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Abstract—Wandering is a problematic behavior in people
with dementia that can lead to dangerous situations. To
alleviate this problem we design an approach for the real-
time automatic detection of wandering leading to getting
lost. The approach relies on GPS data to determine frequent
locations between which movement occurs and a step that
transforms GPS data into geohash sequences. Those can be
used to find frequent and normal movement patterns in
historical data to then be able to determine whether a new
on-going sequence is anomalous. We conduct experiments
on synthetic data to test the ability of the approach to find
frequent locations and to compare it against an alternative,
state-of-the-art approach. Our approach is able to identify
frequent locations and to obtain good performance (up to
AUC = 0.99 for certain parameter settings) outperforming
the state-of-the-art approach.

Index Terms—Geospatial, Data mining, Sequence align-
ment, Stream mining, Anomaly detection, Wandering detec-
tion, Disorientation detection, Dementia, GPS data

I. INTRODUCTION

The number of persons affected by dementia is expected
to increase worldwide [1]. Persons affected by dementia
are known to get disoriented causing them to wander and
get lost. This is a concern because a person can face
dangerous situations, which provokes anxiety in relatives
and care-taking persons. Our work has been motivated by
a collaboration with social workers who aim at supplying
people with dementia with a smartphone app that notifies
relatives when a person starts to get disoriented causing
them to stray from their normal travel patterns.

There have been proposed several approaches on how
disorientation and wandering can be defined in per-
sons suffering from dementia [2], [3], [4]. Many of
the approaches that are based on the Martino-Saltzman
model [4], successfully detect wandering patterns but they
do not take into consideration the historical travel patterns
of a person, which might vary from individual to individ-
ual. Other approaches are of a more personalized nature
and focus on a definition of wandering as a deviation from
the normal patterns of a person [5], [6], [7], [8], [9].

In this paper, we follow the latter approach and pro-
pose an algorithm for the real-time automatic detection
of disorientation behavior from GPS data. Fig. 1 shows
an example of the input and output of our algorithm.
Given a set of historical paths between an origin and a
destination determined by the locations transmitted, the
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Fig. 1: An illustrative example of normal and anomalous
trajectories going between a single origin and destination.
Trajectories deviating from the normal movement pattern
have been detected and labeled as being anomalous.

algorithm is able to detect in real-time an incumbent
path as anomalous if it deviates considerably from the
normal pattern. When such behavior is detected, relatives
and nearby volunteers can be automatically alerted and
called to provide assistance. In this paper, we describe the
algorithm and also the complete data processing pipeline
from data receipt and preprocessing to the final detection
result. This pipeline is depicted in Fig. 2.

The most similar approach to ours by Lin et al. [8]
represents the movement of elderly people as sequences
of “stops” that correspond to semantic places (e.g., home,
grocery shop, etc.) and “moves” that correspond to the
movement of a person between “stops”. The algorithm
identifies anomalous movement by examining whether the
movement of an elderly person deviates significantly from
historical sequences of movement. However, the authors
assume that semantic places are given a priori while
our problem setting requires their discovery in an online
manner while data are streaming. Furthermore, Lin et al.
discretize the movement of elderly people by using a
uniform grid, which can be quite inefficient, while we use
geohashing that is a more flexible and distance-preserving
way of discretizing movement into sequences. Moreover,
Lin et al.’s algorithm [8] tries to match the entire real-
time sequence of movement of a person exactly with a
subsequence of a historical sequence of movement of the
same person. Clearly, this might be too restrictive in a
context where location positions might contain noise and
trajectories may deviate slightly without being anomalous.
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Fig. 2: An overview of the components of the approach displaying their organization and the data processing flow.

In contrast, we adopt a similarity function [10] between
real-time and historical sequences, which is more flexible
and allows for small deviations between sequences. Con-
sequently, while in Lin et al.’s algorithm [8] all historical
sequences of a person must be compared with the real-
time sequence, we can apply a frequent pattern mining
algorithm periodically, store only the frequent patterns and
compare the real-time sequence only with those frequent
patterns.

The remainder of this paper is structured as follows. In
Section II, we describe the components of the proposed
disorientation detection approach and formalize the prob-
lem. In Section III, we describe the experimental setup
used in the evaluation of the proposed detection approach
along with the synthetically generated data used in the
proceeding algorithm experiments. The results from the
experiments with the proposed detection approach and the
alternative [8] are then given in Section IV. Finally, in
Section V we draw conclusions and outline future work.

II. DATA PROCESSING & DETECTION TASK

The components of the wandering detection approach
visualized in Fig. 2 can be divided into two groups: A0 – A6

are components that process data in real-time, while B1 –
B6 are components that run periodically and use historical
data to support the functioning of components A3 and A5 .

A. Data preprocessing

Raw GPS data are processed in A1 in real-time as
they arrive from a smartphone device A0 . Raw GPS data
come in the form of geospatial points consisting of a
vector p = [x, y] ∈ R2 where x and y are the latitude
and longitude coordinate, respectively, in any geographical
coordinate system.

Definition 1 (Stream of geospatial points): A stream
of geospatial points is a sequence of ordered pairs S =
[(pi, δi)]i=1,...,n where pi is a geospatial point and δi is
a timestamp.

We use the Haversine distance d : R2 × R2 → R
to approximate distances between points on Earth. The

stream of geospatial points incorporates a temporal di-
mension in which the relation between consecutive points
can be assessed. The stream of geospatial points can be
organized into blocks based on the temporal and spatial
relation between consecutive points.

Definition 2 (Block): A stream of points can be parti-
tioned in a set of blocks {Bi}i=1,...,m starting and ending
at two consecutive points that are at a distance in time
larger than ε ∈ R+ or in space larger than γ ∈ R+, i.e., a
block is a sequence of consecutive geospatial points from
a stream S starting at any ` = 1, . . . , n element such that
δ` − δ`−1 ≥ ε or d(p`−1,p`) ≥ γ and ending at the data
point before the successive block starts.

Blocks organize a stream of points into meaningful
groups, in the sense that if consecutive points are far
apart in space and time then it can be assumed that their
relation is insignificant, i.e., they are not part of the same
trip that a person makes. Large temporal and spatial gaps
between points can for example be due to the GPS sensor
being deliberately switched off by the person or due to
bad satellite coverage causing the GPS sensor to be idle.

The parameters ε and γ are distance thresholds that
specify upper bounds on the amount of information we are
prepared to infer about the movement of a person between
two consecutive geospatial points. Setting the thresholds
too high introduces uncertainty about the movement of a
person between consecutive points, while too small values
will make it impossible to capture the larger spatial and
temporal context of the movement of a person.

A stay point p′i in a block B is a geospatial point
augmented with a weight w′i ∈ R+, which is a duration of
time, that results from the contraction of all consecutive
points from i to j, [(p`, δ`)]`=i,...,j , and that is defined
with respect to a tentative point

p̃ij = (x′i, y
′
i) = (median(xi, . . . , xj),median(yi, . . . , yj)) (1)

A stay point satisfies the conditions d(p̃ik,pk+1) < ξ′

for all k = i, . . . , j−1, and max`=i,...,k d(p̃ik,p`) < α ∈



R+ for all k = i, . . . , j, and replaces [(p`, δ`)]`=i,...,j with

p′
i = p̃ij , δi = δj , w′

i = δj − δi (2)

The process of forming stay points in a block can
perhaps be more easily understood as a data compression
task performed online. Every time a new data point pi+k
arrives, it is checked whether (a) its distance from the
median of the i to i + k − 1 previous points is smaller
than ξ′, and (b) if a new median of the i to i + k points
will still be within a distance α of each of the i to i+ k
points. If conditions (a) and (b) are met then the points
are to be contracted together. However, the contraction
operation is suspended until a point pj+1 arrives that is
either farther away than ξ′ from the median of the i to
j previous points or the median of the i to j + 1 points
are farther away than α distance from each of the i to
j + 1 points. Then, the points pi, . . . ,pj are contracted
into p′i as described by Eqs. (1)-(2). The primary goal of
this process is to reduce the amount of data that needs to
be processed in a subsequent step. Secondarily, the process
aims to (i) obtain more robust geospatial coordinates, and
to (ii) assign appropriate weights to locations where a
person remains stationary for an extended period of time.

The value of ξ′ should be chosen by considering the
inaccuracy of a smartphone GPS sensor and the level of
data compression that should be achieved. Noisy geospa-
tial points that are scattered around the true location of a
person should preferably be replaced by a stay point to
benefit from (i) and (ii). The inaccuracy of a smartphone
GPS sensor has been reported in [11] to be in the range
of 7-13m on average. Furthermore, the condition ξ′ < γ
should be satisfied to avoid conflicts with the subdivision
of a stream of points into blocks. Taking these things into
account, a suitable value for ξ′ would lie in the range
13 < ξ′ < γ.

The distance threshold α is introduced to ensure the
possible drift of a stay point is confined to be within a
certain distance of the geospatial points that are used to
form the stay point. The drift of a stay point can for
example be due to a too large value of ξ′ or because
a person is walking very slowly between two locations.
As a guideline, the value of α should lie in the range
ξ′ < α < γ.

The preprocessing step A1 ultimately creates blocks
containing stay points that are saved in A2 to be used
in the future but are also further processed in real-time
A3 – A6 .

B. Subdivision of blocks in trajectories

Let X(B) denote a block of data after the contraction
in stay points. Points that are not contracted are also
augmented with a weight equal to zero and become stay
points as well. Once enough blocks have been collected
and processed in this way in A2 , clustering of stay points
from different blocks of a person is performed in B1 .

The clustering works as follows. Let the stream S
contain m blocks and let the blocks be contracted,
i.e. {X(Bi)}i=1,...,m. Stay points with a weight w >
τ ∈ R+ are considered as nodes in a network and
all pairs of nodes in the network, that are within some
distance ξ′′ ∈ R+ of each other, are connected with an

edge. Each edge is given a weight equal to the inverse
normalized distance between the pair of nodes. This serves
the purpose of relating stay points, that can be found
across different blocks, with each other. The grouping of
the stay points is found by applying a network clustering
algorithm: the Louvain community detection algorithm
[12]. The resulting clusters are used to form geofenced
regions.

The parameter τ is used as a threshold for pruning
uninteresting stay points that might be the result of the
slow movement of a person or minor stops at e.g. an
intersection. The parameter ξ′′ has a somewhat similar
physical interpretation as ξ′ and is used as a measure
for deciding when one and several other stay points in a
general area is thought to be highly related to each other
while taking into account the fact that stay points from
different blocks might be scattered around a general area
due to inherent inaccuracies of the data.

Appropriate values for τ and ξ′′ depend heavily on the
value chosen for the parameter ξ′, as ξ′ essentially decides
when and which geospatial points are replaced with a stay
point. This in turn has a direct effect on the geospatial
coordinates and weight given to a stay point. Due to the
interaction of the parameters, the values for τ and ξ′′ are
thus best decided through experimentation.

Definition 3 (Geofenced region): A geofenced region is
a geospatial region defined by the convex hull of all stay
points pi belonging to an identified cluster.

The geofenced regions represent meaningful geospatial
regions that a person frequently visits, e.g., a person’s
home, a grocery store, etc. The regions identify the natural
start and end points for subdividing a block in real-time in
A3 , and historically collected blocks in B3 , into geospatial
trajectories.

Definition 4 (Geospatial trajectory): A geospatial tra-
jectory is a subset of a contracted block of stream
data delimited by the geofenced regions, that is, T =
{p0, . . . ,pi, . . . ,pn} where p0 and pn belong to the same
or two different geofenced regions and all other points pi
for i = 1, . . . , n− 1 do not.

A geospatial trajectory corresponds to the movement of
a person between geofenced regions.

C. Geohashing

In A4 and B4 , the coordinates of stay points forming a
geospatial trajectory are transformed into their correspond-
ing geohash, forming sequences of geohashes. An inter-
polation process enriches geohash sequences by adding
missing cells between geohash grid cells if these are not
connected. Furthermore, consecutive and identical geohash
grid cells are merged. The result is illustrated in Fig 3.
Note that the contractions performed at the previous stages
reduce the number of points that need to be hashed and
considered in the next computations thus speeding up the
processing. Note also that the geohash sequences will have
the first element contained in a geofenced region. The next
element will be the first outside of the geofenced region.

D. Sequential pattern mining

Offline, the data in A2 are processed in a set H of histor-
ical geohash sequences. In B5 , we extract from H a set D



Fig. 3: Illustration of the geohash sequence interpolation
process.

H = [["A", "B", "D"],
["A", "B", "C", "D"],
["A", "B", "C", "D"],
["A", "B", "E", "F"],
["A", "B", "E", "F"],
["A", "B", "E", "F"],
["A", "E", "F"],
["A", "G", "H", "I"],
["A", "G", "H", "I"]]

[
× (9, [’A’]),
× (6, [’A’, ’B’]),

(3, [’A’, ’B’, ’D’]),
(2, [’A’, ’B’, ’C’, ’D’]),
(3, [’A’, ’B’, ’E’, ’F’]),
(4, [’A’, ’E’, ’F’]),
(2, [’A’, ’G’, ’H’, ’I’]),

]

Fig. 4: The result of the PrefixSpan algorithm (right)
when applied to database H containing sequences between
geofenced regions A-D, A-F and A-I (left) restricted to
closed patterns that have been pruned (×) and η = 2.

of frequent sequential patterns that represents the normal
movement patterns of a person. The set D is generated
by mining frequent sequential patterns via the PrefixSpan
algorithm [13]. The PrefixSpan algorithm finds sequence
patterns that occur in a database of sequences. A frequent
sequential pattern is closed if no super-pattern with the
same frequency count exists. Furthermore, patterns that
are contained in a super-pattern, irrespective of frequency
count, are termed redundant patterns and pruned from the
resulting set. The goal of this step is to extract the most
important information from H while reducing the overall
set of sequences to be saved in B6 and to be considered
in the subsequent sequence similarity calculation step A5 .
Thus, at each mining step we only store in D the closed
sequence patterns with a frequency higher than η and that
has been pruned, as illustrated in the example in Fig. 4.

The operations in B1 , B3 , B4 , B5 are repeated in the
background periodically as with new data arriving in A2
the outcome D may change.

E. Sequence similarity calculation

In A5 , the set of frequent sequential patterns belonging
to a person is used for calculating a similarity score of an
on-going geohash sequence generated by the same person.

The similarity score is a distance measure used to
quantify the similarity between two sequences. Different
similarity measures between sequences are possible. Some
distance measures are able to handle sequences of different
lengths, while others like the Hamming distance only

applies to sequences of the same length. Some distance
measures do not take into consideration the ordering of the
elements in a sequence. For example, the Jaccard similarity
can measure the degree of overlap between two sets of
sequences, but without considering the ordering of the
elements.

The edit distance is one of the most commonly used
distance measures for comparing sequences. It counts the
minimum number of operations required to transform one
sequence into the other. The edit distance is a general-
ization of other well-known sequence similarity measures
such as the Hamming distance, Longest Common Subse-
quence (LCSS), and the Levenshtein distance. The only
difference among these distances is the set of allowed
operations (insertion, deletion, or substitution of elements)
that can be used to transform one sequence into the other.

A further generalization of the edit distance comes in
the form of sequence alignment algorithms where each
allowed operation is assigned a cost and the cost of the
operation depends on the location where it is applied. The
pairwise Smith-Waterman sequence alignment algorithm
is an example of such an algorithm [10]. The Smith-
Waterman algorithm is suitable for comparing partially
similar sequences and sequences of different lengths that
have conserved regions with high similarity. It is one of
the most commonly used sequence alignment algorithms.

We adopt this algorithm to calculate the similarity score.
The on-going sequence of a person is compared in turn
to each sequence in the set of frequent sequential patterns
D. The best (largest positive) similarity score found among
all the pairwise comparisons is then used to assess how
anomalous the on-going sequence of the person is.

More precisely, the similarity score is calculated by the
following function that takes as input (i) a set of frequent
sequential patterns D and (ii) an on-going sequence V
being generated by a person:

F (D,V ) = max
∀U∈D

(fsw(U,V )/|V |) (3)

where fsw represents the application of the pairwise
Smith-Waterman sequence alignment algorithm and counts
how many elements of the sequence U can be matched
with the elements of the sequence V . The function F thus
takes values in the interval [0, 1]. A value of 1 means that
there is a perfect match between the on-going sequence
V and a sequence pattern U in D. On the other hand, a
value of 0 means there is a complete mismatch between
the on-going sequence and the patterns in D.

Every time a new element vi is added to an on-going
geohash sequence Vi = [v0, v1, . . . , vi−1, vi] in A4 , the
similarity score is recalculated si = F (D,Vi) and an
anomaly score ai associated to Vi is updated as follows:
ai = 1−minj=0,...,i (sj).

F. Anomaly Detection

We are now ready to formalize the anomaly detection
task as follows: Given a database D of frequent sequential
patterns D and an incoming block B, the goal is to detect
whether the last trajectory of the block transformed in a
geohash sequence is anomalous with respect to D.

We address this task in A6 by monitoring the anomaly
score. If its value raises above some anomaly threshold



θ ∈ (0, 1], then the trajectory is classified as anomalous
and an alarm procedure is triggered.

III. EXPERIMENTAL SETUP

We use a machine with an AMD Ryzen 7 1800X eight-
core processor and 32 GB of RAM, running Manjaro
Linux, to execute the experiments. The implementation1

was done in Python primarily utilizing the libraries: Biopy-
thon [14], Geohash-hilbert [15], Pandas [16], PrefixSpan-
py [17] and Scikit-learn [18].

A. Case studies

We evaluate the proposed approach and compare it with
the iBDD method [8]. We use synthetically generated data1

since (i) it is possible to specifically generate anoma-
lous trajectories with the target characteristics given in
Section I, and (ii) the trajectories can automatically be
labeled according to what they were generated as (normal
or anomalous). Because of (ii) it becomes straightforward
then to quantitatively evaluate the results. More precisely,
the approach presented can be assessed in a supervised set-
ting, that is, statistics can be computed based on whether
a trajectory has been labeled correctly by the approach
or not (detected as correctly/incorrectly being normal or
anomalous). We considered other open-source and real-life
trajectory data sets, such as e.g. the GeoLife Trajectory
Dataset released by Microsoft research Asia2, but in this
case, it is unknown whether the data explicitly contain
travel patterns that result from disorientation behavior.

We consider two case-studies: (1) a case-study used for
showing the results of the preprocessing and segmentation
steps described in Section II-A and Section II-B, and (2)
a large case-study used for an evaluation and comparison
of the proposed approach against the iBDD method that
maintains a set of historical trajectories that has been
turned into a corresponding set of historical sequences of
traversed cells (dubbed a support set). Based on the set of
historical sequences, the iBDD method labels a new on-
going sequence as being anomalous if less than a certain
fraction of the historical sequences support the current
on-going sequence. That is, like our approach the iBDD
relies on two parameters: a parameter for determining
the geohash precision, and a threshold θ′ ∈ (0, 1] that
is the fraction of historical sequences needed to support
an on-going sequence before it is otherwise considered
anomalous. The iBDD method also relies on a parameter
that specifies the rate at which new geospatial points
arrive. This parameter is mainly used for the purpose of
filtering out noisy points and can simply be estimated from
historical data.

Case-study (1) consists of a single synthetically gen-
erated, normal trajectory going back and forth between
an origin and a destination, simulating a person walking
between two locations and staying at each location for an
extended period of time (15 min).

Case-study (2) consists of 222 synthetically generated
normal and anomalous trajectories going between 7 dif-
ferent origins and destinations resulting in a variety of
different trajectories. The trajectories generated as being

1 https://github.com/nicklasxyz/rtdm
2 https://www.microsoft.com/en-us/download/details.aspx?id=52367

normal are 199 while those being anomalous are 23. In
other terms, around 90% of the trajectories are normal
and 10% are anomalous.

B. Synthetic data

The approach used for generating the synthetic tra-
jectories is a slight variation of the approach used by
Hermoupolis [19], a semantic trajectory generator. Her-
moupolis is a network-based trajectory generator that is
able to generate trajectories for several moving entities at
a time. The trajectories accurately follow an underlying
road network and take into account the effects of network
constraints.

We generate trajectories for a single person mimicking
the characteristics of trajectories that arise from GPS data
resulting from walking. In other words, an underlying
pedestrian road network and normal pedestrian walking
speed (approximately 4.5ms ) are used in the generation.

Normal trajectories are generated by simulating, one at
a time, an entity that moves along an underlying path
in a given road network between a specified geofenced
region and another. The path in the network is found in
a shortest path fashion by means of a routing engine.
Each trajectory is then constructed by starting at an initial
timestamp and from the initial point of the path. By
moving along the path a distance that is calculated based
on a time increment 5s plus noise sampled from a Folded
Gaussian distribution (NF (0, 20)) and a speed from a
Gaussian distribution (N (4, 0.5)) a new timestamp and a
position can be determined. Finally, some noise is added
to the longitudinal and latitudinal points of the position
according to a Gaussian distribution N (0, 8.75). These
values of the noise are chosen in order to simulate the
inherent inaccuracy of a smartphone GPS sensor and to
generate non-uniform spatial trajectories.

Anomalous trajectories are generated in the same way as
the normal ones but the underlying path is enforced to visit
one, two, three, or four manually selected intermediate
points. An example of the trajectories resulting from this
generation process restricted to a single pair of origin and
destination regions is illustrated in Fig. 1.

C. Preprocessing of noisy data

The synthetic trajectories were generated without ex-
treme noise, but for trajectories in a real dataset extremely
noisy geospatial points can be removed by checking
whether they have an unrealistic high absolute acceler-
ation. Geospatial points with an unrealistic high absolute
acceleration (e.g., higher than the acceleration of an aver-
age car) can be identified as being noisy as it implies that
there has been a large change in speed in a short amount
of time. This makes it unlikely for the geospatial point
to have been generated due to the natural movement of
a person. The absolute acceleration ui associated with a
geospatial point pi can be calculated based on the change
in speed and time between two consecutive geospaital
points, that is, if the speed at point pi is vi =

d(pi−1,pi)
δi−δi−1

then the absolute acceleration at point pi is ui =
|vi−vi−1|
δi−δi−1

.
This filtering approach can be incorporated into the pre-
processing component A1 in Fig 2.

https://github.com/nicklasxyz/rtdm
https://www.microsoft.com/en-us/download/details.aspx?id=52367


D. Performance metrics & statistics

To evaluate the performance of the detection meth-
ods in case-study (2) a couple of different performance
metrics and statistics are calculated. Among others, the
ROC Curve (Receiver Operating Characteristic Curve) is
constructed to then be able to compute a corresponding
AUC value that measures the performance of the detection
methods. The closer the AUC value is to 1 the better
performance the detection approach achieves.

The detection delay is another performance metric cal-
culated to determine how fast an approach is able to detect
a synthetically generated anomalous trajectory as actually
being anomalous. The detection delay is calculated as the
difference between the timestamp of the first point in an
anomalous trajectory that can be said to deviate from a
set of normal trajectories and the timestamp of a point in
an anomalous trajectory where it has been detected by an
approach as being anomalous.

Beyond the AUC value and the detection delay, the
median online and offline processing time is reported as
well. The online processing time is the time it takes to
process a single geospatial trajectory from start to finish
to be able to determine if it is anomalous or not. The
offline processing time on the other hand is the time it
takes to prepare the historical data in the set D to be
used for real-time detection. For the proposed approach,
the online processing time is essentially the time it takes
to go through steps A1 – A6 , while the offline processing
time is the time it takes to go through steps B1 – B6 .

IV. EXPERIMENTAL RESULTS

A. Case Study 1

To obtain the results mentioned in the following the
preprocessing and segmentation steps were applied using
parameter values τ = 600s, ε = 300s, ξ′ = ξ′′ = 28m,
γ = 500m and α = 100m. These were determined based
on their physical interpretation and relation described
earlier in Section II and through preliminary experiments.

The result of the preprocessing and segmentation steps
is a set of compressed geospatial trajectories that goes be-
tween distinct geofenced regions. The unprocessed block
of geospatial points is depicted in the first column of Fig. 5
in terms of its latitudinal and longitudinal coordinates.
Each high and low peak essentially corresponds to an
extended stay at a geofenced region. In the second column
of Fig. 5, the resulting geospatial trajectories are displayed.

The unprocessed block consists of 1209 geospatial
points while the trajectories that result after the preprocess-
ing has been applied consist of a total of 390 geospatial
points, i.e., the number of geospatial points have been
reduced by about 68%.

B. Case Study 2

We use the set of 222 trajectories in a leave-one-out
validation model, in which each trajectory is used once as
a test set for detection while the remaining trajectories are
used as a training set to provide the historical data, simi-
larly as in instance-based learning methods. For the iBDD
method the historical trajectories are simply transformed
into their corresponding sequence representation, while for
the proposed detection approach the PrefixSpan algorithm

Fig. 5: The lat/lon coordinates of a block of geospatial
points plotted over time before and after preprocessing.
The vertical lines indicate points at which a block is
segmented and separate geospatial trajectories are created.

is applied to mine frequent sequential patterns, which then
represent the normal travel patterns of a person.

For each possible train/test split the iBDD method and
our detection approach are applied. This yields a detection
result (detected normal or anomalous) for each trajectory.
Based on all the detection results, the AUC value can
be calculated using the ground truth labels, which were
associated with the trajectories when they were generated.

These steps are repeated for several different parameter
settings:
• For our approach we vary the geohash preci-

sion3 {17, 18, 19} and the anomaly threshold θ ∈
{0.20, 0.40, 0.60}, while keeping the other parame-
ters fixed: η = 1 along with τ = 600s, ε = 300s,
ξ′ = ξ′′ = 28m, γ = 500m and α = 100m.

• For the iBDD method we vary the geohash pre-
cision {17, 18, 19} and support set threshold θ′ ∈
{0.20, 0.10, 0.05}.

We summarize the numerical results in Tables I and
II. From Table I we observe that our proposed method
generally performs well for most parameter values but
especially for the highest threshold and geohash precision.
Indeed the AUC value is high, close to 1, and the detection
delay is small. However, the higher the geohash precision
is the longer the fitting and detection times are. A low
anomaly threshold (θ = 0.20) results in faster anomaly
detection but more false positives indicated by a worse
AUC value.

From Table II we see that the iBDD method generally
performs worse for most parameter values. It is also
possible to make some of the same observations w.r.t. the
detection delay and geohash precision as with the results
obtained from the proposed approach.

However, the iBDD method seems to be more efficient
in terms of detection and fitting times in comparison with
the proposed approach. This is mainly because it lacks
the more sophisticated sequence mining and alignment

3 The chosen geohash precision values correspond to maximum lati-
tude/longitude encoding error in meters: 152.703, 76.351 and 38.176,
respectively.



components that the proposed approach has. These essen-
tially improve the detection results at the cost of longer
computation times.

In fact, assuming that each geospatial point pi of a
trajectory T of size |T | is mapped directly to a unique
geohash value and a set of frequent sequential patterns
D is available where it holds that max∀U∈D(|U |) ≤ |T |,
then the proposed detection approach runs in O(|D| · |T |2)
time. This is primarily due to the repeated application of
the Smith-Waterman algorithm in Eq. (3). On the other
hand, if D′ is a set of historical geospatial trajectories
that have been turned into geohash sequences, then the
iBDD method runs in just O(|D′| · |T |) time.

TABLE I: Case-study (2). Results from proposed method.

Threshold θ Precision Statistics Comp. time (s)
AUC Delay (s) Detection Fitting

0.20 17 0.7773 206.4440 0.0779 4.7820
18 0.7793 165.1885 0.2661 11.0811
19 0.5765 81.8410 1.2137 518.0548

0.40 17 0.9761 539.2180 0.0767 4.7890
18 0.9926 366.2065 0.2644 11.0974
19 0.9687 325.5035 1.1856 516.6371

0.60 17 0.9564 534.7430 0.0774 4.7981
18 0.9650 606.3950 0.2628 11.0942
19 0.9738 483.7400 1.1630 517.6821

TABLE II: Case-study (2). Results from the iBDD method.

Threshold θ′ Precision Statistics Comp. time (s)
AUC Delay (s) Detection Fitting

0.20 17 0.5311 269.1805 0.0327 3.6642
18 0.3117 107.1480 0.0448 4.0947
19 0.0025 50.7300 0.0680 4.7236

0.10 17 0.6283 428.2890 0.0313 3.6557
18 0.4887 107.1480 0.0395 4.1346
19 0.0349 37.6780 0.0546 4.6534

0.05 17 0.8624 462.5295 0.0318 3.6591
18 0.5288 135.4025 0.0384 4.1163
19 0.0624 50.9360 0.0509 4.6573

V. CONCLUSIONS AND FUTURE WORK

We proposed an integrated framework for the online
detection of wandering patterns of people with demen-
tia. Our approach operates better than the state-of-the-
art alternative, in terms of performance of detection and
delay of detection. We plan to devise and implement a
more accurate detection solution that will be based on
patterns extracted from raw trajectory data, rather than
sequences of geohash values. By doing so we will be able
to capture the movement of elderly people in more detail,
both in the spatial aspect of their movement, as well as
the temporal aspect (e.g., take into account speed or time
of day). Furthermore, we plan to go beyond the detection
and propose a method for the prediction of these kinds
of wandering patterns. Finally, we plan to experiment
with real data from the ”Sammen Om Demens” project,
a project with a local municipality, with a known ground
truth that will help us draw more accurate conclusions.
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