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Abstract—Artificial intelligence-based techniques applied to

the electricity consumption data generated from the smart grid
prove to be an effective solution in reducing Non Technical Loses
(NTLs), thereby ensures safety, reliability, and security of the
smart energy systems. However, imbalanced data, consecutive
missing values, large training times, and complex architectures
hinder the real time application of electricity theft detection
models. In this paper, we present EnsembleNTLDetect, a robust
and scalable electricity theft detection framework that employs
a set of efficient data pre-processing techniques and machine
learning models to accurately detect electricity theft by analysing
consumers’ electricity consumption patterns. This framework
utilises an enhanced Dynamic Time Warping Based Imputation
(eDTWRBI) algorithm to impute missing values in the time series
data and leverages the Near-miss undersampling technique to
generate balanced data.
Further, stacked autoencoder is introduced for dimensionality
reduction and to improve training efficiency. A Conditional
Generative Adversarial Network (CTGAN) is used to augment
the dataset to ensure robust training and a soft voting ensemble
classifier is designed to detect the consumers with aberrant con-
sumption patterns. Furthermore, experiments were conducted on
the real-time electricity consumption data provided by the State
Grid Corporation of China (SGCC) to validate the reliability
and efficiency of EnsembleNTLDetect over the state-of-the-art
electricity theft detection models in terms of various quality
metrics.

Index Terms—Smart grids, Electricity theft, Time series clas-
sification, Ensemble learning, Imbalanced data, Dimensionality
reduction.

I. INTRODUCTION

With the apparent increase in the global electricity de-
mand, setting up new generation plants is often a difficult
and tedious process due to several constraints enforced by
the pollution control and environmental conservation policies
[1]. The electricity loss during the generation, transmission,
and distribution of electricity in the power grid is a critical
challenge faced by the power utilities across the globe. Such
electricity losses can be classified as [2], [3]: (1) Technical
Losses (TLs): occurs during transmission. e.g., dissipation
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of power in resistors, transmission lines, transformers, etc.
and (2) Non-Technical Losses (NTLs): the clear difference
between the total loss and the TLs. e.g., meter tampering,
electricity theft, faulty meters, billing errors, and other ir-
regularities to evade payment to the utility company by the
consumers. Among these, NTLs affect the utilities’ revenue
and the nation’s economy with their drastic impact on the
quality of power supply, increased load on the power stations,
and high tariffs on genuine consumers. Developed countries
like U.S and U.K experience NTLs but are not as large as
developing countries in Asia, and Africa [4]]. In particular,
electricity theft, defined as the illegal use of electricity with
an intention to avoid billing charges, forms a major part of the
NTLs [5]]. Electricity theft is a complex research problem with
several influential parameters like socio-economic, regional,
infrastructure, corruption, managerial, etc. [6]. In general,
electricity theft occurs at (i) Consumers: energy tapping and
meter tampering, (ii) Utility: billing inaccuracies, and (iii)
Grid: bypass meters. The electricity theft at the grid and
consumer level results in serious implications for the utilities
since it affects their profit and economic wellness of the nation
through reduced investments in the power sector, high financial
loss (around $4.5-25 billion per YEAR), electrocution deaths,
and frequent power outages with overloaded generation units
[6]. Moreover, it is tough for the utilities to detect and
confirm electricity theft in domestic, commercial and industrial
establishments, rural areas and large cities through on-site
inspections, an inefficient and expensive manual process.
The advent of Advanced Metering Infrastructures (AMIs)
in smart grids accompanied with low-cost smart meters en-
ables two-way communication between the customer and the
utility provider for the accounted metering and billing process
through fine-grained electricity consumption data & periodic
information flow on energy supply and demand. Such advance-
ments accompanied by the massive electricity consumption
data have instigated the researchers and the utilities to apply
IoT, Big Data, and Artificial Intelligence techniques for the
design of efficient and intelligent electricity theft detection
mechanisms and accurate utility operations [[7]. The design of
a reliable and efficient electricity theft detection mechanism



aids the utilities to enforce legal actions on illegal consumers,
achieve expected profit and future investments in the power
sector for reliable & secure power services. In this way,
several machine learning and deep learning techniques have
been profoundly applied to energy research problems such
as energy trading, virtual power plant, energy consumption
monitoring and control, and electricity theft for the design
of future intelligent energy networks [8]]. The state-of-the-art
electricity theft detection approaches can be widely classified
into three, namely (i) State based detection approaches:
monitors the state of the grid and smart meters through
RFIDs and sensors; high cost of deployment and maintenance,
(ii)) Game theory-based detection approaches: provides a
low-cost solution through modelling a game between the
consumers and utility provider; determining utility functions
of the participants (consumers, distributors, regulators, etc.)
is complex, and (iii) Artificial intelligence-based detection
approaches: clustering and classification approaches proves
to be an cost-effective and reliable solution with the inherent
ability of massive electricity consumption data provided by
the tamper-proof smart meters to understand the consumer
electricity consumption profiles. Owing to the massive elec-
tricity consumption data and advanced artificial intelligence
approaches, the literature analysis of this paper is confined
to the artificial intelligence based electricity theft detection
models.

Support Vector Machine (SVM) is the most commonly
used technique for electricity theft detection to achieve a high
detection rate and fewer false alarms. Certain aspects of the
electricity consumption data such as historical consumption
data (location, seasonality, and category), load profile infor-
mation, identification of consumers with a high probability
of abnormal behaviour, and high dimensional data have been
explored well using SVMs [9]], Genetic algorithm-based SVM
[S]], fuzzy-based SVMs [10], and PCA based SVMs [11]. Elec-
tricity thieves have also been identified by analyzing their load
profiles at different hierarchies of the power grid (transmission,
distribution, and consumer) using hybrid SVM models such as
decision tree-based SVMs [12], decision trees-k-nearest neigh-
bour SVMs [[13]], Extreme learning machine (ELM), online se-
quential ELMs [14]], and even multi-class SVMs [15]. Studies
in [16], [[17] have carried out a detailed comparative analysis
of machine learning models to detect NTLs. Regression and
distance-based models like AutoRegressive Moving Average
(ARMA) [18], Nonlinear AutoRegressive with eXogenous
input (NARX) [19], linear regression [20]], k-means (KM)
clustering-based ANNs [16], fuzzy C-means clustering [10],
Extreme Gradient Boosting [21] and Optimum Path Forest
(OPF) [22] were employed to detect NTLs with the detection
accuracy between 77%-97%. The inherent ability of deep
learning architectures to handle real-time high dimensional
smart meter data and automated feature extraction capabilities
have led to the development of various single and hybrid
deep learning-based electricity theft detection models using
Convolutional Neural Networks (CNN) [23]], [24], Long Short
Term Memory (LSTM) [25], Self-organizing Map (SOM) and

Multilayer Perceptron Artificial Neural Network (MP-ANN)
[26], and Particle Swarm Optimization based Stacked Sparse
Denoising Auto Encoder (SSDAE) [27]]. Notable contributions
on electricity theft detection have used Kullback—Leibler di-
vergence [28], a combination of state estimation, multivariate
control charts and A* path search algorithm [29], applied self-
organizing maps [30]], and undersampling boosting algorithms
(31].

The challenges in the state-of-the-art electricity theft de-
tection models such as imbalanced nature of the data, con-
secutive missing values in the time series data, capturing
the seasonal trends while imputing missing values, complex
architectures, high training time needs to be taken care of for
the design of an efficient and robust electricity theft detection
model. This paper formulates the identified challenges as
following research questions: (i) How to handle large gaps,
i.e., consecutive missing values, in time series data with
high seasonal trends effectively? (ii) What is the impact of
undersampling techniques on generating a balanced electricity
consumption dataset without information loss? (iii) How to
handle the high dimensional electricity consumption data with
appropriate dimensionality reduction technique such that it
captures the relations present in the data without loss of
important information and low training time? Moreover, (iv)
How to leverage the power of generative models for building a
robust electricity theft detection model that can provide a high
detection rate and less false alarm rate, especially for unseen
data? The solution to the above research questions highlighted
as the significant contributions are:

o EnsembleNTLDetect, a robust and scalable framework
for detecting NTLs in smart grids through analysing con-
sumption patterns from the real-time energy consumption
data, is presented.

o The efficiency of enhanced Dynamic Time Warping based
Imputation (eDTWBI) is improved by introducing a
Search_Size parameter to reduce the search space of
eDTWBI and thereby provides an effective way to handle
the large missing gaps in the time series data.

o A customised stacked autoencoder is designed to handle
the high dimensional electricity consumption data. The
1,034 dimensions in the original dataset were reduced to
128 dimensions while retaining 99.87% of the original
data with reduced training time.

o Conditional GAN is fine-tuned to aid the robust training
of classifiers. During the training phase, the classifiers are
exposed to real and synthetic data so that the classifiers
can model different types of energy consumption values
accurately with high confidence scores.

« A soft voting ensemble classifier was designed to leverage
the combined efficiency of the bagging-boosting tech-
nique based on Random Forest and XGBoost algorithms
to achieve a high detection rate and low false alarm rate.

o EnsembleNTLDetect is validated using the real-time elec-
tricity consumption data obtained from State Grid Cor-
poration of China (SGCC) using various quality metrics.
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Fig. 1: Architecture of EnsembleNTLDetect

Energy Consumption (kWh)
5 g 3 ¥

Days

(a) Genuine consumer

Energy Consumption (kWh)
] g 3 y 3

Days

(b) Electricity thieve

Fig. 2: Electricity consumption patterns of genuine user and
electricity thieve

The paper is structured as follows: Section [MI] provides a
detailed insight into the architecture and workflow of En-
sembleNTLDetect. Section highlights the experimental
analysis carried out to demonstrate the performance of En-
sembleNTLDetect over the state-of-the-art electricity theft
detection models in terms of various quality metrics, and
Section concludes the paper with the scope for further
research.

II. METHODOLOGY

Figure [I] presents the overall architecture of the Ensem-
bleNTLDetect, the proposed electricity theft detection model.
The complete working methodology of EnsembleNTLDetect
with five stages, namely (i) data acquisition and preprocessing,
(ii) data sampling, (iii) learning model, (iv) model tuning and
training, and (v) evaluation, for efficient and reliable energy
theft detection, is detailed below.

With the scarcity of open-source electricity consumption
data, this study uses a real-time electricity consumption dataset
released by State Grid Corporation of China (SGCC) [32]. The
SGCC dataset comprises of daily electricity consumption of
42,372 consumers with 38,757 genuine consumers (class 0)
and 3615 electricity thieves (class I) recorded over a period
of 2 years (1st January 2014 to 31st October 2016). A closer
observation to Figure [2] states that the electricity consumption
pattern of electricity thieves is aberrant (with more spikes and
low) than the genuine consumers. In general, electricity con-
sumption data recorded from the smart meters is aggregated
and transferred over data channels to a central location for
storage and processing. However, as a result of sensor failures,
transmission errors, and server issues, the major challenges in
the application of the SGCC time series dataset for electricity
theft detection is three-fold (i) 11,233,528 missing values, (ii)
imbalanced data in the ratio of 10:1, and (iii) outliers.

A. Data Preprocessing

1) Missing value imputation: The SGCC dataset contains
about 11,233,528 missing values which approximates about
25% of the dataset. Ignoring such missing values might lead to
downsizing the dataset, which poses a significant challenge in
carrying out reliable analysis. Previous works [[11f], [23[]—[25]]
have used linear interpolation, mean of previous and following
day consumption’s, filling with mean or median of a complete
column, and dropping rows which have missing values beyond
a certain threshold. Such methods perform well for isolated
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Fig. 3: Variations in electricity consumption over different
seasons

data, i.e., one to three missing values but fail miserably for
realistic imputations in data with consecutive missing values,
correlations, seasonality trends and complex distribution.

RQ1: How to handle large gaps, i.e., consecutive missing

values, in time series data with high seasonal trends in an
effective way?
This work employs an enhanced version of Dynamic Time
Warping (DTW) based Imputation (eDTWBI) [33]], an algo-
rithm for the generation of optimal time series data, i.e., to
fill the large gaps (consecutive missing values) in the SGCC
dataset. eDTWBI uses DTW to find two reference window
that lies before and after the gap, which is also similar to the
considered large gap such that the distance between them is
minimal. The reference window is represented as grids for
quadratic time complexity. Owing to the large size of the
SGCC dataset, this work introduces Search_Size parameter
to reduce the search space. Further, the seasonality trends in
the dataset are taken care of by Search_Size to ensure that
the imputation for gaps in a particular season is bounded by
the similar sequences obtained from the same season. For
example, gaps in the summer season (Search_Size = 1) are
imputed using the similar sub-sequence obtained within the
year’s summer season (3 months). Figure [3] shows the season-
ality trend of the dataset for the year 2015. This significant
improvement in eDTWBI helps enhance the learning base,
prediction ability, data dynamics and reduces the temporal con-
straints between the reference window. Algorithm [I] presents
the pseudo-code of the eDTWBI algorithm for missing value
imputation.

For a time-series x with large number of consecutive
missing values, a gap of size 1" at position ¢ is defined as the
portion between two points z; and x4y that has z; NaN
values, where ¢ =t : t+ 1 — 1. Further, () forms the temporal
window before missing values, R is a reference window for
imputation that should lie within the same season, and Ip is
an array of location pointers pointing to reference windows
with a minimum DTW cost. The workflow of eDTWBI is
highlighted below:

Step 1: Create reference window: For a gap of T size at
position ?, create two reference windows (Rpejfore
& R4 fer) containing data points that lie before and

Algorithm 1: Enhanced Dynamic Time Warping with
Reduced Search Space

Input: z = {z1,22,...,2n}, t, T, Search_Size = 0,
Q=Dt—-T:t—1],lp=11
Output: Imputed DataFrame
1 Construct a DTW_Matrix D consisting of n rows and
m columns where (m,n) € len(sequence) and
D;; = distance(x;,x;)
2 Create a Search_Space S = D[1 : t — 2T
3 Set Derivative_Cost_Measure for DTW algorithm
using the following formula:

(:L’a — xa—l) + (($a+1 - xa—l) /2)
2
Derivative_Cost = (D,[i] — D,[4])?

Dyla] = ey

@

4 1+ 1 & Search_Size + 3
5 while i < len(S) do

6 k+—i+T—-1

7 Save a reference window Rpefore(i) = S[i : k]
8 if Rpcfore(t) in Search_Size then

9 dtw_cost = DTW (Q, Rpefore(i))

10 if dtw_cost < Derivative_Cost then
11 | iei+1

12 else

13 | Save position of Rpefore(i) to Ip
14 end

15 else

16 | break

17 end

18 end

19 Replace all missing values at position ¢ by an array of
values after the @Q’s window having minimum DTW
cost using the [p list.

20 return Imputed Dataframe

after the gap of length 7.

Find highly similar windows: Create sliding windows
of length T' for the data points that lie before and
after the gap 7. Identify the most similar window
to reference windows (Rpcfore & Rafter) by calcu-
lating the DTW cost and Derivative Dynamic Time
Warping (DDTW) cost [34]. Since DDTW cost is
robust to outliers, save the windows whose DDTW
cost is lesser than the DT'W cost.

Imputation: For unbiased results, impute the large gap
of length T") with the average value of the most similar
windows.

Step 2:

Step 3:

Figure || provides the electricity consumption data with
large gaps and imputed values. The complete process of
imputation for the whole dataset took less than 30 minutes.
The novelty introduced in the eDTWBI algorithm in terms of
restricting the search space has improved the efficiency of the
EnsembleNTLDetect in terms of performance measures and
execution time.
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Fig. 4: Imputation using Algorithm

2) Outliers: The imputed dataset is subjected to outlier
detection and removal using Z-score, a computationally in-
expensive outlier removal technique given by equation
X—p

o

7 =

3)

Where X refers to the data point, p is the mean, o is the
standard deviation, and Z is the Z-score. All data points which
have Z > 3 or Z < —3 were dropped.

B. Handling Imbalanced Data

RQ 2: What is the impact of undersampling techniques

on the generation of balanced electricity consumption dataset
without information loss?
The SGCC dataset is imbalanced in the ratio of 10:1 with class
0 (genuine consumers) as the majority and class 1 (electricity
thieves) as the minority. Although SMOTE has been widely
used in the literature to handle data imbalance issues in the
SGCC dataset, this work prefers to use the under-sampling
technique due to the following reasons.

o From figure [2] it is clear that the electricity consumption
pattern of electricity thieves is aberrant when compared
with the genuine consumer’s consumption trend. In gen-
eral, the application of SMOTE generates such unusual
patterns with unrealistic consumption values for the mi-
nority class (electricity thief) and are highly susceptible to
overfitting. Such unusual patterns pose difficulty for the
classifiers in extracting meaningful information and ac-
curate classification; furthermore, increasing the number
of samples in the minority class results in low accuracy
and a minute increase in recall score. In such cases,

TABLE I: Performance comparison of Random Forest using
SMOTE & Near Miss

Output Parameter | SMOTE + RF | Near-miss + RF
0 (genuine) | Precision 0.94 0.98
1 (theft) Precision 0.39 0.62
0 Recall 0.96 0.99
1 Recall 0.29 0.57
0 F1-score 0.95 0.98
1 F1-score 0.33 0.59

the application of under-sampling approaches ensures the
classifier to establish a fine boundary between genuine
consumers with usual trend and electricity thieve with
unusual consumption trends. Refer Section [III] for more
details.

o The computational efficiency of under-sampling tech-
niques is another reason for its consideration over
SMOTE.

This work employs Near-Miss (version 1) [35], a simple
and effective under-sampling technique to handle the data
imbalance in the SGCC dataset. About 40,488 samples ob-
tained after applying the z-score outlier removal technique
were reduced to 6,300 with an equal split of 3,150 samples
for class 0 and class 1. An interesting point to note is that the
meaningful information lost, if any, during under-sampling was
handled by the CTGAN.

We chose random forest classifier since it is part of our
proposed soft voting ensemble for performing this experiment.
From Table [] we can infer that for the SGCC dataset, near-
miss undersampling works better in comparison with SMOTE
oversampling. The recall score for SMOTE (theft class) is 0.29
since it augments the aberrant minority samples making the
task more challenging for the classifier. In contrast, it is 0.57
for Near Miss since it downsamples the majority class having
certain periodicity.

C. Learning Model

1) Stacked AutoEncoder: With 1,034 timestamps in the
SGCC dataset, it is evident that these features carry some in-
trinsic relation between them. Therefore, applying the dimen-
sionality reduction technique to identify a set of informative
features is the ideal step towards the design of an efficient
and reliable electricity theft detection model. Unfortunately,
principal component analysis [36[], [37], the most commonly
used dimensionality reduction technique, fails to capture the
convoluted low-dimensional manifold structure and model the
intrinsic relations in the time series data [38]].

RQ 3: How to handle the high dimensional electricity
consumption data with appropriate dimensionality reduction
technique such that it captures the relations present in the
data without loss of important information and low training
time?

In such cases, autoencoder architectures have been success-
fully established as an efficient dimensionality reduction tool
for fault diagnosis [39]], high-content screening data [40]]
and intrusion detection systems [41]. Autoencoders are a



TABLE II: Architecture of Stacked Auto-Encoder consisting of three Auto-Encoder’s

Stacked Auto-Encoder Auto-Encoder 1 Auto-Encoder 2 Auto-Encoder 3
Layers Parameters Layers Parameters Layers Parameters Layers Parameters
Input (1034, ) Input (1034, ) Input (512,) Input (256, )
Dense 512, ReLU, param = 529,920 Dense 512, ReLU, param = 529,920 Dense 256, ReLU, param = 131,328 Dense 128, ReLU, param = 32,896
Batch-Norm param = 2,048 Batch-Norm param = 2,048 Batch-Norm param = 1,024 Batch-Norm param = 512
Dense 256, ReL.U, param = 131,328 Dense 1034, Sigmoid, param = 530,442 Dense 512, Sigmoid, param = 131,584 Dense 256, Sigmoid, param = 33,024
Batch-Norm param = 1,024 Batch-Norm param = 2,048 Batch-Norm param = 1,024
Dense 128, RelLU, m = 32,896
Batch-Norm param = 512
Dense 256, Sigmoid, param = 33,024
Batch-Norm param = 1,024
Dense 512, Sigmoid, param = 131,584
Batch-Norm param = 2,048
Dense 1034, Sigmoid, param = 530,442
Total Parameters 1,395,850 Total Parameters 1,062,410 Total Parameters 265,984 Total Parameters 67,456
special kind of neural networks which maps the input of a e s — UL —
specific dimension to a latent space of reduced dimension and ” -
then decode the latent representation to a reconstructed input o
by minimizing the reconstruction error. This work presents 5o
a stacked autoencoder with three autoencoders specifically -
designed to perform an unsupervised learning based dimen- -
sionality reduction on the feature space. Table |lIj shows the om{ —— )
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model architecture of the stacked autoencoder with three au-
(a) AE1 (b) AE2

toencoders. The weights of the hidden layers are set by training
each autoencoder individually. Figure [5] presents the training
procedure of the autoencoder for dimensionality reduction,
and figure [6] presents the model loss (during training) for
the three autoencoders, we can see that our model converges
quickly within 100 epochs. The proposed stacked autoencoder
has reduced 1,034 dimensions in the SGCC dataset to 128
dimensions, wherein 99.87% of the original data was captured
with no loss of information. The application of autoncoder
based dimensionality reduction technique has boosted the
efficiency of this framework resulting in faster training and
inference.

RQ 4: How to leverage the power of generative models
for building a robust electricity theft detection model that
can provide a high detection rate and less false alarm rate,
especially for unseen data?

2) Handling Corner Cases: To ensure the efficiency and
reliability of EnsembleNTLDetect in real-time environments,
it is highly essential to look on to the critical aspects such
as loss of critical information due to undersampling and
ability to handle various input types. To handle such issues,
this work uses Conditional Tabular Generative Adversarial
Network (CTGAN) [42] to create more samples in such a
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way that the learning model is exposed to a wide range of
data samples from both the classes (genuine and electricity
thieves). Figure [7] shows the architecture of CTGAN.
CTGAN improves the tabular data generation through (i)
mode-specific normalization: improves modelling multi-modal
distributions in numeric columns and (ii) conditional training
by sampling: ensures that the rare categorical data are evenly
sampled. Since the SGCC dataset comprises of daily electricity
consumption values (numerical), mode-specific normalization
was preferred over the conditional training. The number of

D1 & D2 are one-hot vectors
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TABLE III: Performance analysis of EnsembleNTLDetect and basic machine learning architectures for NTL detection

Classifier Precision | Recall | F1-Score | AUC-ROC | PR-AUC | MCC
Naive Bayes 0.65 0.53 0.54 0.54 0.12 0.14
ExtraTrees 0.56 0.56 0.56 0.58 0.11 0.12
K-Neighbors 0.65 0.52 0.53 0.64 0.16 0.12
Linear Support Vector Machine | 0.78 0.50 0.47 0.67 0.22 0.03
Logistic Regression 0.75 0.50 0.49 0.68 0.21 0.09
Multi-layer Perceptron 0.73 0.56 0.58 0.77 0.32 0.24
Random Forest 0.79 0.53 0.54 0.80 0.34 0.21
Gradient Boosting 0.76 0.54 0.55 0.79 0.33 0.21
EnsembleNTLDetect 1.00 0.98 0.99 0.99 0.99 0.98

modes for each column determined by the Variational Gaus-
sian Mixture (VGM) [43|] was used for normalization. These
normalized values were used during the training phase and
are transformed to their original scales after obtaining the
generated data. Due to the complexity involved in training
GANs, Wasserstein GAN with gradient penalty [44] and
PacGAN [45] were used to ensure robust learning stability
(prevents mode collapse), and the generator network provides
diverse samples, respectively. For the SGCC dataset, 10,000
samples in the ratio of 2:1 between genuine consumers and
electricity thieves were generated using CTGAN.

3) Soft voting ensemble classifier: A simple soft voting
classifier with Random Forest [46], and XGBoost [47] classi-
fiers as base learners were designed for accurate classification
of genuine consumers and electricity thieves with high detec-
tion rates and less false alarm rate. Further, logistic regression
was used as a meta learner to create a linear relationship
between the input and output variables, i.e., a fine boundary
between genuine consumers and electricity thieves using the
maximum-likelihood estimation based on coefficients obtained
from the training data. A soft voting mechanism is used so that
the output class has the highest average probability. The output
label ¢ of a soft voting ensemble model with m classifiers of
p probability is given in equation [] where, w; is the uniform
weight of the jt" classifier, i € {0,1}.

J= argm?Xijpij “4)

j=1

The optimal hyperparameters of the ensemble classifier
were obtained through rigorous 10-fold cross-validation using
GridSearchCV with the best validation accuracy. Table
presents the optimal hyperparameters of the ensemble clas-
sifier.

TABLE IV: Optimal Hyper-Parameters

Parameters

n_estimators=300, max_features="sqrt”,
criterion="gini”, min_samples_leaf=5,
class_weight="balanced”
objective="binary:logistic”, learning_rate=0.03,
n_estimators=500, max_depth=1,
subsample=0.4

penalty="12",C=100

Algorithm

Random Forest
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ROC Curve Analysis
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Fig. 8: ROC Curve of EnsembleNTLDetect and basic ML
architectures

III. RESULTS & DISCUSSIONS

The experimental design and analysis of EnsembleNTLDe-
tect was carried out in a working environment with an In-
tel i5 (10th Gen) processor running Windows 10 operating
system with 8 GB RAM. For faster implementations, En-
sembleNTLDetect and the comparative models were designed
and executed in Google Colaboratory. Moreover, the imple-
mentation of the EnsembleNTLDetect and the comparative
models was done using Python 3.7 with necessary packages
and libraries such as scikit-learn, TensorFlow, Keras.

A. Performance Metrics

Due to the imbalanced nature of the SGCC electricity
consumption dataset, the essential quality metrics derived from
the confusion matrix were chosen over accuracy to assess the
performance of EnsembleNTLDetect over the state-of-the-art
electricity theft detection models. Here, the primary measures
of the confusion matrix represent (i) True Positive (T'P):
correctly classified as electricity thieve, (ii) True Negative
(T'N): correctly classified as genuine consumer, (iii) False
Positive (F'P): misclassified as electricity thieve and (iv) False
Negative (F'N): misclassified as a genuine consumer.



TABLE V: Performance analysis of EnsembleNTLDetect and state-of-the-art electricity theft detection models

Classifier Precision | Recall | F1-Score | AUC-ROC | PR-AUC | MCC
SVM [11] 0.75 0.71 0.72 0.60 0.78 0.67
XGBOOST [48] 0.95 0.82 0.86 0.88 0.87 0.81
Bi-directional Gated Recurrent Unit [49] 0.82 0.82 0.84 0.84 0.78 0.68
CNN + RF [23] 0.80 0.89 0.85 0.90 0.87 0.84
Wide CNN [24] 0.84 0.88 0.86 0.86 0.81 0.73
CNN + LSTM [25] 0.94 0.82 0.88 0.88 0.87 0.78
LSTM + MLP [50] 0.90 0.87 0.85 0.90 0.90 0.80
Semi-Supervised AutoEncoder [51] 0.86 0.80 0.83 0.84 0.81 0.82
EnsembleNTLDetect 1.00 0.98 0.99 0.99 0.99 0.98
All the comparison with the previous work was done keeping test size = 0.2.
1) Precision: The ratio of consumers (thieves) correctly ROC Curve

classified as electricity thieves to the total positive predictions.
TP

= —- 5

TP+ FP ®)

2) Recall / True Positive Rate (TPR): The ratio of con-

sumers (thieves) correctly classified as thieves to all the
predictions of actual class.

Precision

TP
—_— 6
TP+ FN ©
3) Fl-score: The harmonic mean of precision and recall.

Recall =

Fl— Score — 24 Precision * Recall

7

Precision + Recall @

4) AUC-ROC: A probability curve that plots the TPR
against FPR.

FPR = L
" TN+ FP

5) PR-AUC: Represents the precision against recall score
over varying thresholds. A high score indicates that a classifier
can accurately achieve T'Ps with very less number of F'Ps &
FNs.

6) Matthews Correlation Coefficient (MCC): The most
reliable statistical measure for imbalanced data. A high score
represents that the classifier performed well for all categories
of the confusion matrix (T'Ps, FPs, TNs, FNs).

TP x TN — FP x FN
MCC = ©)
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

®)

B. Analysis and discussions

At the initial phase, the performance of the Ensem-
bleNTLDetect was evaluated over the basic machine learning
architectures like in terms of the quality metrics mentioned
in Section The metric values provided in this section
are the average values obtained after 25 consecutive and
iterative runs. Table presents a comparative analysis of
EnsembleNTLDetect over the basic machine learning archi-
tectures for NTL detection. Even though it is evident that
EnsembleNTLDetect demonstrates its performance with better
quality metrics, the contrast models can be categorized into
two groups, (i) Type 1: Naive Bayes, Extra Trees, K-nearest
neighbours, Linear SVM and logistic regression (AUC-ROC
< 0.75 and MCC < 0.15) and (ii) Type 2: MLP, random
forest and gradient boosting (AUC-ROC < 0.85 and MCC
< 0.25) based on the AUC-ROC and MCC scores. Figure

—— SVM, AUC=0.600
XGBoost, AUC=0.875

BGRU, AUC=0.844

CNN + RF, AUC=0.900

Wide CNN, AUC=0.860

CNN + LSTM, AUC=0.884

LSTM + MLP, AUC=0.897

SSAE, AUC=0.835
EnsembleNTLDetect, AUC=0.996

True Positive Rate

0.0 01 02 0.3 04 05 06 07 08 09 10
Flase Positive Rate

Fig. 9: ROC Curve of EnsembleNTLDetect Vs. state-of-the-art
electricity theft detection models

[§] provides the AUC-ROC curve of EnsembleNTLDetect and
basic machine learning-based NTL detection models.

Further, the complete set of experiments were repeated to
validate the performance of EnsembleNTLDetect for different
sizes of the train and test dataset (Table [VI). The train-test
split size of 50:50, 60:40, and 70:30 was used to demon-
strate the impact of CTGAN on the overall performance of
EnsembleNTLDetect. In all the cases, EnsembleNTLDetect
provides a quality metric score of above 0.97, especially
when the training data size is reduced to 60% and 70%,
the application of CTGAN for synthetic sample generation
nullifies the imbalanced nature of the dataset and provides
AUC-ROC and MCC values of above 0.97.

Table [V] provides a detailed comparative analysis of En-
sembleNTLDetect over the state-of-the-art electricity theft
detection models in terms of the considered quality metrics.
Figure [9] presents the AUC-ROC analysis of EnsembleDetect

TABLE VI: Performance analysis of EnsembleNTLDetect for
different train-test splits

Split Size | Precision | Recall | F1-Score | AUC-ROC | MCC
70 : 30 0.995 0.978 0.987 0.994 0.974
60 : 40 0.995 0.979 0.987 0.993 0.975
50 : 50 0.998 0.972 0.985 0.989 0.971




and the state-of-the-art electricity theft detection models. Even
though SVMs are widely explored and applied in various
forms for NTL detection, they provide marginal performance
due to overfitting and high susceptibility to noise. Despite
its benefits, such as memorization and generalization from
the deep CNN architecture and wide components, Wide and
deep CNN is ranked as an average model due to its in-
ability to model long time series. CNN-LSTM architecture
with CNNs as feature extractors and LSTMs to model long
sequences in the time series data proves to be the best in
the state-of-the-art electricity theft detection models. However,
the complex architectures, high training time, and overfitting
issues create a major impact while deploying in a real-time
environment. In such cases, EnsembleNTLDetect provides
optimal performance with minimal training time. Moreover,
state-of-the-art NTL detection methods in [23]], [48]], [50] have
not been verified on SGCC dataset, which partly explains their
subpar performance on this dataset and lack of generaliza-
tion ability. Table shows the execution time (in Mins)
for each component of EnsembleNTLDetect. It takes about
an hour to deploy and execute the entire framework from
scratch, while the tradeoff between efficiency and accuracy is
perfectly managed by the time taken to generating predictions
within few milliseconds. The overall computation time can be
further reduced with high-end computing infrastructures at the
smart grid control stations. The extensive experiments carried
out using the SGCC dataset have resulted in the following
observations,

1 eDTWBI works exceptionally well in all scenarios, ex-
cept when the nearby consumption values are very low,
resulting in 0 as consumption values. Further, the intro-
duction of Search_Size parameter reduces the overall
execution time of the DTW algorithm through limiting
the search space of the search window.

2 Near-miss undersampling does not result in any loss of
information which is indicated by a high recall score.

3 The training pipeline of stacked autoencoders was highly
efficient and effective such that there was no loss of
critical information even after reducing the dimensions
by approximately 87%. It also enables faster training and
inference of the ML classifiers.

4 Fine-tuning CTGAN aids the classifier to model all
possible types of original and synthetic data, thereby
enhancing the robustness of the model to completely
unseen or aberrant data.

IV. CONCLUSIONS & FUTURE WORK

This paper presents EnsembleNTLDetect, a robust and scal-
able framework to detect electricity theft by analyzing the elec-
tricity consumption patterns of consumers. Specific contribu-
tions attributed to address the limitations in the state-of-the-art
electricity theft detection models are, (i) Consecutive missing
values: enhanced version of dynamic time warping algorithm
imputes the large gaps in the time series data and seasonality
trends were preserved by introducing Search_Size parameter
to restrict the search space of the reference points within the

TABLE VII: Execution time analysis of EnsembleNTLDetect

Execution time

Components (in Mins)
eDTWBI based imputation 28.67
Z-Score for outlier removal 1.2
Near miss undersampling (Version 1) 6.7
Stacked Autoencoder: 54
(Training + generating latent vectors) ’
CTGAN: 134
(Training + generating 10,000 Samples) '
Soft Voting Ensemble: 16.8
(Hyperparameter Tuning + training + prediction) )
Total execution time 72.1

* Imputation was done locally

season range of the missing values, (ii)) Imbalanced dataset:
near-miss undersampling technique generates the balanced
dataset without information loss, (iii) High dimensional data:
stacked autoencoders with three autoencoders performs an
unsupervised learning based dimensionality reduction on the
feature space, (iv) Efficient training: a fine-tuned conditional
GAN provides effective training for the classifiers through
exposing them to real and synthetic data with different energy
consumption patterns, and (v) Effective classification: a soft
voting ensemble classification model that uses random forest
and XGBoost learns the complex high dimensional electricity
consumption patterns to detect the consumers with aberrant
consumption patterns with high detection rate and less false
alarm rate. Extensive experimental analysis on the SGCC
real-time electricity consumption dataset demonstrates that
EnsembleNTLDetect outperforms the state-of-the-art electric-
ity theft detection models by accurately classifying genuine
consumers and electricity thieves with a recall and MCC
score of 0.98. Further, the application of stacked autoencoders
based dimensionality reduction technique has reduced the total
computational cost of EnsembleNTLDetect such that it ensures
simple and effective deployment for large scale real-time
electricity theft detection. Experiments and in-depth analysis
of EnsembleNTLDetect on different open-source electricity
consumption datasets for detecting NTLs in smart grids are
planned as a future directive of this work. In addition, detailed
analysis on the effects of consumer metadata on the consump-
tion patterns requires more attention to understand the various
social-psychological factors that impact the consumers’ elec-
tricity consumption patterns.
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