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Abstract—Can we expose the relationship between the physical
dynamics of a network and its predictability? To contribute to this
point, we propose a dimensionality reduction method for network
states prediction based on spatiotemporal data. The method is
intended to deal with large scale networks, where only a subset
of critical links can be relevant for accurate multidimensional
prediction (MIMO) performances. The algorithm is based on
Latent Dirichlet Allocation (LDA) to highlight relevant topics in
terms of networks dynamics. The feature selection trick relies
on the assumption that the most representative links of the most
dominant topics are critical links for short term prediction. The
method is fully implemented to an original application field:
short term road traffic prediction on large scale urban networks
based on GPS data. Results highlight significant reductions in
dimensionality and execution time, a global improvement of
prediction performances as well as a better resilience to non
recurrent traffic flow conditions.

Index Terms—feature selection, network, spatiotemporal dy-
namic, traffic, Multi-Input Multi-Output prediction

I. INTRODUCTION

A. A general issue

We study short term state prediction, the task of predicting
the picture of a network at time t + h, based on historical
data. The directed network is composed of P links, each
link being characterized by a state at time t. For many
large scale networks such as energy, transport, or internet,
a current challenge relies on the ability to scale up pre-
diction performances based on complex spatiotemporal data.
It is reached thanks to Multi-Input Multi-Output (MIMO)
supervised regressions from K-NN [1] to NN [2] and M-
SVR [3]. The main challenge of these approaches lies in
the high-dimensionnality and dynamic of the system. From a
supervised learning standpoint, this implies to either propose
a dynamic compact representations of the individuals or
to dynamically reduce inputs dimensions [4], [5] , coping
with relevance and redundancy [6]. This common objective is
shared by many application fields [7] with various methods
[8] and the interest in the ML community is still strong due
to increasing dimensionality [9], constrained budget [10] or
even security [11] constraints. A second challenge lies in the

resilience to non recurrent network conditions such as traffic
congestion. Hence, the research issue can be summarized as
the selection of the best subset of critical links (inputs of the
system) in spatiotemporal networks with following properties:

• Best trade-off between dimensionality reduction and gen-
eralization performances,

• Resilience to recurrent or non recurrent congested phases,
• Understanding of the relationship between dynamics of

the physical system and network’s preditability.
We formulated the problem as a feature selection process
where the P links at time t are the initial variables of the
network. The introduced algorithm (see Figure 1) is based on
the 4 following assumptions and steps operating off-line:

1) The link criticality is related to its physical dynamic, i.e.
the trend a link has to propagate or catalyze its traffic
states to its parents or children, with some time lags to
be estimated. Hence, each link is characterized, at any
time step, by a state configuration that includes itself
and its closer spatiotemporal neighbors : its immediate
parents (downstream) and children (upstream).

2) Used as a non-supervised process, a Latent Dirichlet
Allocation is performed to highlight time-independent
underlying state configuration topics and to dynami-
cally sort links (input) for any state configuration topic.

3) The most contributive links to the most efficient topic
cluster (in terms of traffic prediction) are assumed to be
the most critical links. As the contribution of links to
topics vary with time and network dynamics, the set of
critical links vary accordingly.

4) The optimal number of critical links is selected in
terms of trade-off between global prediction error and
dimensionality reduction. The prediction method is con-
sidered as a black box. The critical links are assumed
to be independent of the prediction method and make
sense for any other application.

The study proposes 2 independent contributions:
• classification of the network links according to some

underlying traffic dynamic features and identification of



Fig. 1: Comprehensive process applied to a link l.

the critical cluster thanks to a Multi-Input Multi-Output
(MIMO) forecasting method;

• proposition of a subset feature selection process based
on a ranking indicator oriented by the critical category,
as one potential application.

A constant effort has been made in this study to maintain the
relationship between physical approach and statistical aspects,
what deep learning methods do not explicitly allow. It aims to
provide a better understanding of their networks to managers.

B. A domain-specific application

Although the proposed methodology is designed to be gen-
eralized to various kinds of dynamic networks, we assume that
the definition of criticality strongly depends on the application.
As a matter of fact, the direction of the information through
the network is application-dependent. We design and apply our
methodology to short-term road traffic prediction, assuming
flow conservation at the nodes of the oriented network. In this
context, traffic states are represented by mean speeds (based
on GPS [?]) on road links during a given time period.

Traditionally, forecasting objectives are achieved through
univariate time series prediction based on various techniques,
from statistical models (ARIMA family [12]) to the non
parametric regressive approach with artficial neural networks (
[2], [13]), support vector or random forest regression ( [14]).
Vlahogianni et al. [15] provide a wide overview of state of
the art. They highlight that urban road traffic networks are
a representative example of current challenges in short term
prediction in large scale networks. The urban networks are
characterized by high variability over time, making prediction
challenging for multiple time horizons [16]. They are also
highly sensitive to non recurrent events (congestion, accidents,
road works), as shown in [17]. Finally, the spatio-temporal
structure is of paramount importance for coming up with
the best possible prediction method ( [18], [19]). Indeed the
immediate upstream and downstream neighbors of a link may
impact its current traffic state and such contribution may vary
in the time.

The usual approach to captur spatio-temporal structure lies
on the identification of spatial or temporal autocorrelation
between one link and its neighboorhood [20], but are applied to

non-MIMO approaches. The applied strategies can broadly be
separated into 2 categories: The spatial analysis aiming to fix
the optimal neighboorhood of the link to consider ( [21]) and
the temporal analysis targetting the correlation weight within a
specific and predefined neighboorhood of a specific link [22].
None are able to captur both [23].

Motivated by a clear need for high-scale performance,
Multi-Input Multi-Output (MIMO)) approaches have recently
emerged ( [1], [24]–[26]). In contrary to local methods,
which predict links states individually ( [19], [27]), MIMO
approaches predict pictures of the network, each individual
(row) being a snapshot of the network at time t with potentially
short memory (t − 1, etc). Originally its main benefit lies in
the opportunity to preserve the full spatio-temporal structure
between the network links, hence to make a more accurate
prediction [1], [24] with a shorter computation time and to
leave the selection issue to the forecasting method. Never-
theless some noisy or unsignificant variables may alter the
forecasting performance by hidding the latent spatio-temporal
structure [2]. A MIMO prediction approach will be used in
this paper and the goal is then to perform a dimensionality
reduction by selecting the optimal subset of critical links in
order to ensure fast, accurate and physically understandable
traffic prediction.

This paper is organized as follows. In section II, the
prediction problem is defined as well as the design of dynamic
state configurations (step 1 in Figure 1). In section III, the LDA
process is used to highlight some time-independent underlying
structur among state configuration distributions (step 2). The
algorithm for feature selection (step 3) is then applied. It
enables a selection of an optimal subset of critical links for
on-line prediction purpose (step 4). Experiments are carried
out in section IV.

II. PROBLEM SETUP AND ASSUMPTIONS

A. The prediction problem
The network is composed of P links. Let Xt,l be the state of

a link l at time t, ∀t ∈ [1, T ]. The state vector is a snapshot of
the network states (e.g. speed) at time t, i.e. the simultaneous
values on the P links, written

Xt =
(
Xt,1, ..., Xt,P

)T
.

The learning algorithm makes a prediction about the global
network state given a time horizon h,

X̂t+h = g(Xt,1, ..., Xt,P
)T
.

Depending on the targeted states, the inferred function g
can be either a classification or a regression function [28].
Various strategies exist for the learner g and the goal of this
paper is not to propose a new prediction method. It will be
rather considered as a black box. The only prerequisite is to
use a MIMO prediction method, e.g. Multi-Output K-NN. To
deal with the curse of dimensionality affecting these MIMO
approaches, it is assumed that only the information sheltered
by a subset of critical links is relevant to ensure both accurate
prediction and smaller execution time. The main issue tackled
in this paper is the selection of n critical links that will



ensure an optimal trade-off between global prediction error
and computation time. In order to identify what is behind the
concept of criticality, we start by focusing the analysis on the
links as components of the network.

Fig. 2: Application to road traffic state configuration : flow
and speed (congestion) directions.

B. From current link state to local configuration

In an oriented network, we consider that the current state
of a link l is only dependent on (i) the inbounding throughput
of its children (upstream) and on (ii) the outbounding capacity
of its parents (downstream), what affects the flow speed
by upstreaming. Hence, our assumption is that critical links
result from a specific configuration, i.e. relationships with its
direct neighborhood, or distribution over configurations. We
introduce the concept of local state configuration δl(t) for
a link l at time step t as an encoding of a set composed of:
the current state of a link l, written Xt,l, and the state of
its immediate parents and children with appropriate time lag.
Parents and children share with the current link a node of the
oriented network. We base our process on the cross-correlation
to expose this specific relationship between a link, its parents
and its children. To depict the signal (speed) propagation
(Figure 2), we assume that link Xt,l is impacted by its parent
f (f ∈ [1, F ], where F is the number of parents for a link
l) with a (negative) time lag τf and a contribution wf . The
link l impacts its children s (s ∈ [1, S] with S the number of
children) with a (positive) time lag τs and a significance ws.
In order to estimate the two components τ and w we define

Xl ?Xt−τ,f =

∫
XlX

∗
t−τ,fdt.

as the cross-correlation between the state vectors of link l and
parent f with a (negative) time lag τ , and, respectively,

Xl ?Xt+τ,s =

∫
XlX

∗
t+τ,sdt.

as the cross-correlation between the state vectors of links l
and child s with a (positive) time lag τ . Then,

∀f ∈ [1, F ],{
τf = arg maxτ (Xl ?Xt+τ,f ),

wf =
|Xl?Xt+τf ,f |∑F
i=1|Xl?Xf,t+τi |

.

(1)

and

∀s ∈ [1, S],{
τs = arg maxτ (Xl ?Xt+τ,s),

ws =
|Xl?Xt+τf ,s|∑S
i=1|Xl?Xt+τi,s|

.

(2)

In this study, a stationarity assumption is made for the time
lags τ (positive or negative), and the contribution weights w.
In order to retrieve comparable configurations for any link, a
further assumption is made by grouping together the parents
(resp. children). This assumption is non-binding, because
only the comprehensive impact of its parents (resp. children)
matters for the current link (only the constraint matters, not
the origin of the constraint). It enables to define the variable
δl = (δParents, δLink, δChildren) which is related to the
weighted variations of links states according to previously
defined time lags: δParents(t) =

∑F
f=1(wf × (Xt−τf ,f −Xt−τf−1,f )),

δLink(t) = (Xt,l −Xt−1,l),

δChildren(t) =
∑S
s=1(ws × (Xt+τs,s −Xt+τs−1,s)).

(3)

The δl variable depicts the state (speed) variation between
time t and time t − 1, with an adjusted shift for parents and
children of link l. The goal is to determine whether a link l has
been impacted by a variation coming from its parents or/and
whether the link l has propagated this variation to its children.
Then, coding a local configuration consists in discretizing
in order to interprete the δl values according to the real
world application (see Figure 3). For sake of simplicity (and
power of interpretation), we encode δl into binary variables
∆l(t) =

(
∆Parents(t),∆Link(t),∆Children(t)

)
that take on

0 or 1 according to the sign of δl ones. Assuming that the
propagation of a degradation is of interest (i.e. a decrease in
the state value), then ∆Parents(t) = 1 if δParents(t) < 0, 0 otherwise,

∆Link(t) = 1 if δLink(t) < 0, 0 otherwise,
∆Children(t) = 1 if δChildren(t) < 0, 0 otherwise.

(4)

A local configuration at time t, Ct,l, is then fully defined
by the triplet ∆l(t) =

(
∆Parents(t),∆Link(t),∆Children(t)

)
.

Let c(c ∈ [1, Nc]) be one configuration. As illustrated by Fig-
ure 3 for this simplified case, eight (Nc = 23) potential local
configurations result from this triplet discretization process.

C. Adaptation to the case of road traffic prediction

The method is applied to road traffic prediction involving
physics concepts illustrated by figure 2. As a signal, a through-
put of vehicles travels from upstream to downstream link, from
children to parents. As a reflected signal, congestion appears
when the demand is higher than the offer. Congestion, featured
by speed, propagates upstream, from parents to children. In
this study, links are valued by mean speeds and a degradation
of the state (congestion) is related to a negative variation of
speed.



Fig. 3: Local configurations for a link l.

D. The comprehensive methodology

The comprehensive 4-steps methodology is exposed in
Figure 1. It illustrates the off-line process applied to a training
dataset used to define the criticality and to associate to any
timeperiod the appropriate subset of links, i.e. inputs of
the prediction. It is assumed that the iteration of a specific
underlying (but unknown) link configuration, called critical,
(step 1-2) during a timeperiod involves the necessity to keep
the link to perform prediction. The critical link configuration
(step 2) is supposed to be highlighted (step 3) by comparing
the prediction performances of various link configurations. For
a specific link configuration, the selection of links is operated
by ranking the links in terms of iteration during the timepe-
riod. The link confguration associated to the best prediction
performance with the less of inputs (links) is assumed as the
critical configuration. Finally the on-line stage is implemented,
the link selection is operated according to the timeperiod on
a new dataset and its performance is assessed.

One could assume that one of the 8 configurations (see
section II-B) matches with the expected critical configuration
and leverage it to discreminate the links used as input of the
prediction process. Skipping the section III, this assumption is
evaluated in section IV through the M3 method. It is pointed
out that isolated configurations does not perform accurately
and further investigations is of interest, what is exposed in
section III and in algorithm 1.

III. A LDA-BASED ALGORITHM FOR FEATURE
SELECTION: MINING CRITICAL LINKS

In this section, the comprehensive algorithm 1 is exposed
and then each step are described. In step 0, a further refinement
of the link configuration is introduced by featuring any link l
by its distribution Φtp,l over the Nc configurations during a
time window TP (see function ConfigFrequencyInTP). Here,
the full time period T of the training set is split into TP dis-
jointed homogeneous time-periods (e.g. days periods). Then,
the LDA makes use of the local configurations distributions
Φtp,l to highlight a set of K candidates configuration to

the criticality (latent topics) (step 1). Any latent topic is a
leverage candidate to discriminate the links and is assessed
according to the prediction performance (step 2). The most
representative links of the best topic (in terms of prediction
error) are considered as critical links (step 2 and 3).

Algorithm 1 LDA based Feature Selection Process

INPUTS: training dataset X (size T×P ,) new dataset newX
(size T × P ), N∆ {number of discrete categories}, Nc =
N3

∆, K
PRESET FUNCTIONS: CrossCorrelation {eq 1}, Triplet-
Builder {eq 3}, Discretizer {eq 4}, IdxConfig, ConfigFre-
quencyInTP {assess iteration of configurations for time-
period tp}, LDA, DescendingSort, AssessTimePeriod, As-
sessPerf, MIMO, ElbowMethod
STEP 0: Configuration encoding {see section II}

for l = 1 to P do
τ [l], w[l] = CrossCorrelation(X, DistMat, l);
δl = TripletBuilder(X, DistMat, l, τ [l], w[l]);
∆l = Discretizer( δl, N∆) ; C[., l] = IdxConfig( ∆l);
{C is a matrix of size T × P}
for tp = 1 to TP do

Φ(tp, l, 1 : Nc) = ConfigFrequencyInTP(C, tp, Nc);
end for
{Φ is a tensor of size TP × P ×Nc}

end for
STEP 1: Latent Topics determination {see section III-A}

Λ, π = LDA( K, Φ);
{Λ (size K ×Nc) & π (size (P × TP ×K)}
STEP 2: Topic selection {see section III-B}
{Build ranking indicator}
for k = 1 to K do

for tp = 1 to TP do
SortedLinks(1 : P , tp, k) = DescendingSort (π(1 : P ,
tp, k), [1 : P ]);

end for
end for
{Apply ’Best First’ strategy}
for nbinput = 1 to P do

for t = 1 to T do
tp = AssessTimePeriod(t);
input = newX(t, SortedLinks(1 : nbinput, tp, k) );
Prediction (t, nbinput, k) = MIMO(input);

end for
MAPE(k, nbinput) = AssessPerf( Prediction);

end for
k̂, ṅ = find( min( MAPE))

STEP 3: Optimal number of variables selection {see
section III-C}

n̂ = ElbowMethod( MAPE(k̂, .))

A. Step 1: Determination of latent topics (LDA)

A Latent Dirichlet Allocation (LDA) process has been
applied to all Φtp,l, i.e. probability distributions of all links
over the Nc = 8 configurations during all homogeneous time



periods tp, tp ∈ [1, TP ]. As a generative probabilistic model,
the LDA provides two specific outputs (Λ, π) allowing to
characterize and build topics over the configurations. These
topics are representative of the networks dynamics in terms
of local behaviors. Probabilistic Topic Models such as LDA
[29] have been already applied to other issues: from mo-
bile phone data [30], to Bicycle Sharing Systems (BSS) in
the transportation domain [31]. The main principle of topic
models such as LDA is that each link l contributes, during
a specific time period tp, to the network mechanism given
its associated behavior Φtp,l. The LDA aims to highlight the
latent pattern within a corpus of links behaviors leading to
a better understanding of the relationship between link and
network dynamics. In contrary to the previous application in
the transportation domain [31], the applied process returns
to LDA basics with a slight variation: words configurations
replace words and the document is assumed to be a bag of
words configurations. The analogy between the original LDA
and this application context is described as follows:

• Corpus of documents: set of Φtp,l, ∀tp ∈ [1, TP ],∀l ∈
[1, P ],

• Document (bag of words): Φtp,l, distribution over the
possible configurations for the link l during the time
period tp,

• Word: local configuration c ∈ [1, Nc], based on the triplet
∆l(t) =

(
∆Parents(t),∆Link(t),∆Children(t)

)
.

Using this analogy, the generative process shall be rewritten
in the following form. First, the K latent nominal distributions
or topics are drawn using a Dirichlet distribution over the set
of configurations:

Λ(k) ∼ D(β), ∀k ∈ {1, . . . ,K}. (5)

The optimal number of K is determined using a perplexity
measure [32]. Then, each bag of local configurations Φtp,l in
the set of bags {1, . . . , P × TP} is supposed to be generated
according to the following two-step process.

1) Draw the proportions of the topics in the bag:

π(tp,l) ∼ D(α).

2) For each configuration of the bag (tp, l)
a) Draw its topic k:

k ∼M(1, π(tp,l)).

b) Draw a configuration c using topic k:

c ∼M(1,Λ(k)).

The probabilistic model describing this generative process
is still the classic LDA model. Main outputs from LDA are the
Λ(k) and the π(tp,l) which can be interpreted in the context
of link behavior analysis as follows:

• Λk,c ≡ P
(
c | k

)
: Discrete distribution over configura-

tions. They can be interpreted as typical distributions over
the configurations, i.e. as nominal behaviors for links.
Λ(k) enables the interpretation of topic k.

• π(l,tp) ≡ P
(
k | l and tp

)
: Contribution of link l during

time period tp to build latent topic k.

B. Step 2: Topic selection

For any topic k and time-period tp, a ranking indicator
SortedLinkstp,k (see DescendingSort) is built: links l are
sorted by descending π(l,tp)(k). Indeed, the higher π(l,tp)(k)
is, the higher the link l contributes to topic k during time-
period tp. Then, for any topic and appropriate time-period,
the links ranking is used to select the nbinput first features
(links) to use as inputs of a MIMO algorithm (black box),
where nbinput is ranging from 1 to P . The prediction error
is assessed by computing the average MAPE and is used
as a performance proof to discriminate ranking indicators
SortedLinkstp,k (see AssessPerf).

MAPEk,n = meanl∈[1,P ](
1

T

T∑
t=1

| X̂t+h,l −Xt+h,l
Xt+h,l

| × 100)

Then, the topic minimizing the prediction error with the
smaller nbinput is considered as the optimal topic k̂.

C. Step 3: Optimal number of variable selection

The performance target of this feature selection process
consists in finding a trade-off between the minimization of
the global error and the reduction of the number of input
variables. The Elbow method (see ElbowMethod) applied to
the performance MAPEk̂ of the critical topic enables the
identification of the optimal number n̂ of variables. The Elbow
method is a visual process assuming that the optimal value is
defined by a visible curve inflexion (Elbow effect).

IV. EXPERIMENTS ON REAL DATA

A. Traffic data

The algorithm is applied to real GPS data collected at a
city-wide scale (Nantes, France) during 3 months (T = 4368,
from September to November 2013) on a urban road network
composed of 1286 links. A link state Xt,l represents the mean
speed of all GPS-equipped vehicles that have been recorded
on the link l during the last 30 minutes-long time step. The
learner g, assumed as a black box, is a multi-dimensionnal
K-NN regression algorithm [1]. The dataset is divided into
a training subset composed of September and October for
LDA topic determination (offline) and a validation subset
(November) for performance assessment. Some periods of
November experimented unusual traffic conditions (incidents).
It has been labelled with ”unusual conditions” and compared
to other periods labelled with ”usual conditions”.

B. Results of the feature selection algorithm applied to traffic
data

Considering a binary encoding of the triplet ∆l(t) (see
section II) 8 local traffic configurations are obtained. Ac-
cording to traffic experts, the time is split into TP = 4
disjoint homogeneous time periods: morning peak period,
noon, evening peak period, night.

The step 1 of algorithm 1 consists in applying the LDA to
local traffic configurations (bags of Φtp,l). It leads to K = 4
topics, as depicted by Figure 4. Each of these topics comes



0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8

Configuration

P
o

s
te

ri
o

r 
P

ro
b

a
b
ili

ty

Topics

1

2

3

4

0.6

0.6

Fig. 4: Distribution of configurations, featuring Λ(k) for each
of the 4 topics.

with a links ranking indicator, SortedLinkstp,k, built from
the links contributions to the topic k.

The step 2 consists in the performance comparison of the
emerging topics to identify the critical one as shown on figure
5 and summarized by table I for various prediction horizons.
Results are exposed for both recurrent and non recurrent
conditions. For sake of simplicity, results are displayed for
a network subspace composed of (P = 177) links.
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Fig. 5: Performance of the K = 4 topic-based ranking accord-
ing to nbinput with prediction horizon h. a) Under recurrent
conditions (h=30’). b) Under non recurrent conditions (h=30’).
c) Under recurrent conditions (h=90’). d) Under non recurrent
conditions (h=90’).

The best topic under non recurrent congestion is the 2nd one
(green) for most of prediction horizon. This topic is mainly

generated by configurations 1 (0,0,0) and 5 (0, 0, 1) as seen on
Figure 4. It means that critical links are mainly representing
2 trends: one minor trend with free flow traffic and one major
trend degrading traffic states on its children. It supports our
hypothesis concerning the relationship between link criticality
and prediction performance.

The only case where topic 2 is surpassed by topic 4 is for
the shortest prediction horizon (H = 30min) with perfect
traffic conditions. Such modification of the criticality with
the prediction horizon makes sense as the topic 4 is relevant
with very short-term dynamics of the network horizons : it is
influenced by 3 configurations: 2nd (1, 0, 0), 7th (0, 1, 1) &
8th (1, 1, 1), which express the trend of the link to propagate
to its children.
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Fig. 6: Identification of the 44 critical links (colored in cyan)
according to time period tp and topic 2 of the method LDA8.
a) During the night. b) During morning peak period. c) During
evening peak period. d) Nantes network.

The step 3 consists in the determination for any time period
of the optimal n̂ critical links and is based on the elbow
method. Optimal n̂ are summarized according to the selected
topic k̂ by prediction horizon in table I. As expected, optimal
topics and hence critical links may also vary with time periods
tp, as illustrated by figure 6. The execution time is significantly



Horizon
prediction

H = 30
mn

H = 60
mn

H = 90
mn

H =
120
mn

H =
150
mn

H =
180
mn

k̂
4
(recur-
rent)

2 2 2 2 2

2 (non
recur-
rent)

n̂ 48 30 35 35 32 31
% of time

reduction
0.44 0.37 0.34 0.32 0.33 0.34

TABLE I: Time improvement provided by the algorithm.

reduced.

C. Alternative ranking methods

Basically, the method is likely to be sensitive to the ranking
strategy and to the type of network. In order to assess this
sensitivity, the method proposed above, noted LDA8, will
be compared to other ranking strategies and tested on Multi-
output KNN (as reference method):

Method M1: Criticality is linked to the centered-reduced
speed of the link. For each time-period, the median speed is
assessed and used as ranking indicator:

πM1
tp,l = mediantp(Xt,l),

∀l ∈ [1, P ],∀tp ∈ [1, TP ]. The critical links are ranked by
increasing speeds values (i.e most critical = lowest speed).

Method M1Bis: Criticality is defined by the centered-
reduced speed deviation, i.e. ∀l ∈ [1, P ], δl(t) = Xt,l−Xt−1,l.
For each time-period, the median speed deviation is assessed
and used as ranking indicator:

πM1Bis
tp (l) = mediantp(|δl(t)|),

∀l ∈ [1, P ],∀tp ∈ [1, TP ]. Critical links have the highest
speed variations.

Method M2: Criticality is linked to the probability of neg-
ative speed deviation. For each time-period tp, the probability
of negative speed deviation is assessed and used as ranking
indicator:

πM2
tp (l) = freqtp ∆Link(t),

∀l ∈ [1, P ],∀tp ∈ [1, TP ]. Critical links have the most
congested traffic states.

Method M3: Instead of testing LDA topics, this method
assumed that any of the 8 configurations (∀c ∈ [1, Nc]) could
be critical, its criticality being defined by πM3

tp,l,c = Φtp,l(c),
the probability for link l during time-period tp to be in
configuration c. The 5th configuration, which contributes the
more to the best topic in method LDA8, has been selected
as a challenging method. Nevertheless the analysis of all
configurations is computationaly expensive.

Method LDA64: This method assumes that the discretiza-
tion of the traffic states (Discretizer) resulting in ∆l is no
more binary, but refined in 4 bins: δ > 0, 5, 0 < δ ≤ 0, 5,
−0.5 < δ ≤ 0 or δ < −0.5. 64 (= 43) configurations results
from this refinement and 7 potential configuration topics are

highlighted by application of the LDA classification. The 6th

topic is suitable for featuring the criticality.
Method MLasso: Criticality is assessed through a LASSO

method generalized to multidimensionnal outputs [33]. The
ranking indicator is built from the contribution of link l to
explain the model variance for time-period tp: πMLasso

tp (l) =
mean(Lassotp(l)).
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Fig. 7: Prediction performance according to nbinput with an
horizon h a) under recurrent conditions (h=30’). b) under non-
recurrent conditions (h=30’). c) under recurrent conditions
(h=90’). d) under non-recurrent conditions (h=90’).

D. Comparison of performance and resilience to recurrent &
non recurrent conditions

Previous ranking indicators are used to select their n ”First
Best” links as input variables of the prediction process and
the prediction performance is assessed with MAPE in re-
current and non-recurrent conditions. According to figure 7,
the proposed method LDA8 outperforms the others under the
majority of traffic conditions and prediction horizons, espe-
cially when horizon gets higher. Even if some expert methods
may reach equivalent performance under usual conditions, the
difference becomes more significant under unusual congested
traffic.The resilience of the LDA based methods to non-
recurrent congestion is clearly highlighted. Furthermore, the
previously observed hesitation between 2 topics (section IV-B)
may explain the performance of LDA8 at the shorter horizon
under usual conditions. Moreover, we can see the interest of
refining the bins as the method LDA64 outperforms LDA8
under non recurrent conditions.

V. DISCUSSION

A feature selection process based on variables ranking and
fitted for network-wide multidimensional prediction (MIMO)



has been introduced. In this specific case of multidimensional
forecast, input variables are link states and the exposed strat-
egy aims to rank these links according to their criticality.
The method can be applied to any type of transport network.
Moreover, the paper makes three contributions:

1) bringing out a definition of critical links highighted
by statistical concepts (LDA, but) based on physic
assumption specifying that critical links impact networks
mechanisms by catalyzing or propagating critical events,
such as congestion;

2) introducing an innovative process based on LDA to
generate ranking indicators for feature selection;

3) applying the method to a real-world application, road
traffic prediction, using innovative data collection (GPS).

This work opens future research directions. The robustness
of the process could be improved through

• an assessment of the sensitivity to other MIMO algo-
rithms (Multi-SVR, ...) with shorter time-step (< 30
minutes) or

• an adaptation to real-time estimation of critical section,
instead of operating by preset time-periods.

Furthermore, the definition of local configurations could be
improved by substituting to the off-line cross-correlation
some non-stationary statistical alternatives (mutual informa-
tion, graphical LASSO [27]).
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paris. ACM Transactions on Intelligent Systems and Technology (TIST),
5(3):39, 2014.

[32] Peter F Brown, Vincent J Della Pietra, Robert L Mercer, Stephen A Della
Pietra, and Jennifer C Lai. An estimate of an upper bound for the entropy
of english. Computational Linguistics, 18(1):31–40, 1992.

[33] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse
covariance estimation with the graphical lasso. Biostatistics, 9(3):432–
441, 2008.


