arrival times
are in the order of nanoseconds whereas the BT data set on
the scale of minutes, nevertheless this may be an effective
approach.

In [7] a kernel based approach is used. A Support Vector
Machine combined with Singular Value Decomposition (SVD)
[10] is used to predict alarms over an IP network . Each
window of events is converted into a representative discretised
vector and the collection of windows form an event-by-
window matrix where each column represents a window. SVD
is applied and the first k columns of the resulting υ matrix
become a new data set to train the SVM with a Radial
Basis Kernel (RBF). An online version is proposed using an
incremental version of SVD. The optimum window size for
the data is investigated through mapping error rates to window
sizes from 5 to 100 minutes. The error rate falls and plateaus
at the 35 minute mark. This work does produce accurate
predictions for a specific alarm type, additional SVD-SVMs
must be included for other target classes. There is no rationale
behind the rules produced but a further rule extraction phase
could produce these.

From the above it can be seen that Rule Induction and
Frequent Pattern Mining are common approaches to rule
description and prediction. The goal of this work is to produce
descriptive predictions of alarms and so Frequent Pattern
Mining must be explored. In the next section the BT data
set undergoes some pre-processing before the application of 3
established Frequent Pattern Mining algorithms are applied to

the data. The goal is to establish if these methods can extract
recurring patterns of alarms that can be utilised for prediction.

III. ANALYSIS OF FORECASTING EVENTS WITH SEQUENCE
MINING

The application of a large number of predictive techniques
detailed above incorporate or extend Frequent Pattern Mining
approaches. Three examples of established Frequent Pattern
Mining algorithms were applied to the BT data set. Frequent
Patterns are a starting point for discovering sequences with
strict ordering constraints. For these experiments each alarm,
which follows a hierarchical naming convention, is described
by it’s over arching alarm type. A successful experiment will
result in a number of frequent patterns of varying lengths that
can be used to predict alarms on a test set.

To reduce the size of the data set, alarms are first com-
partmentalised into clusters using the density based clustering
algorithm DBSCAN [8] to determine the number and location
of centroids. This produces 5 clusters based around population
centres that capture both the dense urban and sparse rural
network devices at the centroids and edges respectively. It also
provides a level of homogeneity across the devices that may
be beneficial for rule extraction.

The data has also undergone some preprocessing to remove
low variance features and merging repeated events as per [32].
Two clusters were chosen for the experiments, one for testing
and one for validation. These clusters were selected as they
were of similar size and had populations nearest to the mean
cluster size. This is useful as a system produced and verified
using these two clusters will be more relevant to the larger
and smaller clusters.

Three Frequent Pattern Mining algorithms were applied to
the BT data set: Apriori [1], ECLAT [34], and FP-growth [12].
Apriori is one the earliest algorithms designed for detecting
small, high confidence item sets and using the Apriori princi-
ple to manage the search space. FP-growth uses a depth first
approach to generate longer patterns with a lower confidence.
These longer patterns are more suited to this task as the
transaction sets will take the form of long sequences of events.
ECLAT uses a depth first approach with a vertical item set
format that can offer some performance gains. Each algorithm
retains item sets with sufficient support, a support threshold
can be adjusted to increase or decrease the number of patterns
produced.

The event data first needs to be compartmentalised into
transactions as seen in [17]. To do this the event series was
divided using a threshold applied to the inter-event arrival
times. This threshold was taken from a sample of SVLANs
using their inter-event arrival times. The thresholds were set
at each 10th percentile from a sample of SVLANs to give a
broad coverage.

The distributions of the transactions under each threshold
were examined in order to find the optimal value. The number
of items in a set decreases with the value of the threshold.
Table I contains aggregate statistics of these transaction sets
as the cut off inter-event arrival time between events increases.



The maximum length of the transaction sets increases ex-
ponentially as the boundary increases whilst the number of
distinct event types increase in a more linear fashion, the
mean length being between 1 and 2 across each boundary
condition. Table II shows length of the item set produced using
Apriori. It demonstrates that the transaction sets produced are
predominantly singularities with very high support. Alarms
with very high support are likely to be noise events. The
support threshold is set conservatively to 10, given the size
of the data set this would ideally be larger but the lack of
item sets produced makes this impractical.

TABLE I
THE AVERAGE LENGTHS OF THE TRANSACTION SETS BASED ON INTER

EVENT ARRIVAL TIMES (TIME BOUNDARIES)

percentile boundary avg length max length max set length

10 60.0 1.049 44 4
20 240.0 1.085 104 8
30 327.0 1.137 113 8
40 614.0 1.164 121 12
50 1271.0 1.210 121 15
60 3009.0 1.287 171 20
70 5126.0 1.389 188 25
80 10822.0 1.564 299 26
90 21726.5 1.797 483 30

TABLE II
MEAN LENGTH AND SUPPORT OF FREQUENT PATTERNS GENERATED

THROUGH APRIORI THRESHOLD (MEASURED IN SECONDS) FOR APRIORI

avg confidence avg length avg support boundaries

1 0.0 1.0 28293.00 181.0
2 0.0 1.0 28095.50 298.0
3 0.0 1.0 27637.25 689.0
4 0.0 1.0 25507.00 3377.0

Fig. 1. Transformation of bursty event data to burst format. Multiple smaller
events are absorbed into longer complex events with little information loss

Table III shows the output of the FP-Growth and Eclat
algorithms when trained over the transaction sets. As the
results are identical they are listed only once. Only one pair of
transactions occurred with any frequency and each boundary
condition produced rules with insufficient confidence to serve
as predictors.

A possible reason for the failure to detect frequent patterns
is the distribution of alarms. The alarm data is sparse and
unevenly spread, a behaviour describable as bursty. The prob-
ability of a network alarm in a window is relatively small

TABLE III
MEAN LENGTH AND SUPPORT OF FREQUENT PATTERNS GENERATED

THROUGH FP-GROWTH AND ECLAT THRESHOLD (MEASURED IN
SECONDS)

avg confidence avg length avg support boundaries

1 0.0 1.0 28293.00 181.0
2 0.0 1.0 28095.50 298.0
3 0.0 1.0 27637.25 689.0
4 0.0 1.0 25507.00 3377.0

but rises sharply given a network alarm in the preceding time
window. The authors of [23] proposed an interval transforma-
tion for bursty data. The transformation reduces the number of
repeated events by replacing each burst with a set of the events
along with the burst’s start and end time. These events can
then be treated new transaction sets or, by using the start and
end times, as complex events. These new complex events can
be merged into new transaction sets using the same approach
used to create transaction sets detailed above.

Figure 1 depicts a set of alarms over a short window
before and after the transformation. Each alarm type is labelled
(A,B,C,D) along with it’s starting time-stamp and end time-
stamp, for example alarm A starts at 0 and ends at 5. Units
of time in this example are seconds but the granularity of
the implementation depends on the data. Complex events are
created from all events that are live when an event terminates.
Events C and D both have a duration of 0 and so their creation
time is the same as their termination time. The following
is a description of the process followed in this diagram to
transform the bursty events into complex events. From left to
right across the time window:

1) As event A overlaps with events B and C these are
merged into two different complex events at the point
of C’s termination. This creates event ABC which runs
from A’s starting point at 0 to 4.

2) Similarly, the event AB is created from the termination
of event A at time 5.

3) The termination of D and B, both at time 7, results in
event ABD.

4) Event A is still open at the end of the example, it may
go on to create further complex events. The start time
will be 7 but the end time cannot be determined. The
symbols ’*‘ and ’ ‘ represent these two values.

The algorithm from [23] is laid out in Algorithm 1, the
effect on the alarm data from the BT data set is displayed
in a plot of events sampled from three devices on the same
SVLAN in Figure 2. Table IV contains the results of the same
sample data using the burst transformation.

As the transformation is dependent on overlapping events
there is no need to set a boundary threshold to compartmen-
talise the data. The maximum length of a rule is still 2 but the
proportion of length 2 rules is higher, there are also a great
number of patterns with sufficient support to produce rules.
The lengths of these rules are still too short to be useful in
serving as a filter to resolve pre-event clashes.



Algorithm 1 The algorithm transcribed from [23] to convert
bursty sequences into a complex form

1: transaction = ∅
2: result = ∅
3: adding phase = TRUE
4: for opening To and closing times Tc of all events in

sequence S do
5: items = S(To)
6: if items 6= ∅ then
7: trans = trans ∪ items
8: adding phase = TRUE
9: end if

10: items = S(Tc)
11: if items 6= ∅ then
12: if adding phase = TRUE then
13: result = result ∪ trans
14: adding phase = FALSE
15: end if
16: trans = trans - items
17: end if
18: end for

Fig. 2. Examples of bursty, congested and sparse event streams by devices
in a share SVLAN, each series is displayed with filtering and without

TABLE IV
MEAN LENGTH AND SUPPORT OF FREQUENT PATTERNS BY FREQUENT

PATTERN ALGORITHMS ON THE BURST TRANSFORMED DATA

algorithm avg confidence avg length avg support

1 Apriori 0.308694 1.533333 31472.933333
2 FP-Growth 0.308694 1.533333 31472.933333
3 Eclat 0.308694 1.533333 31472.933333

Using the same process as before, the data set is split into
transactions based on the inter-event arrival times, this time
using the complex burst representation. From Tables V and
VI it can be seen that the new transaction sets share the same
issues as the original. Singularities and repeated events make
up the bulk of the transaction sets and there are no sets with a
confidence or support above the set threshold. An improvement

to the results can be made if a minimum transaction set of 2
is imposed on the data set as seen in Tables VII and VIII but
there is no improvement in average confidence.

TABLE V
THE AVERAGE LENGTHS OF THE BURSTY EVENT BASED TRANSACTION

SETS BASED ON INTER EVENT ARRIVAL TIMES (TIME BOUNDARIES)

avg length avg set length boundary max set max set length

1.049146 1.001207 60.0 4 44
1.085810 1.004728 240.0 8 104
1.137938 1.006343 327.0 8 113
1.164693 1.009908 614.0 12 121
1.210368 1.016034 1271.0 15 121
1.287583 1.028528 3009.0 20 171
1.389394 1.047441 5126.0 25 188
1.564482 1.078456 10822.0 26 299
1.797264 1.116214 21726.5 30 483

TABLE VI
CONFIDENCE AND SUPPORT OF FREQUENT SETS PRODUCED BY

FP-GROWTH USING THE BURSTY EVENT BASED TRANSACTION SETS

avg confidence avg length avg support boundaries

0.0 0.0 0.0 60.0
0.0 0.0 0.0 240.0
0.0 0.0 0.0 327.0
0.0 0.0 0.0 614.0
0.0 0.0 0.0 1271.0
0.0 0.0 0.0 3009.0
0.0 0.0 0.0 5126.0
0.0 0.0 0.0 10822.0
0.0 0.0 0.0 21726.5

TABLE VII
CONFIDENCE AND SUPPORT OF FREQUENT ITEM SETS PRODUCED BY
FP-GROWTH USING THE BURSTY EVENT BASED TRANSACTION SETS

WHERE TRANSACTIONS OF CARDINALITY ONE OR LESS ARE REMOVED

avg confidence avg length avg support boundaries

0.0 0.0 0.0 60.0
0.0 0.0 0.0 240.0
0.0 1.0 716.0 327.0
0.0 1.0 735.0 614.0
0.0 0.0 0.0 1271.0
0.0 0.0 0.0 3009.0
0.0 1.0 962.0 5126.0
0.0 1.0 1360.0 10822.0
0.0 1.0 1061.5 21726.5

TABLE VIII
CONFIDENCE AND SUPPORT OF THE SETS PRODUCED BY FP-GROWTH

USING THE BURSTY EVENT BASED TRANSACTION SETS WHERE
TRANSACTIONS OF CARDINALITY ONE OR LESS ARE REMOVED USING

APRIOI, FP-GROWTH AND ECLAT

Algorithm Avg confidence Avg length Avg support

Apriori 0.0 1.0 735.0
FP-Growth 0.0 1.0 735.0
Eclat 0.0 1.0 735.0

This section has demonstrated that the application of Fre-
quent Pattern Mining on the BT data set has been unsuccessful.



This was potentially due to the bursty nature of the alarms
creating an environment non-conducive to Frequent Pattern
Mining. To investigate this a transformation designed for
bursty network data was applied to the alarm data with only
a small increase in the number of transaction items but with a
very small cardinality. In the next section a new approach to
extracting patterns from this data is described.

IV. PRE-EVENT MARKING AND PREDICTION

In Section II-C a number of approaches to alarm prediction
were examined. It was apparent that they depend on the
extraction of Frequent Patterns using a key feature or item
type. Frequent Pattern Mining was applied to the focus data
set of this paper and was unable to extract use-able patterns
for alarm prediction. In this section an alternative approach
hybridising predictive and descriptive approaches is examined.
The approach has number of benefits:

• It allows a variety of expressive approaches to make
predictions

• It allows forecasting using a wide range of features rather
than the single values used in Frequent Pattern Mining

• It can address class imbalance problems if they are
present in the data A disadvantage of the approach is
the adoption of a large amount of noise into the target
class but some work has gone to partially address this.

A. Pre-Event Marking

Figure 3 depicts Rule Induction across two axes, forecasting
on the vertical axis and classification on the horizontal. Each
are limited entirely to their own axis and so a forecaster cannot
utilise additional features in it’s predictions, this can be a
disadvantage if the concept is not entirely contained within one
feature. Pre-event Marking is a technique designed to allow an
algorithm on the horizontal axis to be trained on a target class
that represents the vertical.

Fig. 3. The axis used for prediction by forecasting and descriptive approaches

This is a very simple transformation of the target class from
a descriptor of the instance to an indicator of a future event,
in this case a particular alarm type.

A time window of length w is set, terminating at an event
of interest, A, and starting at time A − w. Events within
this time window are marked as pre-events, retaining all
their features. This transformation allows a Rule Induction

Fig. 4. Proportion of events marked as pre-events against interval size
(filtered)

algorithm to produce rules that forecast an event rather than
simply describing the containing event. Some methods are
required to refine the transformation. There are issues with
heavily altering the class balance of the data set and the
optimal window with which to produce these rules must be
determined. In this section experiments will be conducted over
a range of windows and finally an attempt will be made to
forecast the expected time of an event.

Figure 4 depicts the proportion of class labels as the pre-
event window increases from 1 to 19 minutes in the data set.
As the time window increases to 19 minutes the proportion
of target events approaches 50%. A benefit of this is that
algorithms that suffer from class imbalance may perform
better, however, this transformation is very likely to introduce
a substantial amount of noise.

B. Rule Induction of Pre-Events

Pre-event marking is more respectful of the original distri-
bution with smaller window sizes, though the window must
be kept large in order for any mitigating action to be taken
to prevent the alarm. To attempt to marginalise the amount
of noise included in the process at filtering stage is included.
One of these techniques is to use an SVM [27] as a filtering
black box model to transform the class labels ahead of Rule
Induction, the authors of SVM DT [3] specifically use a
decision tree as the second stage.

An SVM was not considered in the early stages of this
work as it is a black box system and as such violates the
key requirement of producing human readable rules. It also
requires all the features to be numerical, as the BT data
set’s predominant feature type is categorical this will require
transforming the data set. Approaches exist to extract human
readable rules from SVMs [15], [2].

Transforming categorical attributes to numerical attributes
is most simply done using hot-point encoding, or creating
dummy vectors. This process converts each distinct feature
value into a new boolean feature indicating it’s presence or
not for that observation. This technique has a number of
disadvantages, foremost is the large increase in dimensionality
which increases training time and can impact the performance
of a model. It is likely that a large number of the additional
features created through this process will add no value to



the data, an additional phase of feature selection could be
employed to lower the training time of the SVM.

Figure 5 demonstrates the work-flow of this Two Stage
system. The SVM is trained on the data containing clashes.
A second set of training data is then passed through the
SVM where pre-events are relabelled based on the SVM’s
classification. These are then passed to the rule induction
algorithm for training. As a final stage a whole data set is
passed through the system so the performance of the induced
rules can be evaluated.

The effect of SVM filtering on the population of pre-events
is shown in Figure 6. The number of events decreases as
expected by as much as a 31%. The number of distinct events
drops quite heavily, this loss may be a limiting factor in the
approach as any concepts linked to the lost event types will
not be captured.

Fig. 5. SVM resolves clashes training the rule induction model. The model
is then able to predict pre-events with a greater precision.

In a live system the set up is substantially simplified as
after training both algorithms the SVM is no longer required
and the rule induction algorithm can classify events without
filtering, though the SVM would be required again to retrain
the algorithm if, through changes to the network or consumer
behaviour, the learnt concepts become invalid.

A number of rule induction algorithms were run on the
transformed BT data to predict the pre-event class. These in-
clude Prism [4]; PrismTCS [26], an variant of PRISM designed
to produce rules for a minority class; and a Decision Tree [25].
As ITRULE and the J-Measure make frequent appearances in
Section II a variety of algorithms from that family are trialled.
These are ITRULE; ITRULE PRD [31], a variant of ITRULE
actively combats Partial Rule Dominance (PRD), a form of
over-fitting; a variant using simulated annealing to handle over

Fig. 6. The effect of the SVM filter on the pre-event population across all
time windows.

fitting; and a variant based on eXpose [17] from the literature,
referred to as ITRULE Positive.

Figure 7 shows the precisions of all the rule induction
algorithms across the time windows as the output of the Two
Stage system. The decision tree outperforms the other methods
of rule induction. As for the ITRULE variants: ITRULE PRD
has over-fit on the majority class while ITRULE Annealing
and ITRULE Positive both report precisions lower than before
filtering was applied. It is likely that the concepts learnt before
filtering have been filtered out by the SVM. The Two Stage
SVM filtering with a Decision Tree is by far most effective
of those explored. In the following section the SVM filtering
algorithm will be explored further.

To optimise the system the same experiments were run
with different kernels. Figures 7 and 8 depict the precision
and recall for each kernel across different time windows. A
summary of the performance of each is provided in Table IX.
The kernel choice has little difference on the precision with the
exception of the sigmoid kernel under which the Decision Tree
algorithm does not perform well. The kernels do, however,
have a large effect on the recall of the system though this is
secondary to the evaluation under precision. There is a large
variation in results for the polynomial and RBF kernel. This
suggests that the rules responsible for the high recall are in
close competition with other rules.

Fig. 7. Mean Precision of the Two Stage classifier under different kernels

The results suggest that the Decision Tree offers the highest
precision results when testing as a prediction problem. In
the next section the evaluation will be extended to examine
predictive performance.

V. EVALUATION

In this section the system developed above is tested over an
event stream replicating it’s use in a live system. The trained
model is passed one instance at a time to classify and with
each classification an accompanying ground truth is produced.



Fig. 8. Mean Recall of the Two Stage classifier under different kernels

TABLE IX
MEAN RESULTS OVER ALL TIME WINDOWS FOR A TWO STAGE CLASSIFIER

VARYING KERNELS AND RULE INDUCTION MODELS

Algorithm Kernel Accuracy Precision Recall

ITRULE Annealing linear 0.269803 0.269785 1.000000
ITRULE Annealing poly 0.269777 0.269777 1.000000
ITRULE Annealing rbf 0.269777 0.269777 1.000000
ITRULE Annealing sigmoid 0.300986 0.258905 0.910406
Decision Tree linear 0.888923 0.831425 0.695305
Decision Tree poly 0.881917 0.905826 0.604988
Decision Tree rbf 0.895751 0.895853 0.666622
Decision Tree sigmoid 0.733485 0.487562 0.486057
ITRULE linear 0.359560 0.264398 0.799775
ITRULE poly 0.444512 0.269358 0.636508
ITRULE rbf 0.443955 0.224744 0.584396
ITRULE sigmoid 0.402580 0.193069 0.428411
ITRULE PRD linear 0.664264 0.149453 0.087450
ITRULE PRD poly 0.643854 0.077689 0.066094
ITRULE PRD rbf 0.658599 0.073700 0.074288
ITRULE PRD sigmoid 0.606272 0.281463 0.475431
Prism linear 0.730197 0.033333 0.000176
Prism poly 0.529995 0.311696 0.479527
Prism rbf 0.522585 0.094302 0.323219
Prism sigmoid 0.730223 0.000000 0.000000
ITRULE Positive linear 0.457562 0.217441 0.451218
ITRULE Positive poly 0.416464 0.270959 0.730776
ITRULE Positive rbf 0.377795 0.195153 0.487249
ITRULE Positive sigmoid 0.436899 0.204826 0.581314
Prism TCS linear 0.270182 0.269818 0.999824
Prism TCS poly 0.258447 0.240875 0.853467
Prism TCS rbf 0.271624 0.229169 0.786998
Prism TCS sigmoid 0.269777 0.269777 1.000000

This ground-truth represents the presence of a critical alarm in
the subsequent time window on the same SVLAN. The output
is a set of predictions and a set of ground-truths with which
to verify the predictions.

These tests were conducted with data from a medium sized
cluster and further verified with a model trained and tested on
a second cluster of similar size, as per Section III. The results
are displayed in Figure 9, generally the precision, recall and

accuracy are high. The recall for predicting events under 5
minutes is low but in contrast the precision for these events
is very high indicating that only a few predictions were made
but these predictions were accurate.

The drop in recall for the 5 minutes window may indicate
that the concepts required to predict these alarms were not
available so close to the alarms generation.

Fig. 9. Precision, recall and accuracy of the rules produced by the Two Stage
system

Training a model on the pre-event data ensures that the
model is kept general across SVLANs as the events seen
are not SVLAN specific. As SVLANs are likely to contain
attributes peculiar to themselves this is a strength of the
system. An alternative would be to produce a model for
each SVLAN which would be computationally inefficient and
could to lead to over fitting. A problem with this method
of evaluation is that not all SVLANs will produce target
alarms. Under such a circumstance any positive prediction will
immediately create a precision of 0.0. A potential improvement
to the system would be to monitor the number of times the
rules fire. This could be examined and a confidence level for
the alarm prediction produced.

Table X contains the results from a further set of tests
that include the number of alarms covered by each time a
rule has fired. Of note here is the high number of True
Negatives (TN) and the equivalent True Negative Rate (TNR).
As described above, the event stream is bursty with down
events appearing in clusters rather than appearing in isolation
and so the detection of one critical alarm is highly likely
to encompass several more alarms of the same type. It is
important to establish that the system does not fire randomly
and skew the results by covering one or more of these clusters,
the high TNR rates indicates that this not the case.



TABLE X
MEAN VOLUME OF ALARMS CORRECTLY AND INCORRECTLY PREDICTED
ALONG WITH TRUE POSITIVE AND FALSE POSITIVE RATES FOR THREE

FOLDS ACROSS CLUSTER 1

window
length fold TP FP TN TNR TPR FPR

5 1 552.28 181.34 564.56 66.74 56.26 33.26
5 2 424.12 185.80 520.46 57.32 59.66 42.68
5 3 523.94 188.86 553.98 62.22 60.05 37.78

11 1 574.50 188.04 557.86 66.68 57.32 33.32
11 2 434.82 193.06 513.20 58.58 58.81 41.42
11 3 540.64 197.50 545.34 62.12 60.56 37.88
15 1 574.50 188.04 557.86 66.68 57.32 33.32
15 2 434.82 193.06 513.20 58.58 58.81 41.42
15 3 540.64 197.50 545.34 62.12 60.56 37.88

VI. CONCLUSION

This paper has put forward a method of alarm predic-
tion that can successfully forecast down events in the BT
telecommunication network in an expressive way using a novel
transformation proposed here and a SVM and Decision Tree
combination [3]. The method was developed in response to the
poor performance of traditional item set mining approaches
on this data set which has been attributed to both the bursty
nature of the data and the underlying concepts existing outside
of the class label. The transformation is able to discover these
patterns as it is not constrained to just one item label and
is able to make forecasts based on all the features including
previous class labels. Several methods of item set mining were
trialled along with a method designed for such data and these
were unable to produce usable patterns from the data.

Also trailed were a number of Rule Induction classifiers,
chosen as they are able to produce classifications in human
readable rules without any intermediate stages. They are also
able to abstain from classification which is a useful property
when not all values of the target class are of interest. These
were outperformed by a Decision Tree, still a white box model
that textual rules can easily be extracted from. The method
proposed adapts a lateral classifier into a predictor using pre-
event marking. It produces high precisions and a high TNR
rate which are both key in an alarm prediction system to
keep false alarms to a minimum and retain user trust. It has
been evaluated in both a classification scenario to establish the
presence of predictable patterns in relation to the class label
and finally in a streaming scenario to establish its performance
as a forecaster.

The system could be further tuned using confidence levels to
decrease the false positive rate, it is also lacking an estimated
time for the event to arrive. As it stands a window size must be
selected for training and the event can occur anywhere within
that time. Whilst the combination of window sizes can be used
to produce a more precise prediction time this is not explicitly
included within the rules.
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