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Abstract—Building a shopping product collection has been
primarily a human job. With the manual efforts of craftsman-
ship, experts collect related but diverse products with common
shopping intent that are effective when displayed together, e.g.,
backpacks, laptop bags, and messenger bags for freshman bag
gifts. Automatically constructing a collection requires an ML
system to learn a complex relationship between the customer’s
intent and the product’s attributes. However, there have been
challenging points, such as 1) long and complicated intent
sentences, 2) rich and diverse product attributes, and 3) a
huge semantic gap between them, making the problem difficult.
In this paper, we use a pretrained language model (PLM)
that leverages textual attributes of web-scale products to make
intent-based product collections. Specifically, we train a BERT
with triplet loss by setting an intent sentence to an anchor
and corresponding products to positive examples. Also, we
improve the performance of the model by search-based neg-
ative sampling and category-wise positive pair augmentation.
Our model significantly outperforms the search-based baseline
model for intent-based product matching in offline evaluations.
Furthermore, online experimental results on our e-commerce
platform show that the PLM-based method can construct
collections of products with increased CTR, CVR, and order-
diversity compared to expert-crafted collections.

Keywords-Product Collections; E-Commerce; Pretrained
Language Models;

I. INTRODUCTION

Current e-commerce platforms heavily rely on search
engines or recommender systems to display their products
to customers. However, there have been limitations of such
tools. Customers do not precisely know which keywords
they have to provide with search engines in advance. Rec-
ommender systems only provide multiple products that are
just top-k results of computation between user features and
product features without explicit consideration of customer’s
intention [1]–[5]. Thus, unless the customer makes many
iterative searches or browsing, their intention may not be
satisfied. As a solution, e-commerce platforms regularly
display intent-based shopping product collections on their
websites to provide convenient shopping experiences to
users. The assortment of products with a common theme
can reduce the burden of iterative search or browsing by
combining coherent but diverse products to fulfill customer’s
intentions at once. Although there has been rapid progress in

the recommender system domain, making product collection
has still been a human task. The quality of outcome is more
prone to errors than that of a search engine or recommender
system. In other words, it is not yet an alternative solution
to overcome the limitations of a current search engine or
recommender system because both volumes and diversity
of current product collections mostly retained in human
scale. Technically, there are three challenging problems to
build a product collection automatically. 1) understanding of
long and complicated intent sentences. 2) handling rich and
diverse attributes of products combined in a collection. 3)
closing a vast semantic gap between the customer’s intention
and the product’s attributes. Fig. 1 shows an example of
constructing a collection. Typically, a single intent sentence
contains multiple intents (e.g., functionality, utility, or style)
as well as a product has rich and diverse textual attributes
(e.g., ‘daily simple’, ‘H&M’, ‘basic’, or ‘Uniqlo’) making
the matching task complex.

In this paper, we build an intent-based product collec-
tion by using a pretrained language model. BERT [6] has
powerful language understanding capability by pretrained
knowledge and Self-Attention [7] to handle long sentences.
Specifically, we adopt Sentence-BERT (SBERT) [8] to fine-
tune its parameters for matching textual attributes of prod-
ucts and corresponding intent sentences with triplet loss. We
set a concatenation of the title, section name, and date of
a product collection as a query and up to eleven textual
attributes of products in the collections as positive examples.
We use term-based search using the query for gathering
hard negative examples. Also, we augment positive pairs
by modifying a query to contain category name.

Offline experimental results on five in-house datasets show
that our negative sampling and data augmentation techniques
improve recall and precision by a large margin. Compare
to the baseline search-based model, our model significantly
improves the intent-based matching performance. When
performing online evaluations in our service, the product
collections from the model increase the CTR, CVR, order-
diversity by 16%, 29%, 60%, respectively, comparing to the
product collections made by human experts. We additionally
present an ablation study by different sizes of the SBERT
model. Examples of intents and matched products using our
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Examples of Term-based or Semantic Product Search

A cool, pretty summer skirts no matter who wears it

A-line skirts

Female skirts

SPA brand skirts

Name: Pleated Skirt Banding Summer Chiffon A-line Pastel 
Fine Wrinkles Daily Simple Pleated Long Skirt
Category: Female Clothes, Skirts
Price: $35
Tags: #lovely cody, #outing clothes, #feminine
Brand: H&M

Name: Mini skirt high waist A-line summer skirt basic 
daily split span a-line
Category: Female Clothes, Skirts
Price: $21
Tags: #20s daily look, #picnic look, #bright colors
Brand: Uniqlo

Example of Intent-based Product Collections

Search Queries 
about Products

Name: Pleated Skirt Banding Summer Chiffon A-line Pastel 
Fine Wrinkles Daily Simple Pleated Long Skirt
Category: Female Clothes, Skirts
Price: $35
Tags: #lovely cody, #outing clothes, #feminine
Brand: H&M

Product Collection Title about Intents
Name: Mini skirt high waist A-line summer skirt basic daily 
split span a-line
Category: Female Clothes, Skirts
Price: $21
Tags: #20s daily look, #picnic look, #bright colors
Brand: Uniqlo

functionality intent utility intent

category informationstyle intent

❗Understanding Short and Simple Queries
❗Understanding Only Local Info. in Product Attributes
❗Filling Shallow Semantic Gap between Intent - Products

✅Understanding Long and Complicated Intents
✅Understanding Rich/Diverse Info. in Product Attributes
✅Closing Vast Semantic Gap between Intent - Product

Figure 1: An example of constructing an intent-based product collection for e-commerce.

model and an example of exposed product collection on our
service are displayed in Appendix B and C, respectively.

II. RELATED WORK

A. Intent-based Product Collections

Knowledge graphs are used to identifying products having
similar attributes [9]–[11]. [12] built a huge knowledge
graph whose node types are items, e-commerce concepts,
primitive concepts, and taxonomy. And for a given specific
concept, they collect products that are connected with the
concept. Motivated by existing bag-of-words approaches
[13], [14], Angelov [15] proposed Top2Vec, a representation
learning for topic modeling. However, since their models
treat an intent as one object, e.g. a node or a topic, their
representation power of intents is limited.

B. Metric Learning for Product Retrieval

Metric learning learns and measures the similarity of
data instances, where a relevant representation of sentences
can directly benefit performance [16]. Many representation
learning techniques are used for metric learning such as
Bilinear model [17], CNNs [18], [19], RNNs [20], and others
[21]–[27]. In application to product search, Nigam et al. [28]
introduced a shared embedding model for semantic product
search. They focus on search queries, such as categories and
names, that are typically short thus their approach also has a
limitation for understanding and relating long, complicated
intents to rich product attributes.

C. Pretrained Language Models for Product Understanding

BERT has been applied for general semantic relevances
task [29] and web search [30] for its powerful language
understanding capability compared with conventional lexical
matching [31]. For e-commerce tasks, BERT has been
applied to product specification understanding [32] and
user behavior prediction using session log-based product
representations [33]. Reimers et al. [8] presented Sentence-
BERT (SBERT) for similarity learning using siamese or
triplet BERT architecture.

We choose SBERT for our task, because SBERT could
understand arbitrary intents and rich product attributes end
to end without manual effort of building ontologies. Even
if metric learning for BERT has been used for product
matching [34], applying SBERT to textual attributes of
large, manually crafted collections to facilitate intent-based
product retrieval is not intensively studied to the best of our
knowledge.

III. METHOD

A. Task Description

When shopping products are visible at a glance, it is
easy to compare and choose the product for specific themes
or purposes. For this reason, many e-commerce platforms,
such as Amazon, Shopify, and Zalando, collect the products
under certain themes or purposes and expose them to their
main page. Because of its importance, this work is usually
done by human experts. Human experts figure out various
shopping intents of users and make product collections
that users can satisfy. However, they spend too much time
and have a lot of difficulties choosing the proper products
across diverse themes and purposes of shopping. This is
the motivation of our work. We have a sentence, which
includes users’ shopping intent, as an input and then output
the collection of products with a common intent. Fig. 1
emphasizes the advantage of intent-based product retrieval.
Formally speaking, we have a set of products Pfull and a
shopping intent I , then our task is to match a subset of
products Psub from Pfull with I .

Psub = Matching(Pfull, I) (1)

B. Metric Learning with Product Collections Data

We adopted SBERT for implementing Matching func-
tion in Eq. (1). We reconstruct existing product collection
data created by human operators for metric learning with
triplet loss [35].



Title: A cool, pretty summer outfit no matter who wears it
Section: Bright and pretty pastel tone skirts June 15 ~ July 29

BERT

BERT

BERT

Pooling

Pooling

Pooling

Triplet 
Loss

A cool, pretty summer outfit 
no matter who wears 

it[SEP]Bright and pretty 
pastel tone skirts[SEP]June 

15

query:
{title}[SEP]{section}[SEP]{date}

Pleated Skirt Banding 
Summer Chiffon A-line 

Pastel Fine Wrinkles Daily 
Simple Pleated Long 

Skirt[SEP]Female Clothes, 
Skirts[SEP]$35[SEP]#lovely 
cody, #outing clothes, 

#feminine[SEP]H&M

positive:
{title}[SEP]{category}[SEP]{price}[SEP]
{tags}[SEP]{brand}[SEP]{description}

negative:
{title}[SEP]{category}[SEP]{price}[SEP]
{tags}[SEP]{brand}[SEP]{description}

Random sampling or term-based search for negative retrieval

Napping&Keep warm Skirt 
A-Line Basic[SEP]Female 

Clothes, 
Skirts[SEP]$28[SEP]#20s 
daily look, #picnic look, 
#late autumn[SEP]Uniqlo

Shared Weights

Shared Weights

Name: Napping&Keep warm Skirt A-Line Basic
Category: Female Clothes, Skirts
Price: $28
Tags: #20s daily look, #picnic look, #late autumn
Brand: Uniqlo

Name: Pleated Skirt Banding Summer Chiffon 
A-line Pastel Fine Wrinkles Daily Simple 
Pleated Long Skirt
Category: Female Clothes, Skirts
Price: $35
Tags: #lovely cody, #outing clothes, #feminine
Brand: H&M

Name: Mini skirt high waist A-line summer 
skirt basic daily split span a-line
Category: Female Clothes, Skirts
Price: $21
Tags: #20s daily look, #picnic look, #bright 
colors
Brand: Uniqlo

Existing Product Collection Triplet Data Instance Model

Figure 2: Illustration of data instances and model architecture used for intent-based product retrieval.

1) Training Objectives and Loss Functions: The training
objective is to create representation for a given intent query
and positive products to have high similarity while keeping
low similarity between the query and negative product. On
the right side of Fig. 2 shows neural network architecture
corresponds to anchor, positive, and negative examples.

Existing product collections consist of triplet anchor
(query), and positive products as in the left side of Fig. 2.
For negative products, we sampled randomly or retrieved
from the term-based search results.

For a given query Q, a positive product P and a negative
product N , let eQ, eP , and eN be an embedding vector of Q,
P , and N , respectively, after applying BERT and pooling.
For triplet loss for metric learning, we use Euclidean norm
and triplet margin to 1 followed by [8]. The formula is
described as follows:

Loss(Q,P,N) = ReLU(‖eQ−eP ‖−‖eQ−eN‖+Margin)

C. Constructing BERT Input of Intents and Products

A single product collection is decomposed to 50∼100
triplet positive pairs for training.

1) Intent Query: The intent query is composed of a
title, section name (name of products group in the product
collection), and start date of the product collection. For
example, title of product collection in Fig. 2 ‘A cool, pretty
summer outfit no matter who wears it’ is an intent that
describes the functionality, utility, or style. Products inside

that product collection have high conformance for that intent.
The section name ‘Bright and pretty pastel tone skirts’ of
the product collection involves both an intent and product
category (i.e. skirts). If category information exists in the
section name, product collection needs to be composed of
products from that category. The product collection’s start
date of exposure on the e-commerce platform is also used as
part of a query. This information indicates seasonality. For
example, ‘June 15’ is added to the query for the model to
possibly learn representations for relevant products of early
summer (e.g. skirts with light color). The elements of the
query are concatenated with [SEP] token.

2) Positive and Negative Products: The product is repre-
sented as a sentence containing up to eleven textual product
attributes such as title, categories, price, tags, or brand con-
catenated with [SEP] token. The positive product is derived
from the existing product collection with corresponding
intent query. The negative product is randomly sampled or
retrieved with BM25 term-based search [31] by the query
text. The purpose of the BM25 term-based search is to gather
hard negatives effectively [36].

D. Joint Learning with Category-Wise Data Augmentation

1) Overlapped Intents across Categories: Products in
intent-based collections usually share the same or similar
product category. For instance, Fig. 1 shows the intent of
‘A cool, pretty summer skirts no matter who wears it’. This



summer outfit[SEP]pants      -     P3 pants

summer outfit[SEP]skirts      -     P1 skirts
summer outfit[SEP]skirts      -     P2 skirts
summer outfit[SEP]skirts      -     P5 skirts

summer outfit[SEP]pastel tone skirts - P1 skirts
summer outfit[SEP]pastel tone skirts - P2 skirts
summer outfit[SEP]pastel tone skirts - P3 pants
summer outfit[SEP]pastel tone skirts - P4 shirts
summer outfit[SEP]pastel tone skirts - P4 skirts

Title: summer outfit
Section: pastel tone skirts

P1 skirts (category)
P2 skirts
P3 pants
P4 shirts
P5 skirts

Title: summer outfit
Section: skirts

P1 skirts
P2 skirts
P5 skirts

Title: summer outfit
Section: pants

P3 pants

Title: summer outfit
Section: shirts

P4 shirts

Original Anchor and Positive

summer outfit[SEP]shirts     -     P4 shirts

Original Product Collection

Augmented Product Collections by Product Category

Category-aware Anchor and Positive - skirts

Category-aware Anchor and Positive - pants

Category-aware Anchor and Positive - shirts

Figure 3: Example of category-wise data augmentation.

intent contains category information ‘skirts’. Since we are
training with many existing product collections datasets,
there will be product collections entitled ‘A cool, pretty
summer pants no matter who wears it’, or ‘A cool, pretty
summer shirts no matter who wears it’. Therefore, the model
has a chance to match the wrong products (pants and shirts)
along with skirts since their pure intent sentences are similar.

In addition, experts also include different category prod-
ucts at the mid or later part of product collections for
complementary products displays (e.g. displaying skirts and
pants together). However, our training data do not consider
the significance of the relative order of products in a col-
lection. Thus, queries may have wrong category information
to the portion of products in a collection (e.g. skirts query
mapped to pants products). A model trained with this
data can potentially result in categorically wrong product
retrieval.

2) Category-Wise Data Augmentation: To alleviate the
categorical correctness issue, we perform simple data aug-
mentation as visualized in Fig. 3. 1) Randomly select a spe-
cific ratio of product collections from all product collections
in the training data. 2) Transform a single product collection
that has multiple product categories into multiple product
collections with a single product category. 3) Replace a sec-
tion name in the query of transformed product collections by
common category name of products. This simple augmen-
tation forces model to more aware category information in
the query, and it significantly improves categorical precision,
compared to the tradeoff made in the recall. The detailed
experimental result will be discussed in Section IV.

Table I: Statistics of product collections for training data.

Data Counts

Collections 88,371

Sections in Collections 139,794

Products in Collections 8,790,251

Avg. Product per Collection 99.46
Avg. Product per Section 62.88

Total Product Categories 1,154

E. Model and Learning

1) Models: Pretrained language model BERT is used
for making product representations for various e-commerce
tasks [32]–[34], and it plays a baseline model for the modern
intent understanding of natural languages in the dialog
systems domain [37], [38]. Furthermore, BERT is plausible
for joint learning [37], which is helpful for the training
model with augmented data aiming for both intent-based
retrieval as well as categorically correct retrieval. For these
reasons, we adopt BERT as a base module for understanding
products and intents.

For full model, we adopt SBERT [8], a siamese and
triplet network version of the BERT, to project intent and
product representation in the same vector space. We used
custom pretrained BERT weight (110M, 12L, 768 output
dim.) for SBERT. We used the Wordpiece tokenizer [39]
for both pretraining and fine-tuning the BERT model to
understand intent and product attributes with semantically
relevant subwords.

2) Architectural Analysis for Intent-based Product Re-
trieval: BERT recognizes [SEP] token to separate different
attribute types of a product. After the model ingests the
triplet dataset, Self-Attention [7] captures a latent representa-
tion of query (eQ) and text information of product (eP ). Self-
Attention helps to make relevant representations for long
and complicated intent queries. It also helps to make rel-
evant representations for arbitrary length product attributes
by handling long-range dependencies. Layer normalization
[40] in Self-Attention alleviates potential length difference
between query and product where the concatenated product
attributes are usually a few times longer than an intent query.
We used the default MEAN-strategy pooling in SBERT to
create output representation. For production, we perform a
cosine similarity search on top of eQ and precomputed eP .

IV. EXPERIMENTS

A. Training and Evaluation

1) Training Data: We extracted product collections for
the fashion category published from in 2.5 years period. The
statistics of extracted product collections is stated in Table I.
Due to the operation policy of our platforms, information
of some old products are not available. Thus, only currently



Table II: Dataset configuration and statistics of models.

Model Negative Sampling Cat.-Wise
Data Aug.

Products for
Positive Pairs

Products for
Negative Pairs

Total Triplet
Data InstancesProduct Cat. BM25

PReasy0 25 0 0%

968,202

968,202 73,752,535
PRhard0 10 15 0% 6,477,564 62,307,766
PRhard15 10 15 15% 6,363,214 67,266,919
PRhard40 10 15 40% 6,060,951 78,870,990
PRhard55 10 15 55% 5,976,943 87,502,182

Table III: The number of products
belonging to each category in the
evaluation data.

Category Product Counts

Underw. 148,118
Bags 212,531
Accs. 476,229
Goods 225,799
Shoes 326,109
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Figure 4: The numbers of positive products belong to the
top 100 most frequent categories.

accessible products (‘Products for Positive Pairs’ in Table II)
are used for training. The category distribution of products
is depicted in Fig. 4.

With the same query and positive products from product
collection data, we apply different negative sampling settings
and category-wise data augmentation ratios to make five
models. Table II depicts models with dataset configuration
and statistics. The model name represents the negative
sampling strategy and the ratio of category-wise data aug-
mentation. For a single positive product, we use two types
of negative samples. First, random sampling from the same
categories, and second, sampling by BM25 Search using the
query from product collections. We denote hard in the model
name when involves BM25-based negative samples and easy

for random sampling. We augment collections category-wise
at a specific ratio from all product collections. We denote
the augmentation percentage to the model name (e.g. 40).
The model names will connect evaluation results to the
corresponding dataset configuration.

B. Metric Analysis

1) Evaluation Data and Protocol: The evaluation pro-
cedure for product retrieval systems is usually divided into
two-phase: 1) indexing embeddings from evaluation prod-
ucts (ideally, same as online products) 2) making query
embedding and retrieve products from evaluation indices.
For queries, we used the same product collection data used
for training to make queries for evaluation. For products, we
used extract products with specific customer review counts

(in this case same or larger than 1) from online products.
In our e-commerce platform, the number of online products
in the major categories reaches tens of millions, it is not
feasible to perform the evaluation on top of entire online
products. Hence we used this filtering condition to make
a small product volume for evaluation while maintaining
extensive coverage of products across product collections.
We only used product collections contains five or more
evaluation products for recall evaluation. The statistics of
evaluation data are depicted in Table III.

2) Evaluation Metrics: In a single product collection
dataset, we evaluate how well trained SBERT model re-
trieves and restores original products by a given query (i.e.
recall to measure intent conformance of retrieval result). If
data is category-wise augmented, we perform an additional
evaluation for how well trained SBERT model retrieves
products with the same category mentioned in a given query
(i.e. precision to measure categorical correctness of retrieved
result). Formally speaking, For a set Pgt of evaluation prod-
ucts in the specific product collections, a recall is defined as
follows:

recall =
the number of retrieved products ∈ Pgt

the number of Pgt

For a set Cgt of products with ground truth category in query,
a precision is defined as follows:

precision =
the number of retrieved products ∈ Cgt

the total number of retrieved products

In measuring recall and precision, the number of re-
trievals performed for evaluations is different by the ratio of
category-wise augmentation of each model training (0∼55%
in this paper). However, we assume the relative difficulties
of retrieval tasks for all model training are mostly the same
because only queries used for training will be used for
evaluation.

We train the model up to 400,000 steps and the evaluation
interval is 20,000 steps. The training batch size is 55. We
used P40 GPU for most model training. We used Faiss [41]
for similarity search for evaluation.

3) BM25 Search Baseline: Table IV represents the recall
and precision performance of the baseline BM25 Search. For
query in BM25 Search model evaluation, we additionally



Table IV: Recall and precision evaluation results using BM25 Search.

Recall@100 - BM25 Search Precision@100 - BM25 Search
Underw. Bags Accs. Goods Shoes Avg. Underw. Bags Accs. Goods Shoes Avg.

0.0378 0.0341 0.0211 0.0403 0.0273 0.03212 0.5363 0.6172 0.7797 0.1662 0.7261 0.5651

Table V: Recall evaluation results of models at 400,000 training steps. The best score is bold and second best score is
underlined among models with hard negatives and category-wise data augmentation (PRhard15, PRhard40, PRhard55).

Model Recall@100 - SBERT 12L Recall@100 - SBERT 6L
Underw. Bags Accs. Goods Shoes Avg. Underw. Bags Accs. Goods Shoes Avg.

PReasy0 0.5141 0.4840 0.5122 0.5032 0.4156 0.4858 0.4733 0.4163 0.4920 0.4983 0.4044 0.4569
PRhard0 0.5830 0.4493 0.5776 0.5983 0.4433 0.5303 0.5505 0.4106 0.5440 0.5698 0.3786 0.4907

PRhard15 0.5847 0.4374 0.5724 0.5874 0.4331 0.5230 0.5859 0.4026 0.5535 0.5781 0.4088 0.5058
PRhard40 0.5816 0.3601 0.5564 0.5583 0.4192 0.4951 0.5851 0.3773 0.5340 0.5359 0.4151 0.4895
PRhard55 0.5659 0.3459 0.5215 0.5286 0.3930 0.4710 0.6169 0.3154 0.5227 0.5262 0.3914 0.4745

Table VI: Precision evaluation results of models at 400,000 training steps. The best score is bold and second best score is
underlined.

Model Precision@100 - SBERT 12L Precision@100 - SBERT 6L
Underw. Bags Accs. Goods Shoes Avg. Underw. Bags Accs. Goods Shoes Avg.

PRhard15 0.2877 0.6101 0.5334 0.1810 0.4928 0.4210 0.2861 0.6589 0.5382 0.1821 0.5506 0.4432
PRhard40 0.4711 0.6717 0.6288 0.1547 0.6832 0.5219 0.4529 0.6579 0.6695 0.1536 0.6698 0.5207
PRhard55 0.5305 0.6447 0.6929 0.1715 0.7625 0.5604 0.5073 0.6572 0.7060 0.1715 0.6831 0.5450

filter uninformative words in the title (e.g. ‘collection’)
since some of our product collections are entitled with the
word ‘collection’. We also exclude the date information for
the query, since many collections share the same date and
potentially lead to noise in retrieval results. We tokenize
query and product attributes by space. All other details on
evaluation are the same as SBERT models.

4) Metric Overview: Table V and Table VI show recall
and precision performance of SBERT models in various
product categories. The metrics of models at each training
interval are depicted in Appendix A. Since models require
optimal recall and precision performance for our task, we
marked the best score and second best score only among
PRhard15, PRhard40, PRhard55 models (i.e. models with
hard negative samples and category-wise data augmenta-
tion). We conduct experiments in SBERT 12L and 6L model,
here we focused on the performance of the 12L model, a
comparison between the 12L and 6L model will be discussed
in Section V.

5) Recall: Table V depicts recall performances. PRhard0

is the best by adopting hard negative sampling without
category-wise data augmentation, nearly 9.2% recall im-
provements for between PReasy0 and PRhard0. This means
hard negative sampling using the query of product collection
is effective for triplet metric learning. We expect these hard
negative examples not only considering product category but
also considering similar but undesirable product attributes
such as specific material or color differences. This helps the
model to learn rich and unique product representations of

the given intent query.
PRhard15 and PRhard40 are the second and third best

performances, respectively. This means category-wise data
augmentation degrades recall performance. Since category
information is more common compared to the intent sen-
tence in the dataset, adopting category information directly
to query (intent) embedding forces model to create more
general query representations. Recall depends on unique
representations of queries, thus general query representations
degrade recall performances.

The left side of Table IV depicts recall performance of
baseline BM25 Search. Since BM25 Search only considers
word-level matching, it fails to map long and complicated
queries to rich product attributes, and introduces very low
recall performance.

6) Precision: Table VI shows precision performance. We
observe the percentage of category-wise augmented data
correlated to precision performance PRhard55 > PRhard40

> PRhard15. The best model matches product from the cor-
rect category by 56% of product collections, nearly 33.2%
precision improvements between PRhard15 and PRhard55,
which means joint learning with category-wise positive pair
augmentations helps the model to consider category-based
precision along with intent matching.

The right side of Table IV depicts precision performance
of baseline BM25 Search. In many cases, category infor-
mation is explicitly stated in product attributes, thus word-
level matching can be enough to capture. The performance
of BM25 Search is similar to PRhard55, in other words,



pretrained language models successfully satisfy categorical
conditions while maintaining significantly improved recall
performance.

7) Optimal Fine-Tuned Model for Production: We choose
PRhard40 for our services because the precision score and
the recall score are balanced. Even if the recall of PRhard40

is 5.3% less than the one of PRhard15, the precision of
PRhard40 is 24% higher than the one of PRhard15. Com-
pare to BM25 Search, the precision of PRhard40 is slightly
lower. However, the recall of it is outperformed signifi-
cantly. Note that, in a service environment, we apply post-
processing for the more improved precision performance for
SBERT models.

V. ABLATION STUDY

Along with 12L (110M) model, we conduct an ablation
study with the 6L (68M) model to analyze how the number
of transformer layers and model capacity affects recall and
precision performance.

We choose the 12L model for our services by the reliable
recall and precision performance in both intent-based and
category-based product retrieval. For example, the 6L model
is better on the precision performance of PRhard15, but
the 12L model is better on recall performance on a similar
margin. This is meaningful since the increase in the recall is
generally harder than the increase in the precision in our task
in terms of retrieval search space. In addition, the 6L model
shows slightly better recall performance to the 12L model on
PRhard55, but precision performance under the 12L model,
which implies that adding more transformer layers is helpful
for precision performance. Furthermore, for PRhard40, both
recall and precision of the 12L model is higher than those
of the 6L model.

VI. ONLINE PERFORMANCE

In our service, we collect products under certain themes
and show them to customers. Currently, making the col-
lections of products is done by dozens of professional
human operators. They first think of the theme from their
own knowledge, and then repeatedly use lexical search to
gather related products. We apply our model to automatically
retrieve relevant products from a given theme query.

In this section, we compare the online performances of
manually created product collections and product collections
crafted using our model. For each product collection, we
compute CTR (Click Through Rate), CVR (Conversion
Rate), and the order-diversity. And then we compute the
relative score as follows:

relative score =
avg. score of collections using our model
avg. score of collections made by experts

Here, CTR is the number of product clicks over the number
of product collection views and CVR is the number of
product purchases over the number of product collection
views. The order-diversity, which can measure the diversity

Figure 5: Daily relative performance of our model. The x-
axis means the date in June 2021. The orange dash line
means the average relative CTR, CVR, and order-diversity.
Overall, comparing to the product collections made by
human operators, the product collections made by our model
increase the CTR, CVR, order-diversity by 16%, 29%, 60%,
respectively.

of purchased items, is the number of purchased products
over the number of products in the product collection. Thus,
we can say that if the order-diversity of a product collection
is large, then it contains a lot of quality products that are
good enough to be purchased among web-scale products.

Comparing to the product collections made by humans,
the product collections made by our model increase the
CTR, CVR, order-diversity by 16%, 29%, 60%, respectively,
in June 2021. The daily relative performance is illustrated
in Fig. 5. Using pretrained language models, it is possible
to learn the product features and collect related products
with a common intent well. For these reasons, our model
consistently outperforms human operators, who are prone to
make the product collection with their individual preferences



and interests.
Note that when we make a product collection, we first

retrieve a bunch of products and reorder them. Human
experts usually focus on popularity or the number of reviews.
In our model, we run a simple linear regression model with
similar features for reordering.

VII. CONCLUSION AND FUTURE WORK

In this paper, we create an intent-based product col-
lection using SBERT that well performs in offline and
online evaluation results to enable a better shopping ex-
perience for e-commerce platform users. We adopt SBERT
for triplet metric learning for creating intent-based product
collections by the deep understanding of intent and related
product attributes. We enhance the base model by hard
negative sampling for improved intent-based recall perfor-
mance and category-wise positive pair augmentation for
improved category-based precision performance. We analyze
effective training data construction options for fine-tuning,
and ablation study to identify optimal pretrained model
choices for production. Furthermore, we measure online
performance on CTR, CVR, order-diversity, and conclude
that our model can create better intent-based product col-
lections compare to human operators. Currently, we are
training and inferencing our model for most e-commerce
categories including digital, living, or food. In the future, we
will conduct more detailed experiments on other categories.
We will also explore approaches for more effective model
training and more personalized collections.
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APPENDIX A.
RECALL AND PRECISION METRICS
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APPENDIX B.
EXAMPLES OF INTENTS AND MATCHED PRODUCTS

Light and mesh shoes

Air cushion & 
lightweight fitness shoes

Mash and lightweight 
materials

Comfortable to wear
without laces

Socks 
sneakers

Dial sneakers lightweight 
and cool mesh

Title: Light running shoes that are comfortable to wear in summer
Section name: {same as title}
Date: Aug. 08

Key Product 
Summary for Intent

Intent

Key Product 
Summary for Intent

Title: Cool and light summer vacation dress
Section name: dress
Date: Aug. 08

Open shoulder dress dot pattern & loose fit

Wrinkles & loose fit Cool and light cotton, big 
size, loose fit

Cotton dress big size
Bright and neon colors 

Big size loose fit dating look

Key Product 
Summary for Intent

Intent

Key Product 
Summary for Intent

APPENDIX C.
EXAMPLE OF PRODUCT COLLECTION CREATED USING

OUR MODELS EXPOSED ON THE SERVICE.

The title is “kkuankku style men’s jogger pants” in English.
Here, ‘kkuankku’ is a Korean abbreviation that means ‘ef-
fortlessly chic’. Note that the title is generated by Korean
GPT-3 HyperCLOVA [42].
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