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Abstract—Implementing systems based on Machine Learn-
ing to detect fraud and other Non-Technical Losses (NTL) is
challenging: the data available is biased, and the algorithms
currently used are black-boxes that cannot be either easily
trusted or understood by stakeholders. This work explains our
human-in-the-loop approach to mitigate these problems in a real
system that uses a supervised model to detect Non-Technical
Losses (NTL) for an international utility company from Spain.
This approach exploits human knowledge (e.g. from the data
scientists or the company’s stakeholders) and the information
provided by explanatory methods to guide the system during the
training process. This simple, efficient method that can be easily
implemented in other industrial projects is tested in a real dataset
and the results show that the derived prediction model is better
in terms of accuracy, interpretability, robustness and flexibility.

I. INTRODUCTION

Historically NTL detection systems were rule-based and
aimed to emulate human knowledge through a few rules.
However, the current availability of large amounts of data has
led modern fraud detection systems to use machine learning
techniques. With this change, the systems become smarter (e.g.
they can learn more complex patterns or can be updated more
easily) but also more difficult to understand, especially when
black-box algorithms are used to make predictions.

An example of an NTL detection system that uses a black-
box algorithm (a Gradient Boosting Decision Tree) is the
system that the Universitat Politecnica de Catalunya has built
for an international utility company from Spain. Our system
[1], [2] has achieved good results. However, the system had
problems in terms of fairness and robustness because the data
come from observational data produced for other purposes, and
therefore the available information does not reliably represent
reality (i.e. is biased). The assumption of i.i.d. (independent
and identically distributed data) between the labelled informa-
tion and reality (i.e. the company’s customers) is not met and,
therefore, the desired characteristics of reliability and fairness
in our system were not fully achieved. These problems, as
we explain in [3], were partially solved with the introduction
of Shapley Values [4] from SHAP [5] since we started to
understand the deficiencies of our system and validate our
work beyond benchmarking (e.g. by verifying the patterns
learned by the model). However, the fact that our system is
implemented in different domains did not make it possible to

implement generic solutions to solve all the existing problems,
as the biases derived from the observational data translated
differently in each domain and time of the campaign.

In this work, we present our step forward to exploit the
information provided by the Shapley Values: to convert the
process of building our model into a human-in-the-loop pro-
cess controlled by the stakeholder in charge of the NTL
detection process. In each iteration, this specialist analyses
what the model has learned and implements feature engineer-
ing to improve the model if it detects an undesired pattern,
a bias, or an unused feature. After several iterations, as
we exemplify in this work, the resulting model is better in
terms of accuracy, robustness, interpretability, generalizability,
flexibility, and simplicity.

The paper is organized as follows. Section II contextualizes
the work done and explains the existing literature. Section III
explains our case study, briefly summarizing how it works and
its challenges, and proposes the human-in-the-loop approach to
exploit the information from the Shapley Values. In Section IV
we test this approach in a real dataset. We conclude this work
with Section V, summarizing the benefits of our approach and
introducing possible future work.

II. RELATED WORK AND PRELIMINARIES

A. Related Work in NTL detection

The use of Supervised Machine Learning techniques (espe-
cially black-box algorithms) to detect NTL is extensive in the
literature. As our system implements a CatBoost [6] predictive
model to detect NTL in Spain, we would like to highlight [7],
a similar approach to ours (it uses an XGBoost [8] model
and is also implemented in Spain). It is also common to
see examples of using Support Vector Machine (SVM) in the
literature. Two examples of this are [9], which uses a radial
basis function as kernel, and [10], which uses a sigmoid kernel.
The popularity of Artificial Neural Networks can also be seen
in NTL literature: [11], [12], [13], [14] are four examples of it.
Finally, we should mention [15], [16], two examples of using
Optimal-Path Forest Classifier [17] to detect NTL, a rather
new non-parametric technique that is grounded on partitioning
a graph into optimum-path trees.

The classical approach of using rule-based systems that aim
to reproduce human expert knowledge is becoming obsolete
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due to the difficulty of exploiting a large amount of data,
but many approaches in the literature still combine complex
Supervised methods with Rule systems. For instance, in [18]
the approach proposed in [9] is improved by introducing
Fuzzy-Rules. Similarly, in [10] a Rule Engine is combined
with a Sigmoid SVM to maximize the predictive capacity of
the system. In [19] text mining, neural networks, and statistical
techniques are combined to build a rule-based system.

The extensive NTL literature includes many examples with
unsupervised methods. In [20] and [21] there are two examples
of using clustering; and in [22] there is an example of
using unsupervised neural networks (Self-Organizing Maps).
In [23] and [24] there are two other examples of unsupervised
methods that focus on statistical control to detect NTL cases.

In addition to the data-oriented solutions explained above,
other approaches exploit the existence of sensors and the
smart meters’ capacities. In [25] NTL is detected by analyzing
the load flow; and in [26] a structure is presented where
an inspector meter controls the customers’ meters, a popular
approach that facilitates NTL detection in highly populated
cities. Different examples of network-oriented NTL detection,
data-oriented and even hybrid methods (that combine both
approaches) can be seen in [27].

B. Accuracy, Interpretability, Explainability and Human
Knowledge

The use of these black-box algorithms is raising some
concerns in the AI community since this lack of transparency
prevents extensive use of these techniques in certain cases, e.g.
in medicine (accountability issues if the predictive algorithm
has a mistake) or in justice (where the predictive algorithms
can learn biases such as racism from judges). In other domains,
the lack of transparency may not lead to these ethical concerns,
but it may make it difficult to achieve a robust model that
learns causal patterns without bias.

Explainable AI (XAI) [28] is a new trend in Artificial
Intelligence that proposes the use of methods to guarantee
explainable and very accurate models that stakeholders can
humanly understand. We highlight two model-agnostic ad-
hoc methods tested in our system that provide explainability
to the black-box algorithms, LIME [29] (an approach that
builds an interpretable model L that surrogates the complex
model M for an instance x), and SHAP [5], an approach
based on Shapley Values [4], a game theory approach to fairly
distribute the payout among the players that have collaborated
in a cooperative game. The SHAP library adapts this idea1

to determine how the values of the features of an instance
x influenced the prediction made for the supervised model
M(x). It is usually defined as follows:

ψi =
∑

S⊆{x1,...,xm}\{xi}
|S|!(p−|S|−1)!

p! (val (S ∪ {xi})− val(S))

In the equation, variable S runs over all possible subsets
of feature values, the term val (S ∪ {xi}) − val(S) is the

1SHAP considers the payoff as the prediction and the values of the features
the players of the cooperative game.

marginal value of adding xi in the prediction using only the set
of feature values in S, and the term |S|!(p−|S|−1)!

p! corresponds
to the permutations that can be made with subset size |S|, to
weight different sets differently in the formula. All possible
subsets of attributes are considered, and the corresponding
effect is used to compute the Shapley Value of xi. In our
system we use the Tree Explainer to extract the Shapley
Values, the specific method from SHAP for Tree Models [30].

The promise of the explanatory algorithms is that the discus-
sion about the trade-off between accuracy vs interpretability,
i.e. the necessity of deciding between using complex algo-
rithms (e.g. Deep Learning, Ensemble Trees or Support Vector
Machines) or interpretable algorithms like Linear Regression
or Decision Trees vanishes since several goals [31] can be
achieved through the explanatory algorithms (i.e. trustwor-
thiness, causality, transferability, informativeness, confidence,
fairness, accessibility, interactivity and privacy awareness).
However, relevant work (e.g. [32]) still advocate using in-
terpretable algorithms and consider that many of these goals
that in a great deal of cases are easily achievable through the
interpretable models cannot be easily achieved using black-
box algorithms.

In any event, the need for humanly validating a model
to avoid biases and other problems calls into question the
classical approach of benchmarking an intelligent system as
the skill of correctly doing a specific task, e.g. a predictive
model that assigns a label [33], [34], masking what should
define intelligence in artificial intelligence, e.g. the ability of
generalizing what the system learns, and how it has to be
benchmarked, i.e. against human intelligence.

All the literature referred to in this Section, combined with
other more classical machine learning techniques that share
some similitude with the approach proposed in this work (e.g.
feature selection [35], active learning [36] and human-in-the-
loop [37]), inspired us in the development of our proposal.

III. OUR APPROACH IN THE NTL DETECTION SYSTEM

A. The Supervised Approach

Our initial approach [2], [1] was a supervised binary ap-
proach summarized as follows. First, the Stakeholders delim-
ited the segmentation of the campaign (the type of utility, re-
gion and tariff) and the system profiled the visited customers in
the past (i.e. the NTL and non-NTL cases), and in the present
(the customers to be predicted). Then, a model is trained
with the historical information and the profiles at present got
a binary prediction. Finally, the top-scored customers were
included in a report. Initially, this report was analyzed, and
the company decided which customers were to be visited.

To profile the customer we included several features, sum-
marized as follows:

a) Consumption Features: From the consumption data
available, we build numeric features that refer to the kWh
consumed by (or billed to) the customer during a period, infor-
mation regarding the difference between the customer’s con-
sumption in two distinct periods (to detect abrupt consumption
drop), ratios between the consumption of the customer against



other similar customers in the same period (to detect long
periods of abnormal consumption behavior), as well as the
customer’s consumption curve to detect abnormal consumption
peaks.

b) Visit features: Most of the features that can be ex-
tracted from the visits made by the technicians to the cus-
tomers are very important for deriving a supervised problem.
Labelled instances: When we profile the customers in month
m, all the visits performed in that month are the labelled
instances for the supervised training stage. Visit information:
A visit in month m is the label of the profile from month m,
but becomes a feature when profiling m+ t, t >= 1.

c) Static features: The static information is used to
segment the customers in different domains (e.g., the tariff)
and generate additional features.

d) Sociological features: The aim of including sociolog-
ical and geographical information is to nuance the customer’s
final score; for instance, if we accept the premise that in poorer
regions, the people may commit more fraud, the system should
prioritize the abnormal behaviors from regions with lower
incomes.

A more extensive explanation of the supervised system and
the variables is available in [1], [2], [3].

B. Bypassing the lack of robustness and interpretability

Despite the good results achieved in our system2, it lacked
robustness, not achieving very successful campaigns consis-
tently. In part, this could be justified by the difficulty of
detecting fraud in certain domains due to the lack of labelled
information or the very low proportion of fraud that may exist
in a developed country. However, the use of observational data
also hindered the success of our system since the labelled
information is not an ’independent and identically distributed’
sample from the company’s customers. Instead, the labelled
information over-represents certain types of customers (e.g.
recidivist fraud customers) and under-represents others (e.g.
customers from regions where the company did not consider it
interesting to generate campaigns due to business-related con-
siderations). Therefore, there exist biases and dataset-shift3. In
[1] we explain how these problems were partially mitigated
by implementing a segmentation of the customers. However,
more technical approaches were tested (e.g., applying weights
to the under-represented customers) with inconclusive results.

In many cases, the use of black-box algorithms blinded us
to provide solutions to mitigate the problems in robustness.
However, in [3] we explain how we bypassed the lack of
transparency by using the Shapley Values [4] from SHAP
[5] to take well-reasoned algorithmic decisions beyond bench-
marking4. For instance, thanks to explanatory algorithms, we
detected that a regression approach in which the target to

2For instance, for customers with a cancelled contract, our system has
achieved many campaigns of around 50% of precision.

3Dataset-shift occurs when the distribution of the training dataset and the
test dataset differ, making it difficult to train robust models.

4Our labelled information is biased and, therefore, the classical approach
of sampling a validation dataset to analyze the generalizability cannot be fully
trusted.

predict is the energy to recover in the NTL provides better
results than the classical classification approach, recovering
more energy but especially learning more reliable patterns that
would generalize better on unseen data. Thus, the introduction
of interpretability helped us to implement good solutions that
would improve the predictions of our system in any domain.

C. Mitigating the existing problems for each model built

1) The problem: Although explainability gave us the pos-
sibility of improving overall our system, there are still specific
problems that cannot be generically solved in our system. In
other words, the use of observational data that is constantly
changing5 translates differently in each model build and needs
specific solutions. Despite this, these biases would be mostly
easily detectable for specialized stakeholders, as now the
system is more transparent thanks to the in-depth explanation
of the model with Shapley Values. However, as previously
explained in Section III, the current system originally aimed
to fully automatize the generation of campaigns, and the
system-stakeholder interaction was low. Therefore, it would be
necessary to modify the current system to allow the company’s
Stakeholder involvement in the learning process, allowing on-
the-fly corrections of the model.

2) Our proposal: In this work we propose to involve the
stakeholder through a human-in-the-loop solution to guide
the system when training the model (Figure 1). In each
iteration, the stakeholder analyzes through Shapley Values
the patterns learned and implements feature engineering to
correct biases and other data-related problems that are specific
to that domain at the moment of building the campaign, as
well as remove correlated or unused features to increase the
system’s interpretability, to achieve a simpler (i.e. with fewer
variables), more understandable (i.e. with patterns validated
by the stakeholder) and, therefore, a better model in terms of
generalization.

To benchmark each model we use the Normalized Dis-
counted Cumulative Gain (NDCG, [38]) to obtain a global
vision of the quality of the predictions made by a model,

NDCGt =
DCGt

iDCGt

where DCGt is defined as

DCGt =

∑t
i=1 energyi − 1

log2(i+ 1)

being energyi the amount of energy recovered in the visit
made to the customer ranked at position i, and iDCG
corresponds to the maximum DCG possible (i.e. a perfect
prediction in terms of order). The NDCG provides a generic
vision of the correction of the model beyond any threshold.
Other alternatives (e.g. precision@k, i.e. precision at the top
k instances) can tend the model to exploit the existing biases
in the data and, therefore, the resulting model would not be
generalizable.

5As explained in Section III, the campaigns’ results were included in the
system as new labelled information.
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First test:  NDCG for the top f customers (f = NTL cases in the dataset) in the 
validation dataset after training a model with the training dataset.

Human analysis and decision:
1. If NDCG for the model at iteration n is worse than the NDCG for the 

previous model (i.e. iteration n-1) we discard the iteration.
2. We analyse the Shapley Values: a) Detect Bias and other undesired 

patterns b) Detect Unused features c) Detect Correlated features.
3. Decision: a) implement feature engineering b) stop the iteration 

process c) discard this iteration and go to the previous iteration.

Preliminaries: The labelled dataset is divided into the training and validation 
dataset. The test dataset is predicted using a model trained with the training 
and validation dataset.

Analysis of each iteration

Fig. 1. The building process is an iterative human-in-the-loop process where
the stakeholder uses Shapley Values to guide the model’s training process to
achieve a more generalizable and fairer model.

3) The Human Analysis in the Building Process: With the
information provided by the Shapley Values and the NDCG
metric, the stakeholder has to analyze in each iteration n
the correctness of the model trained in comparison to the
previous iteration n−1, and propose a new model in iteration
n + 1 by implementing feature engineering. This process is
subjective (e.g. depending on the stakeholder there might be
slight differences regarding what can be considered a good
pattern), and also needs to be adapted to every domain (e.g. a
good pattern in one domain might be a fair pattern in another
domain). However, there are certain fundamentals that every
analysis shares, summarized as follows, which we will use in
this work:

a) The NDCG should not decrease between iterations:
In each iteration, we should not decrease the benchmarking
performance on unseen data. Therefore, in each iteration,
NDCGn >= NDCGn−1

6.
b) The outliers should be detected and processed: A

Shapley Value from a high-scored instance that stands out
in comparison to the rest of the Shapley Values can be
a consequence of an outlier in the prediction labels (more
specifically, an NTL case with a much higher value of kWh
recovered than the rest of the NTL cases). In this case, the

6We would accept some margin in this description, i.e. we consider that a
model is worse in terms of NDCG when the value is significantly lower (at
least 0.1 lower).

stakeholder should consider transforming the instance that
causes the outlier to avoid biases on prediction.

c) The system should be as simple as possible: To
reduce the complexity of the model to increase generalizability
on unseen data but also improve interpretability, we should
remove features that have a low impact on the model. Also,
we should remove correlated features with similar meanings
that contribute similarly according to Shapley Values.

The correction of bias should have priority over removing a
feature: a bias highly influences how a model is learned and,
therefore, its correction can cause a feature with no importance
in the biased model to gain relevance in the new model. All
these considerations are explained in the short example that
we provide in the following Section IV.

IV. A CASE STUDY WITH A REAL DATASET

In this section, we exemplify the human-in-the-loop process
and analyze the benefits of implementing it in our NTL system.

A. Preliminaries

1) The Dataset used: For the case study we use a real
dataset7 from the utility company with more than 1, 000, 000
customers8. The labelled instances include around 10,500 NTL
cases, and almost 300,000 non-NTL cases and the dataset is
split into three sub-datasets: the training (80% of the labelled
instances), the validation (10% of the instances) and the test
dataset (the remaining 10%). Each partition is stratified. There
is no timestamp consideration (i.e. we do not use the last 10%
of NTL cases as the test dataset) to guarantee diversity and
reduce the differences between the datasets9.

2) The Algorithm, Loss Function and Metric Used: The
Gradient Boosting Model trained is a Root Mean Square Error
Catboost Regressor, i.e. we consider the problem of detecting
NTL as a point-wise ranking problem where we predict the
amount of energy to recover for each customer. The methods
used to analyze the correctness of our model are the energy200
(to compare the energy recovered before and after the human-
in-the-loop process), NDCG on the validation dataset, and
Shapley Values plots to analyze the patterns learnt by each
model, as we show in Figure 2.

Fig. 2. In red there are the high values of the features and, in blue, the low
values. In this specific case we can see that having a high value in Current
Reading Absences (i.e. that the company has several months with no new
meter readings) increases the ŷ value of the instance.

7further information like the region and the typology of the customers is
anonymized to protect the privacy of the data.

8The customers are apartments/small houses from the same Spanish region.
9If the stakeholder decides to visit recidivist customer in July and August,

and in September, we split the data considering the timestamp, in the test
dataset we would have an over-representation of the recidivist customers.



3) Semantic Grouping of Features and Evaluation: To
facilitate the explanation and readability of this work, we
exemplify the human-in-the-loop approach only on the visit-
related features, including plots for the Shapley Values in the
training and test dataset. A brief description of these features
is the following:

a) Types of visits: Most of the visit-related variables rep-
resent the visits made to the customers and their three possible
results. More specifically, the Fraud features refer to the visits
in which the company detected an NTL case. The Correct
features refer to the visits where the installation was checked,
but no NTL was detected. The Impossible features profile the
visits with no conclusive result (in general, because the meter
was not accessible). Finally, the Visit features represent all
the visits without NTL/Non-NTL distinction. Based on this
information, we profile the following features:
• Number of occurrences: Those features that include the

# prefix refers to the occurrences of that type of visit
(e.g. #Visit refers to the number of visits the company
has made to the customer).

• Last occurrence: The last occurrence of each type of visit
is represented with the features with the last prefix (e.g.
LastVisit would refer to how many months have passed
since the last visit). When the customer has never been
visited, the value of the feature is empty10.

• Type of visit: A visit to a customer is often prompted
by suspicion of fraud. In other cases, the visit is related
to more generic reasons (e.g. a generic revision of the
meter). Both cases are reflected with suffix 1 and 2,
respectively: LastFraud1 refers to how many months have
passed since the last fraud was detected in which the
reason to visit was a suspicion of fraud (or NTL), Last-
Fraud2 corresponds to how many months have passed
since the last fraud in which the reason to visit was not
NTL-related. LastFraud (with no suffix) corresponds to
the features that groups both types of features.
b) Region-related features: There are also features re-

lated to the density of fraud around the customer. That is,
#FraudZone indicates the historical number of NTL cases
in a customer’s zone11. Similarly, #FraudStreet is the same
information than the #FraudZone but focused specifically on
the street where the customer lives, and #FraudInBuilding
counts the historical NTL cases in the building where the
customer lives. There exist for each feature a derivative (with
a suffix 1Year) in which the information is bounded in the
last year (e.g. #FraudZone1Year indicates the number of fraud
cases in the region during the last 12 months).

c) Threats: There is a third group of features (#threats
and LastThreat) that refers to the threats of the customer
to the technician, i.e. if the customer violently prevents the
installation revision from being carried out.

10That is, there is no value assigned, i.e. a missing value, that the Catboost
library is able to process. This solution is applied in all the features to represent
the non-existence of a value, e.g. the non-existence of a visit for that customer.

11A zone corresponds to a technical term regarding the distribution of the
electricity: nearby towns or neighborhoods in a big city share a zone.

d) Energy Cut: Finally, the EnergyCut feature indicates
how many months have elapsed since the last energy cut by
the company due to non-payment.

B. Tests

In this section we exemplify the process of stakeholder-
system interaction by implementing the following: removing
a feature due to its irrelevance, removing a correlated feature
and correcting an outlier. We compare the baseline model
and the resulting model in terms of energy200 to see if, in
addition to the improvement in terms of interpretability and
bias reduction (that would help to increase the robustness in
real campaigns), the resulting model also recovers more energy
in the test dataset.

1) First Model (baseline):
• NDCG: 0.44 in the validation dataset.
• energy200: 249242.9kWh.
• Shapley Values: Figure 3 (training+validation model).

a) Analysis: As we can see in Figure 3, our baseline
model has Shapley Values that are abnormal, because the
impact on the output is remarkably higher than all the other
values for those features. For instance, if we analyze the
LastImpossible2 feature, there is no compelling reason to jus-
tify that a feature value increases the output of the model up to
25,000kWh, while the second highest Shapley Value increases
ten times less. Thus, this is an indicator of an outlier in the
labelled information, i.e. an NTL case in which the company
recovered a large amount of energy. In this case, the outlier
corresponds to an NTL case in which the company recovered
260,000kWh, an extremely abnormal case of NTL due to the
large amount of energy recovered12. With this information, the
stakeholder would have two options: maintaining the outlier or
correcting it. Maintaining an outlier could be useful in some
specific cases (for instance, if the company aims to exploit
biased patterns learnt13) but, in general, the stakeholder should
consider its correction.

b) Next step: In this case, an optimal solution would be
reducing the weight of this NTL by modifying the label (for
instance) four times (i.e. from 260,000 to 66,000kWh). With
this change, we still indicate to the system that it is the higher
NTL case in the labelled information, but we will avoid biases
in the system.

2) Second Model (First iteration):
• NDCG: 0.43 in the validation dataset.
• Shapley Values: Figure 4 (training+validation model).

a) Analysis: First of all, we can see that we achieve a
similar NDCG value in the validation dataset, i.e. it seems
that the unbiasedness does not reduce the prediction capacity
of our model. Then, the Shapley Values from Figure 4 seem to

12In the second NTL case in the dataset the company recovered around
50,000kWh. The typical customer consumption is close to 3,500kWh per
year.

13In some cases a biased pattern might be in line with business-related
decisions. For instance, the stakeholder might consider not removing a pattern
in which the customers from a region have higher predictions if the company
aims to visit these type of customers more.
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Fig. 3. The outliers seen in the image (in yellow) are a consequence of an NTL
case in which the amount of energy to recover is higher than 250000kWh. In
this situation, the stakeholder in charge of the model building would consider
reducing this prediction value to build a more unbiased model.

indicate that the model learnt is better: there are no outliers (the
higher Shapley value is reduced from around 30000 to 5000),
and therefore it should generalize better on unseen data. So,
in summary, a stakeholder would prefer this model over the
previous one.

b) Next step: For the next iteration we opt to drop the
less important feature in the model: #Threats. This should not
modify the model trained but would simplify the explanation
provided to the stakeholders.

3) Third Model (Second Iteration):
• NDCG: 0.42 in the validation dataset.
• Shapley Values: Figures 5 (training+validation model)

and 6 (top-scored customers from the test dataset).

a) Analysis: Dropping the #threats has not changed
much, as expected, what the model has learned (i.e. the plot
from Figure 4 and the left plot from Figure 5 are similar).
However, the possibility of dropping features can be fruitful
from the company’s perspective. First, it allows to correct
undesired patterns learned that, from the human perspective,
have no logic but can be seen in a biased dataset. When
we introduce a feature in the system, we expect that the
system will learn some specific patterns. For instance, when
we profile with a feature that the customer is consuming much
less than the average, we consider that the system should
see this as an indicator of NTL. Therefore, if the system

learns otherwise in one specific domain14, the stakeholder can
consider it appropriate to remove it in that specific campaign.
Moreover, learning from fewer features with low relevancy
helps avoid overfitting and increases the generalizability and
interpretability of the model.

b) Next step: For this third iteration, we exemplify the
process of removing a correlated feature from the model.
As shown in Figure 5, the features #FraudZone and #Fraud-
Zone1Year provide similar information to the learning process
globally: a high number of NTL cases in the zone is an
indicator of NTL. If we focus on the Shapley Values from
the top-scored 200 customers, we can see that the patterns
learnt from the #FraudZone feature are unclear15 and, for this
case, we would opt to remove the #FraudZone feature.

Resulting Model: The resulting model corresponds to the
baseline model + correction of the bias + #threats drop due
to its low relevance + #FraudZone drop (correlated with
#FraudZone1Year).

• NDCG: 0.44
• energy200: 257038.7kWh

14If this undesired pattern is constantly learned in all the domains, then the
feature drop would be definitive.

15From the stakeholder’s point of view, it is simpler to explain the
#FraudZone1Year pattern ”high values is an indicator of NTL” than the
patterns from #FraudZone, which are unclear, where sometimes a high value
has positive Shapley Values, and in other cases, it has negative Shapley Values.
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Fig. 4. The Shapley Values for the trained model indicates the non-relevance
of the #Threats feature. Therefore, to facilitate the interpretation of the model
by the stakeholders, we drop this feature from the training process.
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Fig. 5. The Shapley Values highlighted indicate that the model has learned
similar patterns from both features with similar meanings. Removing one
of the features would increase interpretability and reduce the curse of
dimensionality. To decide the best feature to be removed, we can analyze
how these patterns translate on unseen data (Figure 6).

c) Analysis: The resulting model, in terms of NDCG,
is as good as the vanilla model, and in terms of energy200
is slightly better, recovering around 8000kWh more energy.
However, in terms of Shapley Values the resulting model is
more trustworthy from the stakeholder’s point of view, and
should generalize better on unseen data.

This example is rather naive since we have only slightly
modified the system by implementing feature engineering.
However, it exemplifies the benefits of the human-in-the-
middle approach in which the stakeholder guides the system to
learn an optimal model, mitigating the specific biases and other
problems regarding the use of observational data. Moreover,
the fact that the stakeholder is an active part of the system
has positive consequences beyond the ones mentioned above
(i.e. the better generalization on unseen data and the better
interpretability), as the company can trust the system much
more, one of the objectives of explainable AI [31].

V. TECHNICAL CONSIDERATIONS, CONCLUSIONS AND
FUTURE WORK

Building an NTL detection system using observational data
is challenging due to the existence of biases and other data-
related problems. This is aggravated when the predictive
model is a black-box algorithm due to its opacity, making it
difficult to implement solutions to mitigate these problems. We
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Fig. 6. The Shapley Values in the top-scored 200 customers test dataset we
see that how #FraudZone1Year influenced the prediction is much clearer than
in the #FraudZone feature and, therefore, we would drop the latter feature
from the dataset.

exemplify this problem in the NTL detection system we have
been developing for a utility company from Spain, and propose
a human-in-the-loop approach to increase the Accessibility,
the Interactivity and the Informativeness of our NTL detection
system. Moreover, the stakeholder’s guidance guarantees the
causality of the learned models: nonetheless, in certain cases
it might be difficult to discern a good correlation and a real
causal pattern, the existence of a human oracle avoids the
existence of bad correlations and undesired patterns.

This approach can be easily implemented in any similar
NTL detection approach. However, according to our experi-
ence, using a GPU-accelerated state-of-the-art Gradient Boost-
ing (GBM) library and the TreeSHAP [30] implementation
is the optimal approach since it provides fast, explained and
accurate out-of-the-box predictions. There exist other GPU
accelerated predictive algorithms (e.g. Deep Learning or Sup-
port Vector Machines) that might also provide accurate results
but need either more data processing and the explanation
approaches are slower (e.g. the KernelSHAP from SHAP)
or the explanation obtained is less detailed (e.g. Feature
Importance).

Future work would focus on two aspects. In the short term,
our effort will focus on improving this system-stakeholder
interaction based on the stakeholder’s feedback. In the long
term we will explore if the system can robustly assist the
stakeholder by suggesting the modifications needed to achieve



more robust models or directly if the process can be automa-
tised with an expert system.
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