
Online Changepoint Detection on a Budget
Zhaohui Wang

Applied Research
Splunk

San Francisco, US
zhaohuiw@splunk.com

Xiao Lin
Applied Research

Splunk
San Francisco, US
xlin@splunk.com

Abhinav Mishra
Applied Research

Splunk
San Francisco, US

amishra@splunk.com

Ram Sriharsha
Applied Research

Splunk
San Francisco, US

rsriharsha@splunk.com

Abstract—Changepoints are abrupt variations in the underly-
ing distribution of data. Detecting changes in a data stream is an
important problem with many applications. In this paper, we are
interested in changepoint detection algorithm which operates in
an online setting in the sense that both its storage requirements
and worst-case computational complexity per observation are
independent of the number of previous observations. We propose
an online changepoint detection algorithm for both univariate
and multivariate data which compares favorably with offline
changepoint detection algorithms while also operating in a strictly
more constrained computational model. In addition, we present
a simple online hyperparameter auto tuning technique for these
algorithms.

Index Terms—changepoint, streaming, online, detection

I. INTRODUCTION

Today, unbounded data is streamed in unprecedented vol-
umes and varieties, in diverse domains such as application logs
and metrics monitoring, wearable devices, sensor devices, and
more. In many of these domains, the ability to analyze data
on the stream is valuable from an early detection and response
perspective, providing interesting challenges and opportunities
for algorithm designers [6], [8].

When analyzing data offline, it is reasonable to assume
the data was generated by a fixed process; for example, the
data is a sample from a static (albeit multimodal) distribu-
tion. However, on the stream, there is a temporal dimension,
and the generative parameters of a data stream can change.
The quantification and detection of changepoints is one of
the fundamental challenges in the streaming setting. Batch
machine learning techniques trained on previous datasets need
to undergo parameter update through retraining.

The field of changepoint detection has a long history (see [3]
for an overview). However, the vast majority of this growing
body of literature focused on the retrospective segmentation
problem (see [23] for an overview), where, after the entire
data stream is observed, the algorithm has to detect any
changepoints.

In the streaming model of computation, any changepoint
detection algorithm must consume the data in one pass and
is allowed to keep only a small (typically constant or poly-
logarithmic in n which is the number of data points) amount
of information.

The online model of computation does not allow us to
indefinitely postpone when to output a changepoint. In this
setting, a priori unknown number of points arrive one by

one in an arbitrary order. When a new point arrives the
algorithm must either flag this point as a changepoint or decide
whether the generative parameters of the data distribution
have sufficiently drifted for this point to be considered a
changepoint. The quality of such an algorithm depends on how
much data one needs to see to determine a distribution shift.
At the same time, subsequent delay in detecting changepoints
cause staleness in trained models. The faster a changepoint is
detected, the faster we can update a machine learning model.

In this paper, we consider the intersection of these two
models of computation. We designed online changepoint de-
tection algorithms on a budget which store constant amount
of information and are independent of the size of the stream.
We summarize the contributions as follows:

• Online changepoint detection algorithms that work on
unbounded data stream with a constant time and space
complexity.

• Along with univariate drift detection, multivariate case is
studied where covariance drift occurs.

• A simple hyperparameter auto tune approach is proposed
to quickly warm up the online algorithm.

II. RELATED WORK

The first (to our knowledge) result in online changepoint
detection dates back to Page [18], [19] and Lorden [17]. Here
it is assumed the parameters of the distribution are known and
one performs a sequential likelihood test to determine if the
current point represents a changepoint in the mean of these
parameters.

A generalization of this approach is to analyze the prob-
ability distributions of data before and after a candidate
changepoint, and identify the candidate as a changepoint if
the two distributions are significantly different [13], [22]. Such
approaches are in general sensitive to the choice of window
sizes, thresholds and of course the distance function that
measures the distance between the two distributions.

Deep learning and non-parametric approaches are intro-
duced into drift detection [8], [9], [24], which solve for non-
parametric drift detection of diverse drift characteristics. And
enable to rely on independence tests rather than parametric
models or the classification loss. However, deep learning based
approaches indicate higher requirements for computing power
and infrastructure.

ar
X

iv
:2

20
1.

03
71

0v
1

 [
cs

.L
G

]
 1

1
Ja

n
20

22

Recently, a Bayesian perspective on univariate online
changepoint detection was provided by Adams and McKay [2],
where the model parameters before and after the changepoint
are examined, and therefore the probability distribution of the
length of the current run is computed. This construction is not
a streaming algorithm, in the sense that the worst case storage
requirement can be O(n).

We will however present two straightforward modifications
of Adams and MacKay’s construction [2], that taken together
allows us to both detect multivariate changepoints online
as well as satisfy the storage requirements of a streaming
algorithm by maintaining a fixed storage independent of n.
We will also show how the hyperparameters of the algorithm
can be auto-tuned.

III. METHODOLOGY

We study the Bayesian online changepoint detection algo-
rithm of [2] and its storage bounds. This will suggest natural
extensions to the streaming as well as multivariate settings.

A. Notation and Preliminaries

We assume a stream of observations x1, x2, ..., xT may
be divided into non overlapping partitions, or changepoints.
Within each partition ρ, the data points are drawn i.i.d.
from some underlining probability distribution P (xi|ηρ). The
parameters ηρ are taken to be i.i.d as well. However, between
each partition, the underlining data distributions can be dif-
ferent. We denote the contiguous set of observations between
time a and b inclusive as xa:b and the time since the last
changepoint as rt, the run length. We also use the notation xrt
for the set of observations associated with rt.

Figure 1 illustrates the relationship between run lengths and
parameters of univariate data.

B. Bayesian Online Changepoint Detection

Following [2], the idea is to estimate the posterior distribu-
tion over the current run length rt given data points we have
seen so far.

The posterior distribution of the current run length
P (rt|x1:t) is computed as:

P (rt|x1:t) =
P (rt,x1:t)

P (x1:t)
(1)

We write the joint distribution over the run length and the
observed data in the form:

P (rt,x1:t) =
∑
rt−1

P (rt, rt−1,x1:t)

=
∑
rt−1

P (rt, xt|rt−1,x1:t−1)P (rt−1,x1:t−1)

=
∑
rt−1

P (rt|rt−1)P (xt|rt−1,x
r
t)P (rt−1,x1:t−1)

(2)
By integrating over the posterior distribution on the current

run length, we obtain the marginal predictive distribution.

P (xt+1|x1:t) =
∑
rt

P (xt+1|rt,xrt)P (rt|x1:t) (3)

(a)

(b)

Fig. 1. An example for a sequence of data samples (a) and corresponding
run length 5, 5 and 3 (b).

The current run length at time t only has two possible
outcomes at the next time point t+ 1.

rt+1 =

{
0 if xt is a changepoint
rt + 1 otherwise

(4)

This suggests a computationally efficient conditional prior
on the changepoint in terms of the hazard function.

P (rt|rt−1) =

H(rt−1 + 1) if rt = 0

1−H(rt−1 + 1) if rt = rt−1 + 1

0 otherwise
(5)

A special case, well suited to streaming applications, is
where the conditional prior is memory-less, leading to a
constant hazard function H(τ) = 1/λ.

While the algorithm of [2] is online, it requires us to store
all run length probability estimates up to the current data
point in order to estimate P (rt,x1:t). Therefore, its space
and time complexity for each new data point is O(n). A
trivial modification, suggested in [2] is to simply discard the
run length probability estimates in the tail of the distribution
which have a total mass less than some threshold. While this
improves the average case complexity per new data point, it
can still lead to a worst-case complexity of O(n).

C. Bounding the Storage

A natural extension is to maintain a fixed size buffer of size
L. We keep a record of the starting index of each run denoted

as [ir0 , ir1 , ..., irL]. When a data point xj arrives, the current
starting indices become [ir0 , ir1 , ..., irn , j] with length L+ 1.
By calculating the posterior run length probability at this point,
we evict the index of with lowest probability, say k. Then, the
starting indices become [ir0 , ir1 , ..., irk−1

, irk+1
, ..., irn] with

length L again.
In this fashion, we drop the run length starting at the index

with lowest posterior probability while keeping the memory
usage fixed. We now have a few options to distribute the
evicted probability mass. Empirically, we also found that the
simplest approach of dropping the probability mass and not
redistributing it works well on a variety of datasets.

D. Multivariate Changepoint Detection

For data streams originating from the normal distribution
(µ, τ), we propose non-informative conjugate prior normal-
gamma with parameters (µ, κ, α, β). In univariate case, we
obtain a closed form posterior Student T distribution. For each
xi, we update the parameters as follows:

α = α+ 0.5

β = β +
κ ∗ (xi − µ)2

2 ∗ (κ+ 1)

µ =
(κ ∗ µ+ xi)

κ+ 1
κ = κ+ 1

The most common approach in multivariate drift detection
is to detect drift on each individual univariate, which ignores
the non-stationary case when covariance drift happens. To
properly detect drift for all the non-stationary cases, we specify
a multivariate normal distribution and normal inverse Wishart
prior [25], and thus obtain a closed form posterior. However,
we observed that excessive false positives are detected. To im-
prove, and to conserve the same update rules as the univariate
case, and therefore ensuring the algorithm is robust to the
data dimension, we propose a posterior Student T distribution
where the parameters updates are similar to the univariate case.
For each xi,

α = α+ 0.5

β = β +
κ ∗ ((xi − µ) ∗ (xi − µ)T)

2 ∗ (κ+ 1)

µ =
(κ ∗ µ+ xi)

κ+ 1
κ = κ+ 1

With these update rules, we have two benefits. First, we take
multivariate covariance structure into the detection. Second,
we obtain the exact same update rule as univariate case without
any loss of generality.

E. Tuning Hyperparameters Online

Through testing on a variety of real world datasets, we
observed the algorithm of [2] is quite sensitive to initial
hyperparameter settings. The details of which are discussed
further in the experimentation section. For example., excess

false positives in particular may arise from the cold start of
the algorithm, where the hyperparameters fail to adapt to the
data distribution quickly.

To speed up the learning process and automatically adapt the
algorithm to incoming data in an online fashion, we propose an
auto hyperparameter tuning approach. Since we are inferring
the posterior Student T distribution of run length, we estimate
its mean µx and variance σ2

x with a sample of data observed
so far. Therefore we reduce two degrees of freedom for the
initial values of β and µ, we denote the initial value for β as
β0, and correspondingly for the other hyperparameters,

β0 =
α0 ∗ κ0 ∗ σ2

x

κ0 + 1

µ0 = µx

The initial values for both β and µ are estimated from the
data observed from the stream. In this way, we warm up the
algorithm quickly and efficiently, where hyperparameters are
auto adapted to the data observed instead of being hard-coded
to initial settings. For efficiency, we simply put the first several
data points in the buffer to estimate the hyperparameters, i.e.,
mean and variance of the first several data points are calculated
and used as estimated mean and variance for the posterior
distribution. We observe that the size of this buffer has little
effect on the warm up process, as long as a broad estimation
of the distribution parameters can be inferred.

IV. EXPERIMENTATION

In this section, we evaluate model performance of both
univariate and multivariate drift detection on both real world
and synthetic datasets. Furthermore, we compare the online
BCPD algorithm to state-of-the-art drift detection algorithms.
The test datasets consist of Martingale [10], global historical
temperature [1], Nile [7] and earthquake data from Northern
California Earthquake Catalog [26]. Aside from real world
data, we also generate datasets where changepoints are known.
We construct a stream of 1 million points and change the
normal distribution every 10,000 points, as well as another
dataset of the same size where we vary the distribution
between normal and uniform distributions.

The benchmark algorithms we tested are binary segmenta-
tion (BinSeg) [15], [21], PELT [14], segment neighbourhoods
(SegNeigh) [4], exchangeable with martingales (Exch. Martin-
gale) [10], Kolmogorov-Smirnov (KS) statistic with a window
size 20, as well as the original Bayesian changepoint detection
(BCPD) [2]. We also compare with online algorithms such as
AFF [5], FFF [5], CUSUM [18] and EWMA [20].

A. Metrics

Many metrics are used to measure changepoint detection
performance [3]. However, we find some metrics fail to take
false positive and false negative into consideration. To properly
compare accuracy of different algorithms, we design a mean
absolute error (MAE) with penalty as our metric. For any
actual changepoints actual = [γ1, γ2, ..., γj] and predicted

TABLE I
UNIVARIATE MODEL PERFORMANCE COMPARISON (MAE). RESULTS IN BOLD REPRESENT THE LOWEST MAE.

Algorithm Martingale Temp. Nile Earthquake normal normal and Uniform
Offline Algorithms

BinSeg 1,004 600 100 9,000 NA NA
PELT 5 3,044 107 5,978 102 NA

SegNeigh 5 NA 107 3256 NA NA
Exch. Martingale 851 67 100 55,000,000 NA NA

KS 185,811 131,200 304 456,009 2,853,287,032 2,763,991,675
Online Algorithms

EWMA 17 1,376 5 5,296 1,849,476 13,256
AFF 26 1,376 8 5,301 1,139,428 6986
FFF 141 0 163 5,972 6,831 10,791

BCPD 2,430 83 100 104,447 NA NA
Online Streaming Algorithms

CUSUM 38 688 5 5,296 35,561 21,903
Online BCPD 988 45 23 3,161 0 0

TABLE II
MULTIVARIATE MODEL PERFORMANCE COMPARISON (MAE)

Algorithm Mean change Variance change Covariance change Sentiment data Concept drift
R ECP 1 1 100 19 NA

KL Divergence 2 15 47 138 7,200
Offline BCPD 0 0 100 34 15
Online BCPD 0 0 34 12 0

changepoints predicted = [p1, p2, ..., pk] with a total number
of n data points, the MAE loss is defined as

loss =
∑
i

|γi − pi|+ penalty (6)

where the penalty for false negative or false positive is,

penalty =

{
(j − k)n if j ≥ k∑
k |pk| if j < k

(7)

The loss is calculated between the closest point pairs γi and pi.
In the case of false negatives, we penalize the number of data
points that are missed by the detector, which is the data length
n times the number of missed positives. While in the case of
false positive, we penalize the excessive detected points.

B. Univariate Performance

Univariate drift detection performance is shown in Table
I where NA values indicate the corresponding model cannot
run due to data scale being too large to handle. We break
down the table into 3 parts, offline, online and online streaming
algorithms. From 3 of the 7 datasets, our online streaming drift
detection algorithm presents the best MAE (Mean Absolute
Error).It worth to note KS outputs too many false positives. To
apply KS properly, we need to provide a reasonable window
size which is difficult in the online setting. Moreover, with
automatic hyperparameter tuning, we see online streaming
BCPD outperforms original BCPD.

More importantly, throughput comparison reported in Figure
2 demonstrate the much improved efficiency of our streaming
algorithm. The datasets are sorted from smallest to largest.
We observe the larger the dataset, the more processing speed
advantage streaming drift detection brings.

Fig. 2. Throughput comparison, the datasets are sorted from small size to
large size (from left: 100, 4000, 14998, 100000, 1000000, 1000000 records
correspondingly). Online algorithms present top throughput compared to
offline algorithms. Online BCPD demonstrates comparable throughput among
online algorithms.

We also emphasize our approach is robust to the length of
list budget. As in Figure 3, with a minimum of list length 10,
we can obtain stable model performance and score millions of
data online.

C. Multivariate Performance

Our online streaming multivariate drift detection algorithm
has two built-in properties. First, it preserves exactly the same
univariate drift detection result if taking variables one by one,
without any loss of generality. Second, it is able to properly
detect covariance/correlation drift. We benchmark multivari-
ate changepoint detection with non parametric multivariate
changepoint detection [11], [12] and KLL [16].

Fig. 3. Online BCPD performance is robust to the choice of budget size for
memory usage. MAE error is reported in log scale.

Fig. 4. An example of bi-variate normal samples with correlation 0.3 (left)
and 0 (right).

To test the algorithm, we simulate datasets with multivariate
normal distribution, where mean, variance and covariance
drifts are generated as follows:

For the mean case, we simulate 2 dimensional gaussian (µ
= [1, 0], σ = [1, 0, 0, 1]) and (µ = [10, 0], σ = [1, 0, 0, 1]).

For the variance drift, we simulate gaussian (µ = [1, 0], σ
= [1, 0, 0, 1]) and (µ = [1, 0], σ = [1, 0, 0, 10]).

For the covariance drift, gaussian (µ = [1, 0], σ = [1, 0, 0,
1]) and (µ = [1, 0], σ = [1, 0.3, 0.3, 1]) is simulated as in
Figure 4.

Additionally, synthetic concept drift data are generated (two
dimensional circular function before drift and eclipse function
after drift). Moreover, we test on real world WalBelSentiment
[27] dataset with sentiment changes.

As seen in Table II, our algorithm provides the same
accuracy as the offline version in detecting mean and variance
drift without any loss. However, the offline algorithm fails to
detect covariance change while our multivariate approach is
sensitive to it . On the real multivariate sentiment drift dataset,
the online streaming algorithm again outperforms competitors.

D. Hyperparameters Auto Tune

The most common problem of an online streaming algo-
rithm faces is the volume of data. We not only require a

Fig. 5. Online BCPD detected drifts with default hyperparameter (above)
and with hyperparameter auto tune (below). With default hyperparameter, we
observe 11 more false positives.

high throughput, but also the ability to adapt to the stream
quickly. We create a real-world dataset to conduct performance
tests. The data is compiled from an enterprise PAN firewall 16
days history log that contains more that 148 million events.
The compiled data events are ingested into Apache Flink
cluster to emulate an unbound streaming environment where
our algorithm can perform drift detection. The detection is
paralleled based on unique key of each source IP address of
firewall events. The data ingestion in emulation is keeping a
high throughput (more than 30,000 events per second) so that
ingestion will not become the bottleneck in this streaming
analysis setup. Through testing our algorithm on this real-
world dataset, we found the model is quite sensitive to
hyperparameter settings, shown in Figure 5, which represents
a single source IP’s network traffic and red crosses mark the
detected change points. The default hyperparameter we set
originally are: λ = 250, α = 0.1, β = 0.01, κ = 1 and µ = 0.
With this default setting, we observed too many false positives
when deploying online as shown in Table III. Therefore we
propose an online tuning approach to automatically tune the
hyperparameters based on the buffered observed data. As
shown in Figure 6, model performance is robust to the buffer
size.

E. Non Gaussian Distributions

Although gaussian distributed data stream is the most com-
mon use case, we may encounter non gaussian cases as well.

TABLE III
HYPERPARAMETER EFFECTS ON NUMBER OF CHANGEPOINT DETECTED

Data series Data length Numbers of detected CPs
Default hyperparameters Auto tuning

Bytes Received by Hour 360 15 3
Bytes Received by Minute 21,600 1,280 86
Bytes Received by Second 1,296,000 57,737 37,112

TABLE IV
MODEL PERFORMANCE COMPARISON WITH NON GAUSSIAN DISTRIBUTIONS (MAE)

Algorithm Poisson Gamma Lognormal Mixed Gaussian Lognormal with Normalization
Offline Algorithms

BinSeg 2 3 4,904 5,500 9,000
PELT 68,793 0 4,741 11,424 5,619

SegNeigh 3,000 3,504 4,877 4,500 2,500
Exch. Martingale 890 1,060 411 670 1,470

KS 87,7447 3,959 89,245 69,098 90,,663
Online Algorithms

EWMA 88 75 4,297 671 51
AFF 72 54 4,297 70 72
FFF 90 63 4,362 54 81

BCPD 0 0 4,690 0 0
Online Streaming Algorithms

CUSUM 187 176 4,128 279 125
Online Streaming BCPD 0 0 1,423 0 0

Fig. 6. Online BCPD performance is robust to the buffer size for hyperpa-
rameter auto tune. MAE error is reported in log scale.

In this section, we want to explore algorithm robustness to non
gaussian distributions. We simulate 10,000 data points with 10
known changepoints, including poisson (λ = 2.0 and λ = 10.0),
gamma ((shape = 2.0, scale = 2.0) and (shape = 10.0, scale =
10.0)), lognormal ((µ = 3.0, σ = 1.0) and (µ = 10.0, σ = 1.0))
and mixed gaussian (a mixture of ([5,1], [1, 1.3], [9, 1.3]) and
([50, 1], [5, 1.3], [9, 5])).

Table IV shows the online streaming model performance
remains stable for poisson, gamma and mixed gaussian dis-
tributions. Martingales provides the best accuracy for log-
normal. BCPD gaussian algorithm is robust to data stream
distributions, while a configurable distribution assumption is
desired. Otherwise, normalization on the stream can serve
as a preconditioner to the model. With normalization on the
lognormal data, we see gaussian BCPD regains accuracy.

F. A Comparison with CUSUM

In this section, we specifically compare performance with
online streaming CUSUM since it is also online and budget
friendly. Performance is presented in the previous section. We
point out that we tuned CUSUM with the best hyperparameters
so it performs the best on our benchmark datasets. For the
Martingale dataset, we know beforehand drifts happen each
1000 points. To obtain the best MAE, we manually set the
burn in to 1000. Note how performance varies with different
burn in as seen in Table V. However, tuning online is generally
difficult for an online streaming algorithm, making CUSUM
hard to configure.

Moreover, in real scenarios we are often facing extensive
outliers in the data stream. We compare both algorithms with
varies percentage of outliers inserted in the 1 million normally
distributed dataset, and the results are listed in Table VI. It
shows the online streaming BCPD algorithm significantly out-
perform against CUSUM method when outliers are presented.

V. CONCLUSIONS

We contribute online streaming Bayesian changepoint de-
tection algorithms that work on unbounded data stream with a
constant time and space complexity, for both univariate and
multivariate cases. The hyperparameter auto tune approach
serves as a conditioner for the online algorithm to quickly
warm up. The multivariate approach is able to successfully
detect covariance drift. More importantly, we have seen su-
perior throughput with previous approaches, while providing
comparable accuracy.

VI. FUTURE WORK

We demonstrate the online streaming algorithm is robust
to data distributions, but this can be further improved with

TABLE V
SENSITIVITY TO HYPERPARAMETERS ON MARTINGALE DATASET (MAE)

burn in = 5 burn in = 20 burn in = 100 burn in = 500 burn in = 1000
CUSUM 70,329 6,575 25,041 5,090 38

TABLE VI
SENSITIVITY TO OUTLIERS (MAE)

0.1 percent outliers 0.5 percent outliers 1 percent outliers 10 percent outliers
CUSUM 52 57 66 38

Online Streaming BCPD 0 0 0 0

normalization. Different data distribution assumptions and
associated update rules can also be further expanded on.

Our multivariate approach relies on constructing an n by n
matrix, which is expensive when dimension n of the feature
space is large. A more efficient way to shrink matrix dimension
in run probability calculation while preserving reasonable
accuracy and throughput is desired.

Finally, this online streaming approach serves as an initial
step for continual learning, especially for learning in the
presence of drift. A connection between run length probability
and optimizer learning rate would be an interesting topic to
further investigate.

REFERENCES

[1] Global historical climatology network. https://www.ncdc.noaa.gov/data-
access/land-based-station-data/land-based-datasets/global-historical-
climatology-network-ghcn, 2018.

[2] R. P. Adams and D. J. MacKay. Bayesian online changepoint detection.
arXiv preprint arXiv:0710.3742, 2007.

[3] S. Aminikhanghahi and D. J. Cook. A survey of methods for time series
change point detection. Knowledge and information systems, 51(2):339–
367, 2017.

[4] I. E. Auger and C. E. Lawrence. Algorithms for the optimal identification
of segment neighborhoods. Bulletin of mathematical biology, 51(1):39–
54, 1989.

[5] D. A. Bodenham and N. M. Adams. Continuous monitoring for
changepoints in data streams using adaptive estimation. Statistics and
Computing, 27(5):1257–1270, 2017.

[6] S. Disabato and M. Roveri. Tiny machine learning for concept drift.
arXiv preprint arXiv:2107.14759, 2021.

[7] J. Durbin and S. J. Koopman. Time Series Analysis by State Space
Methods. Oxford University Press, 2001.

[8] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia. A
survey on concept drift adaptation. ACM computing surveys (CSUR),
46(4):1–37, 2014.

[9] F. Hinder, A. Artelt, and B. Hammer. Towards non-parametric drift
detection via dynamic adapting window independence drift detection
(dawidd). In International Conference on Machine Learning, pages
4249–4259. PMLR, 2020.

[10] S.-S. Ho and H. Wechsler. Detecting changes in unlabeled data streams
using martingale. In IJCAI, pages 1912–1917, 2007.

[11] N. A. James and D. S. Matteson. ecp: An R package for nonparametric
multiple change point analysis of multivariate data. Journal of Statistical
Software, 62(7):1–25, 2014.

[12] N. A. James, W. Zhang, and D. S. Matteson. ecp: An R package for
nonparametric multiple change point analysis of multivariate data, 2019.
R package version 3.1.2.

[13] D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data streams.
In VLDB, volume 4, pages 180–191. Toronto, Canada, 2004.

[14] R. Killick, P. Fearnhead, and I. A. Eckley. Optimal detection of
changepoints with a linear computational cost. Journal of the American
Statistical Association, 107(500):1590–1598, 2012.

[15] R. Killick, K. Haynes, and I. A. Eckley. changepoint: An R package for
changepoint analysis, 2016. R package version 2.2.2.

[16] S. Kullback and R. A. Leibler. On information and sufficiency. The
annals of mathematical statistics, 22(1):79–86, 1951.

[17] G. Lorden. Procedures for reacting to a change in distribution. Ann.
Math. Statist., 42(6):1897–1908, 12 1971.

[18] E. S. Page. Continuous inspection schemes. Biometrika, 41(1-2):100–
115, 06 1954.

[19] E. S. Page. A test for a change in a parameter occurring at an unknown
point. Biometrika, 42(3-4):523–527, 12 1955.

[20] S. Roberts. Control chart tests based on geometric moving averages.
Technometrics, 42(1):97–101, 2000.

[21] A. J. Scott and M. Knott. A cluster analysis method for grouping means
in the analysis of variance. Biometrics, pages 507–512, 1974.

[22] A. Tartakovsky, B. Rozovskii, R. B. Blazek, and H. Kim. Detection of
intrusions in information systems by sequential change-point methods.
Statistical Methodology, 3:252–293, 2006.

[23] C. Truong, L. Oudre, and N. Vayatis. Selective review of offline change
point detection methods. Signal Processing, 167:107299, 2020.

[24] R. Uppal, S. Nagaraj, E. van Leer, and D. V. Anderson. Non-parametric
online changepoint detection algorithm. In 2021 IEEE Statistical Signal
Processing Workshop (SSP), pages 396–400, 2021.

[25] J. Wishart. The generalised product moment distribution in samples
from a normal multivariate population. Biometrika, pages 32–52, 1928.

[26] L. Xie, Y. Xie, and G. V. Moustakides. Asynchronous multi-sensor
change-point detection for seismic tremors. In 2019 IEEE International
Symposium on Information Theory (ISIT), pages 787–791. IEEE, 2019.

[27] Z. Zanussi. onlineCPD: Detect Changepoints in Multivariate Time
Series, 2016. R package version 1.0.

	I Introduction
	II Related Work
	III Methodology
	III-A Notation and Preliminaries
	III-B Bayesian Online Changepoint Detection
	III-C Bounding the Storage
	III-D Multivariate Changepoint Detection
	III-E Tuning Hyperparameters Online

	IV Experimentation
	IV-A Metrics
	IV-B Univariate Performance
	IV-C Multivariate Performance
	IV-D Hyperparameters Auto Tune
	IV-E Non Gaussian Distributions
	IV-F A Comparison with CUSUM

	V Conclusions
	VI Future Work
	References

