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Abstract—Electronic health records contain important infor-
mation written in free-form text. They are often highly un-
structured and ungrammatical and contain misspellings and
abbreviations, making it difficult to apply traditional natural
language processing techniques. Annotated data is hard to come
by due to restricted access, and supervised models often don’t
generalize well to other datasets. We propose a language-agnostic
human-in-the-loop approach for extracting medication names
from a large set of highly unstructured electronic health records,
where we reach almost 97% recall on our test set after the
second iteration while maintaining 100% precision. Starting
with a bootstrap lexicon we perform a context based dictionary
expansion curated by a human reviewer. The method can handle
ambiguous lexicon entries and efficiently find fuzzy matches
without producing false positives. The human review step ensures
a high precision, which is especially important in healthcare, and
is not subject to disagreements with annotations from an external
source. The code is available online 1.

Index Terms—dictionary expansion, context matching, medi-
cation extraction, human in the loop

I. INTRODUCTION

Electronic Health Records (EHRs) contain a wealth of

information on symptoms, diagnoses, treatments, test results,

images, interpretations, and outcomes. Clinicians, however,

primarily communicate with each other through letters and

reports. So although EHRs do maintain quite some information

in structured fields, much more information is actually only

available in the form of unstructured text [14].

In this paper, we focus on medication information: obtaining

an accurate history and current use of a patient’s medication in

a structured form. Even though limited information is typically

available in structured form, it is not always reliable nor

complete enough due to loss of information when patients

move between institutions, limited record-keeping, and over-

the-counter drugs. In an operational setting, a clinician would

therefore also scan for appropriate sections in certain reports to

get a reliable and more complete overview. For research and

other analytical purposes, where reliable and complete data

1https://github.com/FrankRuis/medical concept extraction

on thousands of patients needs to be gathered, this reliance on

human reading and interpretation is a severe obstacle which

leads to either researchers spending years to gather a minimal

amount of data, or to abandonment of the effort and not using

the available unstructured data at all.

There exist approaches for extracting medical information

from EHRs, in part thanks to the i2b2 [10] and later the n2c2

[5] challenges. These range from rule-based [15] to supervised

machine learning [12] and ensemble methods [6].

Besides the aspect of natural language, a significant chal-

lenge in EHRs is their quality. They are often written hastily

while the patient is answering questions, resulting in mis-

spellings, abbreviations, ungrammatical sentences, and incon-

sistent use of punctuation and line breaks. In other cases,

dictation is used resulting in other kinds of errors and im-

perfections. Furthermore, due to privacy considerations, richly

annotated datasets are hard to come by. And the few that are

available are often not usable as they are mostly in the English

language and, in general, supervised models often generalize

poorly to data other than what it was trained on [4]. These

complications make it difficult to obtain data of sufficient

quality by applying traditional natural language processing

(NLP) techniques for extraction of medication information

from EHRs.

There are specialized methods for misspelling correction

and generation in the medical domain, but these often require

annotated training data [7], are limited in edit distance, or

require language-specific metaphone matching [3], and do

not work for misspellings spanning multiple tokens. Sarker

and Gonzalez-Hernandez [11] propose a method applying a

Levenshtein ratio metric to the semantically similar terms

found using word embeddings, which we compare to our own

method for misspelling detection.

Coden et al. [2] propose an unsupervised context-based

dictionary approach, starting with a set of seed words which

are used to identify contexts which are in turn used to

recursively expand the dictionary. In this paper, we propose

a similar method which employs a bootstrap lexicon, fuzzy
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matching, a human in the loop, and a way to handle ambiguous

dictionary entries. We note that the method is for concept

extraction only, entities e.g. describing allergies or medication

that is stopped are extracted too and need to be disambiguated

in a separate task.

Contributions The contributions of this paper are

• An approach for medication extraction from EHRs that

employs a bootstrap lexicon, fuzzy matching, a human

in the loop, and a way to handle ambiguous dictionary

entries, tailored toward maintaining high precision while

iteratively increasing recall, and

• A validation on a real-world data set of 98,200 EHRs of

3,462 patients from a Dutch hospital.

Outlook In Section II, we introduce the data set and what pre-

processing we performed. Section III explores the problem by

presenting the complications we found in this data for medi-

cation extraction. Section IV presents our method. Section V

describes the setup and results of our real-world experiments.

Finally, conclusions and future work are presented in Sec-

tion VII.

II. DATA & PREPROCESSING

Our dataset consists of 98,200 EHRs from 3,462 patients

from Hospital Group Twente, from January 2001 to February

2020. The characteristics of the reports are as described in

the introduction: highly unstructured, ungrammatical, often

abbreviated or misspelled, and inconsistent. Some examples

of misspellings and abbreviations can be seen in Table I2. An

example artificial3, but representative report with its English

translation is shown in Figure 1. We manually annotated a

small development set of 25 reports, which is used in the

main method for optimizing parameters, and a larger test

set of 125 reports for evaluation purposes. All reports have

been converted to lower case and tokenized using the Natural

Language Toolkit [1] treebank word tokenizer. The average

report length is 253 tokens (standard deviation 260) and the

longest report is 4304 tokens.

III. PROBLEM EXPLORATION

In this section, we elaborate on the most important chal-

lenges in extracting high quality medication information from

textual reports in an EHR. Figure 1 shows an example of an

EHR text from out data set with English translation.

A. Weak Structural Clues

Often an organization prescribes standards, conventions,

and/or templates to improve quality of the EHRs. We call

them structures in this paper. Unfortunately, due to changes

in structures over time, allowed flexibility in their usage, and

imperfect adherence, the structural clues that they give are

rather weak complicating a rule-based approach [9].

In our context this is also the case: the EHRs all have

a document type or template, but there are 1001 unique

2Our dataset only contains Dutch reports, in this paper we show the English
translation for readers’ convenience.

3We do not show original data because of privacy issues.

document types in total. Moreover, the clinician can choose

which template sections to include, in which order, section

headings are not standardized, and a section body has no

prescribed fixed structure. For example, a medical history

section could start with one of the following headings: “med:”,

“medication”, “history”, “anamnesis:” (and many more). Fur-

thermore, a report does not necessarily have a medical history

section and any other section could contain medication names

not mentioned in the history section. Some section headings

are used for multiple types of sections, e.g. “history” can

indicate a medication history or a more general medical

history. The content of a medication section can vary from a

simple list of medication names to a multiple paragraph story

with occasional mentions of medication names.

Lists of medications can be separated by commas, semi-

colons, white space, newlines, or a combination thereof. Mode,

dosage, duration, and other information may or may not be

included after each mention of medication and the format may

change in the same list.

B. Misspellings, Typos, and Abbreviations

Table I shows some examples of misspellings, typos, and

abbreviations. Some of the complications are caused by a

missing or additional space resulting in either two separate

tokens being connected or a single token being split up into

2 tokens (e.g., “ascal100mg” or “huma log”). Some more

examples are marked in orange in Figure 1 (words marked

in green are exact lexicon matches) During data exploration,

we found that up to 10% of medication names have such

complications. They complicate both medication name and

context matching.

C. False Positives and Ambiguity

Some names in the texts are false positives, i.e., they

match exactly or fuzzily with medication names, but in fact

they are not medications. An often occurring example are

blood test results, where substances are detected that are also

medications. “folic acid” could, for example, be a blood test

result but also a medication. Some more examples of this are

marked in red in Figure 1. There are also some words that

have an ambiguous meaning, such as “stadium” which is a

brand name pain relief medication but in Dutch is also a word

used to denote a stage of cancer (e.g., “stadium 1 longkanker”,

in English “stage 1 lung cancer”). Including such terms in

a lexicon will result in many false positives if no specific

disambiguation technique is applied.

D. Non-Medications in Medication Context

Rule-based approaches typically exploit contextual clues by

looking for certain sentence patterns, such as “patient had

complication X for which Y ”. The idea is that Y is usually a

medication in this pattern, but unfortunately it could very well

also be a treatment such as “physical therapy”, a surgery such

as “coronary artery bypass”, or a non-medical term such as

“advice”. Also, a medical history or allergies section could

for example just contain the word “none”, “continue”, or
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anamnese:

patient is vandaag thuis gevallen, nadat [x] gestruikeld is over 

een drempel. val op [x] heup.  kon nadien niet belasten. pcm 

geeft pijnverlichting. geen trauma capitis. geen evidente 

dyspnoe. geen pijn elders

lab d.d. [x]:

ureum, [x] mmol/l, kreatinine [x] umol/l, mdrd [x], calcium [x] 

mmol/l, albumine [x] g/l, totaal eiwit [x] g/l, pth [x] pmol/l.

vg:

diabetes mellitus type2. hypothyreoidie,

status na ulterusxxtirpatie. status na 2 keer dvt rechts.

[x] reumatoide arteritis. sicca klachten, tevens artrose, behan-

deld met hydroxycholoroquine.

[x] ercp i.v.m. choledocholithiasis, gecompliceerd door pos-er-

cp/pancreatitis.

[x] geriatrie: depr stemming, w.v. remeron.

thuismedicatie: humalog kwikpen injvlst 100e/ml wwsp 3ml; 

subcutaan; volgens voorschrift humuline30/70 inj 100ie/ml 

patroon 3ml; subcutaan; macrogol/zouten pdr v drank (movi-

colon+generiek); oraal; 1 x per dag 1 stuk;

all: penicilline

anamnesis:

patient fell at home today, after [x] tripped over a threshold. fall 

on [x] hip. could not tax afterwards. pcm provides pain relief. no 

trauma capitis. no obvious dyspnoea. no pain elsewhere

lab dated [x]:

urea, [x] mmol/l, creatinine[x] umol/l, mdrd [x], calcium [x] 

mmol/l, albumin [x] g/l, total protein [x] g/l, pth [x] pmol/l.

hist:

diabetes mellitus type 2. hypothyroidism,

status after ulcer extirpation. status after 2 times dvt right.

[x]  rheumatoid arteritis. sicca complaints, also osteoarthritis, 

treated with hydroxycholoroquine.

[x] ercp in connection with choledocholithiasis complicated by 

pos-ercp/pancreatitis

[x] geriatrics: depr mood, for which remeron.

home medication: humalog mercury pen injvlst 100e/ml wwsp 

3ml; subcutaneous; according to prescription humulin30/70 inj 

100ie/ml cartridge 3ml; subcutaneous; macrogol/salts pwdr v 

drink (movicolon+generic); orally; 1 x per day 1 piece;

all: penicillin

lexicon match fuzzy match false positive

Fig. 1. Anonymized example of (part of) a patient report text with highlighted complications, including English translation on the right.

TABLE I
EXAMPLES OF MISSPELLINGS, ALTERNATE SPELLINGS, AND ABBREVIATIONS (CORRECT SPELLING IN TABLE HEAD)

calci chew d3 mono cedocard retard hydrochloorthyiazide antibiotica
clachi chew cedocard ret hct ab

calci-chew/d3 menocedocard retard hydroloorthiazoide antibioticakuur
calii hew d3 modocedocard hydrocholooorthizide anti bioticum
ca-chew d3 mono-cedocard ret hydro chloorthiazide antibiotioca

calcium-chew d3 moncedocard chloorthiazide anti-bioticumkuur

“not asked”. These non-medications are often hard to reject

without human intervention or large amounts of labeled data.

Especially the more common words may cause recursive

dictionary expansion techniques as also used in [2] to suffer

from adding more and more of such non-medications to the

lexicon in each iteration.

E. Inter-Annotator Disagreement
There will often be a larger F1-score gap between any

two human annotators than there will be between one set

of annotations and a state-of-the-art supervised model [13].

These disagreements arise based on what the annotators would

consider medications; a strict definition that only includes drug

names, or a broader definition that includes anything used to

treat symptoms. For example, treatments like “chemotherapy”,

surgeries like “coronary artery bypass”, or distinctions such as

“oxygen” vs “air”, and even the absence of medication (“none

administered”) could in some use cases be desirable to extract.

F. Language
Finally, EHRs are usually written in the local language. The

texts in our data set are in Dutch. An approach for information

extraction should preferably be language-agnostic.

IV. METHOD

Our method relies on a curated lexicon of medication names

including their variants, as well as a list of medication con-

texts. Both, the lexicon and the list of contexts are improved

continuously based on errors on the development data set.

Sections IV-A to IV-F detail the iterative improvement of

lexicon and context list, also depicted as overview in Figure 2,

while Section IV-G describes the medication extraction given

the final lexicon and contexts.

A. Initial Medication Lexicon Generation

The lexicon is structured as a set of medication names

with each a subset of variations and misspellings. Initially

the subsets are empty. To seed the dictionary, we scrape

initial entries from a trusted source. Our method also works

with a small number of seed words, but a rich bootstrap

lexicon significantly reduces the reviewing time. We use an

online lexicon, which contains all medicines available in the

Netherlands and is curated by medical experts, as our initial

lexicon4, containing 10,539 medication names. Other sources

4https://farmacotherapeutischkompas.nl, accessed August 2020
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A Initial Lexicon 
Generation

Annotation of 
Sample Reports

B Lexicon CurationC

x False Entry
o Ambiguous

Fuzzy MatchingD
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Medication Context
Extraction
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medication
contexts

Medication 
Candidate Extraction

F

repeat

o
match?

o

Fig. 2. Overview of the interactive, iterative medication lexicon and context list generation. Steps B, C and F are manually controlled. Candidate and context
extraction is repeated (steps C to F) until the quality on the development dataset (generated in step B) is deemed sufficient.

have been considered but were for the most part a more noisy

subset of the aforementioned source.

B. Annotation of Sample Reports

To annotate the development set, we used the initial lexicon

to pre-annotate the reports, and then manually corrected errors.

The pre-annotation significantly reduced the total annotation

time. The initial annotation does not require domain knowl-

edge, since missing instances can be corrected later (cf.

section IV-C).

C. Lexicon Curation

As described in section III-C, one of the main issues with a

dictionary approach is that ambiguous entries will cause false

positives. To alleviate this, we track ambiguous lexicon entries.

We use the development set to identify all lexicon entries

that produce false positives, which will fall in one of three

categories: (i) The annotation is an error in the lexicon and is

removed from the lexicon. (ii) It is a manual annotation error

and the annotation is corrected. (iii) It is an ambiguous entry

in the lexicon and will be marked.

Annotations that correspond to ambiguous lexicon entries

will be rejected when they occur in a context whose partial

match score is below a certain threshold (cf. section IV-E). A

suitable value for this threshold can be found by e.g. increasing

it until the evaluation on the development set produces no

false positives or by setting it close to the average value of

unambiguous lexicon entry contexts. For our experiments we

did the latter, resulting in a threshold of 0.01.

D. Fuzzy Matching

Since a significant portion of the medication names are

abbreviated or misspelled, we employ fuzzy matching to max-

imise the amount of lexicon entries available for the next steps.

Our dataset has almost 200,000 unique tokens and the initial

lexicon has thousands of entries. This makes edit distance

calculations for distances greater than 1 quite computationally

intensive. And while many misspellings are within 1 edit

distance of a lexicon entry, there are also many non-medication

tokens within 1 edit distance of lexicon entries.

For these reasons we use a Term Frequency - Inverse Docu-

ment Frequency (TF-IDF) weighted cosine similarity approach

which is common in information retrieval. Since this amounts

to a sparse matrix dot product and we are only interested in the

closest match, we use an efficient implementation of a sparse

dot function5, developed by the ING data science team. All

unique tokens are first converted to character-level 3-grams,

which are then converted to a matrix of TF-IDF features. The

cosine similarity threshold for matches is fine-tuned such that

the new entries produce no false positives on the development

set.

The fuzzy matches are the only part of the algorithm that re-

sults in unreviewed lexicon entries and as such the most likely

part to generate false positives. Because many misspellings can

also be caught in the review step, the threshold can be set to

a value that sacrifices some recall for perfect precision on the

development set, which in our experiments was 0.85.

For multi-token matches we first calculate the pointwise

mutual (PMI) information for all neighboring tokens:

PMI(x, y) = log
p(x, y)

p(x)p(y)

Where p(x, y) is the probability that tokens x and y occur

together, which is divided by p(x)p(y), the probability that

the tokens occur separately. Tokens with a PMI exceeding a

certain threshold are combined. The fuzzy matching process

above is then repeated for these token combinations and the

multi-token lexicon entries.

Fuzzy matches are added as a sub-element of the original

lexicon entry and excluded in future runs of the fuzzy match-

ing process. In this way different spellings have a single parent

entry and future runs will not recursively match to increasingly

distant tokens. Fuzzy matches of ambiguous lexicon entries are

marked as ambiguous as well.

Additionally, we compare our method to Sarker and

Gonzalez-Hernandez [11] by training word2vec [8] word

embeddings on our own dataset and tuning the parameters

such that no false positives are generated on the development

set.

E. Medication Context Extraction

For each element in the lexicon, we find matches in the

EHRs and extract an n-token context window. For each ele-

ment xi in a tokenized sentence X , the context Ci is defined

as:

Ci =
n⋃

k=−n

{xi+k|k �= 0}

Where we wrap to at most one line above or below and

use the empty string when that line is empty or another

5https://github.com/ing-bank/sparse dot topn, accessed August 2020
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sentence boundary is reached. The 3-token context window

of “humalog” in Figure 1 would be: (“home”, “medication”,

“:”, “mercury”, “pen”, “injvlst”).

All numbers and known medication names are masked to

reduce the number of unique contexts (i.e. known medication

tokens in the lexicon are replaced with the token ‘M’ and

numeric tokens are replaced with the token ‘D’).

For each context we calculate a certainty score, which is

the proportion of occurrences where the context surrounds a

known lexicon entry as opposed to a token outside of the

lexicon. If the certainty is lower than a certain threshold θ1,

i.e., there are too many instances where the context surrounds

a non-medication token, the context is rejected. For our data

0.25 was a sufficient threshold, this can be increased to ease

the workload for the human reviewer or lowered to find more

elusive matches. Contexts that only surround known lexicon

entries are excluded for efficiency, since they can not lead to

new candidates.

Each context is assigned a partial match score s

s =
1

n

n−1∑

i=0

ci
gi
,

where n is the context window size, ci is the number of

times the token at position i occurs in the same position in a

medication context, and gi is the number of times the token

at position i occurs in the same position in any context.

Contexts that do not surround a lexicon entry, but have a

partial match score that exceeds a certain threshold θ2, are

added to the list of medication contexts. In this way we can

capture candidates that e.g. share a medication context except

for one unique misspelled token. For our experiments we used

a threshold of 0.25.

The thresholds θ1 and θ2 have been based on preliminary

experiments. A higher threshold means less work for the

reviewer but decreased recall. In our case the thresholds

filtered out a significant amount of false positives and kept

the manual reviewing effort low.

F. Medication Candidate Selection

Existing lexicon entries are added to an exclusion list, such

that they are not shown in the manual review for extending the

lexicon. New candidates are added if their context matches a

context from the context list, but do not belong to an existing

lexicon entry. To identify multi-token candidates, we also

evaluate with up to 3 tokens in the center of each context.

This number was chosen since very few medication names

exceed 3 tokens in length.

Candidates are ranked based on the amount of occurrences

in the entire dataset, from highest to lowest. They are shown

to reviewer in batches on a graphical user interface where

the reviewer can mark candidates as a regular or ambiguous

match. If the reviewer missed an ambiguous entry here, it will

most likely be corrected when returning to the lexicon curation

step where the newly accepted candidates are evaluated on the

development set. Unmarked candidates are rejected and saved

to the exclusion list, to prevent them from showing up in the

review queue again.

The lexicon is extended with the marked candidates and the

process can repeat until no new candidates can be found or a

desired accuracy is reached.

G. Final Medication Extraction

Once the dictionary expansion process is complete we are

left with the final lexicon, ambiguous set, and the occurrence

statistics needed to calculate the partial match score. Tokens

in unseen samples will then be tagged according to a regular

dictionary method using the final lexicon, with the added step

of rejecting tokens that are contained in the ambiguous set

when their partial match score does not exceed the threshold,

as described in section IV-C.

The final output of the algorithm is the extended lexicon and

the occurrence statistics needed to calculate the partial match

score. One can optionally save the rejected candidates too so

the algorithm can be reran later on new reports.

V. RESULTS & DISCUSSION

A. Evaluation

The results are evaluated by precision, recall, and F1-score.

When calculating these values, each token is counted only

once per report, e.g. if a true positive medication name is

mentioned 6 times in the same report and a false negative

(FN) only once, the combined recall for this report is counted

as 50%. The reason for this approach is that for our application

we want to extract a timeline of medication information.

Multiple mentions of the same medication in the same report

do not offer more information for such a timeline, and since

a dictionary approach catches all mentions at once it might

skew the results to appear more accurate than they really are.

For comparison purposes we offer the final results calculated

in a more standard way, where all occurrences are counted, as

well.

All execution timings have been done on a virtual machine

running Ubuntu, with an Intel Xeon E-2124 4 core processor

@ 3.30GHz, and 12 GB RAM.

Table II shows the results on the test set after each stage

of the algorithm. Column A shows the results when including

the fuzzy matching step, column B without.

The initial lexicon contains some false positives such as the

blood test result “ureum”, or the pain medication “centrum”

which can also refer to e.g. a city centre. The false negatives

are mainly alternate names such as brand names or chemical

compounds, misspellings, or abbreviations.

At the end of the second iteration of the algorithm we

already have over 96% recall on the test set, while maintaining

100% precision. The parameters have been tuned to produce

0 false positives on the development set, and this has been

successfully carried over to the test set. In total we identified

955,762 medication names in all 98,200 reports, around 10

per report on average.
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TABLE II
RESULTS ON THE TEST SET AFTER EACH STAGE OF THE ALGORITHM, WITH OUR FUZZY MATCHING METHOD (A), SARKER AND

GONZALEZ-HERNANDEZ’ METHOD [11] (B), AND WITHOUT FUZZY MATCHING (C)

A B C
Stage precision recall F1-score precision recall F1-score precision recall F1-score
Bootstrap lexicon 0.895 0.689 0.779 0.895 0.689 0.779 0.895 0.689 0.779
Marked ambiguous entries 1.0 0.689 0.816 1.0 0.689 0.816 1.0 0.689 0.816
Fuzzy matching 1.0 0.775 0.873 1.0 0.768 0.868 - - -
Review 1 1.0 0.923 0.960 1.0 0.874 0.937 1.0 0.881 0.937
Review 2 1.0 0.968 0.984 1.0 0.962 0.954 1.0 0.912 0.954

Review 2 (alternate)6 1.0 0.976 0.988 1.0 0.971 0.958 1.0 0.919 0.958

B. Fuzzy Matching

With the sparse dot function it takes less than one second

to compare all 1.2 million combinations of tokens. The final

lexicon contains over 4,000 unique fuzzy matches.

The multi-token fuzzy matching step significantly improves

the detection of medication names that span multiple tokens

and single token medication names that have been spelled with

an erroneous space. All variations seen in Table I are automati-

cally identified in the fuzzy matching step for example, except

for the acronyms (hct, pcm) which are identified in the human

review step.

As shown in Table II column C, omitting the fuzzy matching

step led to a 5.61% decrease in recall on the test set, in addition

to a large increase in work for the human reviewer as there

are now at least 4,000 more candidates to manually accept.

The Sarker and Gonzalez-Hernandez [11] misspelling gen-

eration method performs on par with our own. Combining our

method with theirs by taking the union of the misspellings

produced by each method results in a slightly higher final

recall of 0.974 (not reported in table II). However, since

additional parameters need to be tuned and a higher chance

of not reviewed false positives, we suggest using just one of

the methods. The main differences are that our method can

find misspellings which are too rare to be embedded close to

its correct spelling and misspellings spanning multiple tokens,

while their method can afford to choose a lower acceptance

threshold because it will only compare semantically similar

tokens.

C. Human in the Loop

Experiments in applying the algorithm in an unsupervised

manner, without reviewer, resulted in exponential loss of

accuracy on even the most conservative parameter thresholds.

This is mainly due to the large number and variety of common

words such as “Unknown” or “None administered” which

occur in highly confident medication contexts, and can not be

filtered out without time-intensive rule-based methods tailored

to the dataset or large amounts of annotated training data (see

also Section VI).

The human-in-the-loop approach ensured that all ambiguous

entries were marked as such and all false positives were

rejected, resulting in a precision of 100%. Cases such as those

mentioned above are easily filtered out. Candidates that usually

6Results calculated in the standard way as described in section V-A

cause inter-annotator disagreement, as described in Section

III-E, can be accepted or rejected at the reviewer’s discretion.

Using the GUI, it took a reviewer without domain knowl-

edge 5 minutes to review 200 candidates, with most time

spent looking up if a candidate really is a medication name.

A domain expert could likely review close to as fast as they

can read. Without optimization one run of the algorithm takes

a couple of minutes on our data set, which could easily be

improved since all actions are highly parallelizable.

The certainty score (cf. Section IV-E) does a good job at

ensuring most candidates are actually medication as to not

waste the reviewer’s time, while the sorting on occurrence

counts ensures that the candidates that would lead to the most

new contexts are reviewed first. Table III shows the amount of

candidates that have been reviewed and the resulting test F1-

score. We stopped after 1000 candidates in review 2 since there

weren’t many matches after that. The table shows the F1-score

if we would have continued until the end of the candidate list,

assuming none of the matches would have resulted in false

positives. That last part was done simply by checking which

remaining false negatives from the test set were present in the

unexplored part of the candidate list.

TABLE III
AMOUNT OF ENTRIES REVIEWED VS TEST F1-SCORE.

Stage Candidates Reviewed Test F1-score
End review 1 250 0.960
Review 2 250 0.973
Review 2 500 0.979
Review 2 750 0.981
End review 2 1000 0.984
Check for remaining FNs 2000 0.985
Check for remaining FNs 4000 0.988
End of candidate list 7614 0.989

D. False Negatives

The remaining false negatives usually fall in one of 3

categories (in addition to a unique context):

• Highly variable spellings of a combination of 2 or more

medications. (e.g. bupikenacort or kena/bupi, bupivacaine

and kenacort are both in the final lexicon)

• Short tokens with 1 edit distance spelling mistakes which

would introduce a large amount of false positives if the

fuzzy matching threshold is set low enough to catch them.

(e.g. volufen instead of voluven)

649

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on September 30,2022 at 09:18:56 UTC from IEEE Xplore.  Restrictions apply. 



• Relatively new and/or rare treatments. (e.g. bacterio-

phages)

VI. COMPARISON WITH CODEN ET AL.

We initially intended to implement Coden et al. [2] for a

numeric comparison, as their method is closely related to ours,

but some complications arose that hinder a fair comparison.

Our data contains many different instances of common

words in high confidence medication contexts, such as “medi-

cation: continue.” or “patient was given advice.”. Because in all

other instances the context does surround a valid medication,

even the most strict parameters won’t filter such a context

out. As such, a completely unsupervised approach will become

exponentially worse as more common false positives are added

to the lexicon and used to find new contexts after each

iteration.

Similarly, the lack of handling ambiguous medication will

result in a final lexicon that contains every substance that could

be found in a blood test, which adds 10+ false positives to

every report containing such test results.

The lack of fuzzy matching also means that a lot of

medication will be missed, as shown in Table II.

These complications are mainly a result of the unstructured

nature of our dataset, making comparison to our results unfair

as their method was not developed for such data.

VII. CONCLUSIONS

We propose a robust method for extracting a medication

history from a patient’s health records. Central to the approach

is to obtain a high quality lexicon of medication names

and their alternative forms from a large corpus of health

records. The method is efficient, language-agnostic, and works

accurately on highly unstructured data with ambiguous entries.

The human-in-the-loop approach ensures that the final lexicon

is of high quality and complies with the user’s opinions

as opposed to be subject to disagreements with annotations

from an external source. The investment of human attention

is limited: about 5 min for reviewing 200 candidates for

a non-informed reviewer; less for a domain expert. In our

experiments, we reviewed 1250 candidates, which brought

the recall of the extracted medication names up to 96.8% on

the test set. Thanks to the human involvement, precision was

maintained at 100%.

Future work could include applying and evaluating the

method on other tasks such as extracting other factual infor-

mation such as co-morbidity, or using the output annotations

to train a weakly supervised model.
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