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Abstract—Payment platforms have significantly evolved in
recent years to keep pace with the proliferation of online and
cashless payments. These platforms are increasingly aligned with
online social networks, allowing users to interact with each
other and transfer small amounts of money in a Peer-to-Peer
fashion. This poses new challenges for analysing payment data,
as traditional methods are only user-centric or business-centric
and neglect the network users build during the interaction. This
paper proposes a first methodology for measuring user value
in modern payment platforms. We combine quantitative user-
centric metrics with an analysis of the graph created by users’
activities and its topological features inspired by the evolution
of opinions in social networks. We showcase our approach using
a dataset from a large operational payment platform and show
how it can support business decisions and marketing campaign
design, e.g., by targeting specific users.

Index Terms—Payment Network, Consumer Behavior, Graph
Mining, User Value, Centrality

I. INTRODUCTION

Various forms of online payments have emerged in the
landscape of payment systems to support the rapid growth of
e-commerce. They are already widespread, often surpassing
more traditional payment methods [1], [2]. Online payments
provide users with a fast, direct, convenient, and secure way to
access their funds and conduct transactions, which is among
the main reasons for the success of e-payment technologies in
terms of their widespread adoption [3]. In particular, mobile
payment services are growing in popularity as they keep pace
with the shift toward massive mobile internet access [4]–[6].
At the same time, mobile payment platforms are becoming
more and more community-oriented: peer-to-peer (P2P) pay-
ment platforms [7] offer users new ways to interact with each
other to the point where they are evolving into a new form of
online social network [8].

Great efforts are made to ensure the success of a mobile
payment solution. In particular, companies aim to expand the

The research leading to these results has been funded by the European
Union’s funded Project INFINITECH under Grant Agreement No. 856632
and by the SmartData@PoliTO center for Data Science technologies.

user base and increase user engagement. Common approaches
to these tasks focus on designing incentives and reward mech-
anisms to keep existing users active and attract new valuable
users [9], [10]. When developing strategies to improve the
quality of the user base, one of the biggest challenges is
understanding users’ value and measuring it operationally, as
this is critical for business decisions such as designing mar-
keting campaigns. Classical user-centric approaches measure
the value of users only based on their individual activities.
However, they can hardly capture their quality in an environ-
ment characterized by a network of interactions, which poses
severe limitations to data analytics. Indeed, there is a lack of
methodologies to analyze user behavior in this new generation
of payment platforms, where interactions between users play
an essential role. It is therefore crucial to develop effective
metrics to guide business decisions and support the work of
marketing departments. Mobile payment platforms can be seen
as constantly expanding networks through a “member-get-
member” mechanism. Hence a good measure of users’ value
must capture not only their spending habits, but also how each
user contributes to the creation of a high-quality network.

In this paper, we propose a methodology that models
payment platforms as networks and exploits their structure
to guide business strategies. We overcome the limitation of
current metrics for quantifying user value in payment sys-
tems by leveraging relationships between users. Inspired by
graph mining methods, our approach combines user-centric
features with topological features extracted from the payment
graph. We also present a practical way to compute this new
metric using an iterative graph algorithm. To the best of our
knowledge, we are the first to propose a practical method for
measuring user value in current payment platforms, which are
characterized not only by traditional activities (purchases from
merchants) but also by P2P interactions between users.

We present our methodology using a dataset of a real-world
payment network. More specifically, we present the business
case of YAP, Nexi’s mobile payment platform, which allows
users to perform payments at physical and online merchants

ar
X

iv
:2

21
0.

11
16

8v
1 

 [
cs

.S
I]

  2
0 

O
ct

 2
02

2



P2P

P2P

P2P

P2
P

P2
P

P2
P

P2B

P2B P2B

P2BP2B

P2B

P2B

INVITES

INVITES

IN
V

ITES IN
VIT

ES

INVITES IN
V

IT
ES

IN
V

ITES

IN
V

ITES

INVITES

P2
P

P2B

P2B

P2B

P2B

P2B

P2B
P2B

P2
B

P2B

P2B

P2
B

P2B

P2B

P2B
P2B

P2B

P2B

P2B

P2
B

P2B

P2B
P2B

P2B

P2B
P2B

P2B

P2
B

P2B
P2B

P2B

P2B

P2B

P2B
P2B

P2B

P2B

P2B

P2B

P2B
P2B

P2B

P2B

P2B

P2
B

P2B

P2
B

P2B

P2B

P2B

P2B

P2B

P2B

P2B

P2B

P2B

P2P

P2B

P2B

P2B

P2B

IN
VIT

ES

IN
V

IT
ES

P2P

P2
P

P2
P

P2
P

P2
P

P2PP2PP2PP2P

P2P

P2
B

P2
B

P2B

P2B

P2B

INVITES

P2P

P2P

P2P

P2P

P2P

P2P

INVITES

P2P

P2
B

P2P

P2P

P2
B

P2
B

P2B

P2B

P2B

P2B
P2B
P2B
P2B
P2B
P2B
P2B
P2B
P2B
P2B
P2B
P2B
P2B

P2B

P2
P

P2B
P2B
P2B

P2B

P2B
P2B
P2B
P2B
P2B
P2B
P2B
P2B
P2B
P2B
P2B
P2B
P2B
P2B
P2B

IN
V

IT
ES

P2P

IN
V

ITESP2B

P2B

P2B

P2B

P2B

P2B

P2B

P2B

P2B

P2B

P2B

P2B

P2
BP2B P2
B

P2B

P2B

P2B

P2B

P2B

P2B

P2B

P2B

P2
B

P2B

P2B

IN
V

ITES

INVITES

P2PP2P
P2P

Fig. 1: A small portion of the dataset. Users and merchants are
represented as orange and blue nodes, respectively. Invitations
among users are represented with bold orange links, P2B
transactions correspond to blue links, P2P money transfers are
displayed in green.

and to exchange money with each other. We applied our
methodology to analyze the YAP platform’s community, with
the goal of supporting business decisions. Our results show
that the approach is a practical tool to support marketing
campaigns and, more in general, business decisions.

II. DATASET AND ITS GRAPH REPRESENTATION

To develop and evaluate our methodology, we take a data-
driven approach and use as a reference a dataset collected
from an operational payment platform. The dataset comes
from the Italian app YAP1, a payment platform provided by
Nexi2, one of the biggest European players in digital payments.
YAP is based on a mobile application linked to a prepaid
card (accepted by online and physical stores) that also allows
its customers to exchange money with friends and contacts
without fees. In this paper, we use data from the production
databases of YAP, which include a set of transactions for the
years 2019, 2020 and 2021, as well as metadata about users
and merchants.

The dataset can be naturally represented in terms of a
heterogeneous graph, since there are entities that are related
to each other. In particular, we have identified three types of
relationships that reflect the three main types of interactions
between users and merchants.

1https://www.yap-app.it
2https://www.nexigroup.com/en/

1) Users are connected to merchants by “P2B” relation-
ships, representing monetary transactions characterized
by their date, amount and channel, which may be online
(i.e., e-shops) or offline (i.e., physical stores).

2) Users may transfer money to other users. This kind of
interaction is represented by “P2P” relationships among
users, which are characterized by their date and amount.

3) Finally, users may invite new users to join the platform.
This results in “Invite” relationships, whose tail and
head nodes correspond to users sending and accepting
the invitation, respectively. Note that we only model
invitations that resulted in the acquisition of a new users.

These relationships are characterized by a timestamp. Hence
we have a dynamic graph, with edges appearing and disap-
pearing over different time windows.

We sketch a small portion on this heterogeneous graph
in Figure 1, where users and merchants are connected with
three types of edges. For privacy reasons, we anonymize the
dataset by removing personally identifiable information. As a
result, users and merchants are identified by unique numeric
identifiers. Each user is associated with some personal details
(age, gender, place of residence, occupation), while merchants
are characterized by a category indicating the type of activity
and the province of their retail store.

We store our dataset in the graph database Neo4j3, which
provides a native representation of graph data, so we could
efficiently traverse the graph, query it for patterns and visualize
the resulting information. The dataset is quite large and
includes a number of nodes in the range (106, 107) and a
number of relationships in the range (107, 108).4

For our methodology, the “Invitation Network” plays a rele-
vant role. It simply represents the network of users connected
by the “Invite” relationships. Formally, we define it as the
subgraph G = (V, E) of our dataset comprising all users V and
the invitation relationships among them.5 The edges E then
represent the “Invite” relationships among couples of nodes
(u, v) ∈ E ⊂ V × V . The Invitation Network G plays a key
role in the development of our methodology, as it captures the
temporal evolution of the YAP network in terms of new users
acquired through accepted invitations. We therefore briefly
characterize its main topological features. First, we note that
the invitation graph has a special structure: G is a forest, i.e.,
each weakly connected component (WCC) of G is a directed
tree, since each user can send many invitations but he can
accept only one. An example of a WCC from the dataset is
shown in Figure 2. The top user sent several invitations, 8 of
which were accepted. Some users in turn invited other users,
forming a WCC with a total of 34 users. The size of the WCCs
varies from small single-user or two-user components (none
or a single accepted invitation) to subgraphs with hundreds
of users. In Figure 3, we show the distribution of WCC size
in terms of a complementary cumulative distribution function

3https://neo4j.com
4We cannot disclose the exact numbers and ranges as they represent trade

secrets.
5Merchants cannot invite neither users or other merchants to the platform.

https://www.yap-app.it
https://www.nexigroup.com/en/
https://neo4j.com
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Fig. 2: Example of WCC showing the invitation spreading
process triggered by the invitations sent by the root top user.
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Fig. 3: Distribution of weakly connected component sizes for
the invitation network G. Vertical axis is in log-scale.

(CCDF). The logarithmic axes highlight the presence of a
huge component that includes nearly 4 × 105 users. The
remaining WCCs are smaller and have different shapes, with
some resembling an invitation chain (each user sent a single
invitation), while others contain spreader users (i.e., users
who sent a large number of invitations). We quantify this
in Figure 4, where we show the distribution of out degree
of nodes. Most users sent a handful of invitations, while a
limited group (a dozed of individuals) sent several thousand
– note the tail of the distribution in the bottom right of the
figure. The median out degree is 0, as only 28% of users sent at
least one invitation. In Figure 4 we also show the distribution
of reachable users starting from a node, i.e., the size of the
largest sub-tree of G for which a node is the root, representing
the cascade of invited customers. The significant difference
between the two distributions highlights that it is relevant to
consider the impact of users on the whole network, not just
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Fig. 4: Out degree and reachable nodes CCDF for nodes in
the invitation network G. Vertical axis is in log-scale.

on their one-hop neighborhood.

III. METHODOLOGY FOR ASSESSING USER VALUE

The goal of our methodology is to provide a practical
and effective means for measuring the value of a user in
a payment network. To this end, we compute the value of
each user by means of a two-step process. First, we obtain
the Intrinsic Value of a user, which captures her value based
on quantitative characteristics (e.g., the number of purchases).
Then, we combine the Intrinsic Value and the graph structure
of the Invitation Network to compute the final Value. This
measures the contribution of a user to the platform, taking into
account the network of users characterized by relationships
among them.

A. Intrinsic Value

We start with the definition of Intrinsic Value, whose goal
is to represent the value of a user seen as an isolated entity. It
is a score that measures the level of activity of a given user
and combines her individual characteristics using an extended
continuous RFM model [11]. Similar to classical RFM models,
our score captures the spending habits of users (in terms of
transactions recency, frequency and monetary value, hence the
name RFM). We extend the RFM model by also measuring the
users’ activity level in the context of the invitation mechanism
and we adapt it to a continuous setting, by deriving fine-
grained information about users’ characteristics instead of
performing a classification task. In detail, the intrinsic value
I(u) of a users u is obtained as the following product of four
distinct factors

I(u) =M(u)σR(R(u))σF (F (u))σE(E(u)). (1)

The first factor, M(u), is a measure of the user’s spending,
given by a linear combination of their total online and offline
transactions amounts whose weights represent the relative
value of the two channels. R(u) measures transaction re-
cency, i.e., the duration (in months) since the last transaction
performed by the user, while F (u) takes into account the
weekly transaction frequency. Finally, the expansion term
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(b) A user with high network value but lower intrinsic value
compared to that of top user in Figure 5a.

Fig. 5: Comparison between two users with different intrinsic
and different network value. Intrinsic value of users is reported
within nodes.

E(u) measures the ability of the user to expand the YAP
network, based on the number of invitations sent and accepted
(i.e., their degree in the invitation network G). All factors
except for M(u) range in the interval (a, b) = (1/2, 2) and
undergo generalized sigmoid functions designed to reward or
penalize good or bad values for the corresponding quantity,
according to the following formula:

σ(x) = a+
b− a

1 + exp (−s(x− c))
, (2)

where for each factor appearing in (1) the parameters c and
s are chosen to obtain desirable center and saturation points
(where σ(x) = a+b

2 and σ(x) ≈ b), selected according to
business knowledge or based on the corresponding feature’s
distribution. In our experiment, we fix their value to c = 2,
s ≈ −1.3 for the recency factor, c = 0.25, s ≈ 3.5 for
the frequency factor and c = 1.5, s ≈ 1 for the expansion
factor, in order to obtain saturation at x = 0, x = 1 and
x = 4 respectively. The resulting intrinsic value can be treated
as a monetary value, and in our case is measured in euros.
Notice that the intrinsic value I is by definition a non-negative
quantity. If a user u is not active on the P2B side, i.e., if he has
never performed any monetary transaction, his intrinsic value
is vanishing, I(u) = 0.

Although it summarizes the salient characteristics of a user,
the Intrinsic Value alone is not a complete measure of the
value she brings to the payment platform. Indeed, it does
not allow us to distinguish between two users with similar

spending habits but a very different impact on the platform’s
development (and expansion). We show an example of this
situation in Figure 5. In Figure 5a, the root user (the top one)
has a high Intrinsic Value (shown as the value inside the node),
i.e., she has good spending habits. However, she invited only
three users, who are of poor quality and did not propagate the
invitation process any further. Conversely, in Figure 5b the root
user has a lower Intrinsic Value but contributes significantly to
the expansion of the payment platform. She invited three high
quality new users, who started a cascading invitation process
that spread widely. These two situations, shown in the two
figures, are very different but indistinguishable under the lens
of Intrinsic Value. Indeed, the value of a given user cannot be
uniquely estimated using quantitative activity metrics (i.e., the
intrinsic value), but it is codified in the way users relate to each
other in a network of invitations. Thus, to successfully address
the problem, we need to take this structure into account.

B. Network Value

Following the above considerations, we start from the In-
trinsic Value to compute a more effective score that we simply
call Value of a user. Its goal is to capture the contribution of
a given user in the growth of the payment network. We here
discuss the main technical details. Starting from the Invitation
Network G = (V, E), the value V of users is defined as the
solution to the following system of equations:

V (u) = α

(
1

|Nu|
∑
v∈Nu

V (v)

)
︸ ︷︷ ︸

N(u)

+I(u), ∀u ∈ V (3)

where Nu are the neighbor nodes of u while the scalar α ∈
(0, 1) measures the relative importance of connections with
respect to intrinsic value in determining users’ overall value
and acts as a damping factor, so that the effect of a user v on
the value of u decays exponentially with their distance in G.
α is a parameter of our model that must be tuned to reflect the
importance of user-base expansion with respect to monetary
profit from a business perspective. In our experiments, α was
set to 0.85. For clarity, we call Network Value N(u) the first
term of the sum in (3). Notice that, by definition, the Value
V is a non-negative quantity, which is vanishing for a user u
that has never performed any monetary transaction (I(u) = 0)
if he has never sent any successful invitations or if all users
he invited have vanishing value (so that also N(u) = 0).

Value V (u) combines Intrinsic Value with the structure of
the invitation network in such a way that each user is rewarded
for inviting other users who either have good spending habits
or continue to grow the network. The idea at the base of our
definition reflects the expansion mechanism of the payment
network. When a user invites new members, they may propa-
gate the invitation by doing the same. The first invitation starts
a cascading process that eventually leads to the expansion of
the network. Our graph-based measure combines the intrinsic
value of each user with the quality of the community they
have created by starting the expansion process.



The value of users can be computed iteratively via a custom
graph algorithm that elaborates users’ data leveraging the
structure of connections. More precisely, we first compute the
intrinsic value I of users, we set V0 ≡ 0 (so that the initial
estimate of users’ value coincides with their intrinsic value
V1 = I) and then, for each iteration t = 1, 2, . . ., we compute
the step-t estimate of users’ value Vt as

Vt(u) = α

(
1

|Nu|
∑
v∈Nu

Vt−1(v)

)
+ I(u). (4)

In designing our algorithm we were inspired by the literature
on averaging processes that are used to model the evolution
of opinions and conventions in social networks [12]. We
create a correspondence between the two settings (detailed in
Appendix A) that guarantees convergence of our algorithm (4)
to the solution of (3) for generic graph topologies.

Note that, due to the specific forest structure of the network
of invitations, this schema results in the propagation of users’
value from leaf users upwards. As a result, we can bound the
number of iterations needed for convergence with the size of
the largest connected component of G, which is finite.

We implement the computation of users’ Value within the
message passing framework of the Neo4j Pregel API.6 In
this framework nodes possess a piece of information, stored
as internal state. They can exchange information by sending
messages through links, and they can process the received
information to update their internal state. In this way, a dis-
tributed scheme can be defined in which each node iteratively
computes its own Value, starting from an initial state that
matches its own Intrinsic Value. In our experiments, running
this algorithm on a graph with millions of nodes takes less
than one minute using a commodity Linux server.

IV. RESULTS

In this section, we illustrate the Value we obtain for users
in the YAP platform, using our dataset described in Section II.
We then discuss the applications of user Value for marketing
and business.

A. Intrinsic and Network Values

We first show the distribution of user Value, offering a
break down for the Intrinsic and Network Value in Figure 6.
Notice that, following (3), N(u) directly measures the Network
Value of a user, that is, we are able to quantify the role of
connections in determining each user’s value, also referred
to as “network effect”. Figure 6 shows that the three curves
span almost five orders of magnitude – notice the logarithmic
x-axis. Overall the curve have a similar shape, with median
around 10. Less than 10% of users have any Value component
above 1 000. This is intentional as, by design, we want to have
a measure that allows one to pinpoint users providing large
benefits to the payment platform in terms of activity (Intrinsic
Value) and ability to involve other users (Network Value).
For instance, notice that only 0.18% (0.03%) of users have

6https://neo4j.com/docs/graph-data-science/current/algorithms/pregel-api/
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Fig. 6: Cumulative distribution function (CDF) of Value (over-
all, Intrinsic and Network). Notice logarithmic x-axis.
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Fig. 7: Comparison of Intrinsic and Network Value of users.
They are only 0.22 Pearson correlated.

Intrinsic (Network) Value above 10 000. Overall, the Value
is far from being equally split among users. The top-10%
users hold 93% of the total Value, while the Gini Index of
the distribution is 0.89, hinting great inequality.7

Intrinsic and Network Values have different goals. The
former quantifies users’ activity level, inspired by the RFM
model [11], widely adopted in marketing. Conversely, Network
Value of users is defined by the value of other users that are
directly and indirectly connected to them by means of invita-
tions. As exemplified in Figure 2, users’ invitations spread in
a cascading process that expands the payment network, and
we can identify a whole community of users that entered
the network as the direct and indirect result of the actions
of a single root user. The quality of such user’s community
defines their network value. Notice that in defining the network
value, quality is rewarded over quantity: it is not about the
number of invited users, but the portion of them which is
valuable. We compare the two Value components in Figure 7,
where we report the HexBin plot of the two quantities.8 We

7The Gini Index or Gini Coefficient is a measure of dispersion (or
inequality) in a distribution of samples.

8A HexBin plot is a variation of heatmap, where cells have a hexagonal
shape.

https://neo4j.com/docs/graph-data-science/current/algorithms/pregel-api/
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first observe a portion of users having vanishing Intrinsic and
Network Value, corresponding to inactive users. Then, we
notice many users with high Network Value but low Intrinsic
Value (top left of the figure): these are valuable users that we
miss if we only look at their individual activity. The opposite
case – users with high Intrinsic and low Network Value –,
conversely, is slightly less frequent (bottom right of the figure).
Overall, the main diagonal in the picture appears to be dense,
as the two values are not completely independent. Indeed, their
Pearson correlation coefficient is 0.22, hinting positive but
weak correlation. The overall Value is 0.95 (0.50) correlated
with the Intrinsic (Network) Value. This is expected, as a result
of the high value set for the damping factor α.

B. Temporal Evolution

We now study the evolution of users’ Value over time to
understand how it varies when new users join the platform
and run some activity (e.g., make payments or invite other
users). To this end, we compute both Intrinsic and Network
Value at different time instants, thus taking into account only
transactions and invitations that already took place up to that
time. At enrollment time, all users have vanishing Value.
Users’ value starts increasing when users start their transaction
activity or when users they invited start to produce value.
Note that neither the Intrinsic nor the Network Value are
necessarily monotone increasing functions of time (and thus,
as a consequence, neither is their sum, the Value). The Intrinsic
Value I(u) of a user may decrease over time if the user
reduces or stops his transaction activity, so that the frequency
and recency factors decrease. On the other hand, the Network
Value N(u) of a user may be reduced if the value of other
users he invited decrease or if he invites additional users with
low value, which decrease the average quality of his out-
neighborhood. We perform a temporal analysis considering
a series of expanding windows and we observe the evolution
of users’ Value over three years, starting from January 2019
(shortly after the product was launched) up to December
2021. We compute the users’ Value every three months and
show various percentiles of its distribution in Figure 8. We
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Fig. 9: Scatter plot showing the number of new users acquired
on different marketing campaigns compared with their average
Value.

note that the distribution spreads as time moves forward to
represent the progressive acquisition of new users and the
growth of the total value brought by users to the platform. All
curves in the Figure exhibit an increasing trend, meaning that
Value tends to increase over time. This increase is expected
as, since its launch, the payment platform acquired a large
number of new users, who, in turn, invited other people to
join. The median Value passed from 0 in early 2019 to 2.14
in December 2021. Interesting is the tail of the distribution.
There, we find users with very high value – i.e., those to which
marketing campaigns should give special attention. The top
1% of users increased their Value from hundreds to several
tens of thousands. Such a temporal analysis has proved helpful
in the payment platform’s business strategies. Indeed, it has
enabled data-driven decision-making over the period, allowing
identifying events that lead to a significant increase or decrease
in the value of users. This gives a solid intuition on how to
control the evolution of the user base.

V. DISCUSSION

A. Applications to Marketing and Business

The adoption of this methodology to compute users’ Value
produced descriptive and prescriptive results, thus impact-
ing both the understanding and operations of the payment
platform business team. On the descriptive side, the Value
allows answering business questions, such as: what marketing
campaigns generate the most reward for the platform? Indeed,
this graph based measure allows to effectively measure the
profit generated by marketing campaigns. Instead of just
counting the number of acquired users, we can measure the
Value of new users enrolled during a campaign. This allows
identifying what campaigns are able to attract more valuable
users, which in turn allows understanding why such campaigns
are more effective than others. As an example, in Figure 9 we
compare the number of users acquired per marketing campaign
with the average value of users these users for 63 marketing
campaigns launched between 2019 and 2021. Thus, we can
investigate what campaigns yield the best return of investment



by comparing the value of newly acquired users with the
amount invested in their acquisition. For instance, the points at
the bottom left of the picture represent campaigns that attracted
a limited number of new users, but with a high Value.9

Conversely, the three right-most points refer to campaigns
leading to the acquisition of a (relatively) large set of new
users. However, their Value (as computed several months after
the campaigns) is not as high as the former example.

On the prescriptive side, the novel understanding of the
user base can be used to assist marketing decisions concerning
incentive design and distribution. Concerning the distribution
of incentives, by looking at the distribution of Value in
Figure 6, we note that it is concentrated on a small portion of
users. Consequently, flat investments mainly target users that
produce small to null returns. This reveals the opportunity to
design incentive distribution mechanisms based on targeting
strategies. A simple and intuitive option is to target users with
high value to incentivize them to spend or invite other valuable
users. However, different strategies may be useful when the
Value extracted from top users saturates. Indeed, users that
already have good spending habits and a large network of peers
may be unable to increase their performance even when given
an incentive. Thus, an interesting strategy is to concentrate
investments on users with high Potential Value. Low Value
users may be targeted based on their peer-to-peer activity
(described by “P2P” relationships in our dataset). Despite
being inactive on the P2B side, they still have high spending
capabilities as they transfer a large amount of money. This type
of marketing strategy is suggested and supported by our data.
In Figure 10 we compare user Value with their P2P activity,
measured by the amount of money they exchanged with other
users. We observe a large portion of low Value users that
are very active on the P2P side. They represent potentially
valuable users that may bring great Value to the network
if appropriately incentivized. When it comes to implement
targeted interventions, a central principle is that different users
show different receptivity to incentives: the ability to target
users by Value offers the possibility to tailor incentives to
their characteristics.

B. Related Works
A number of previous works already proposed modeling

payment systems in the form of a graph to achieve various
goals. Already in 2008, Becher, Millard and Soramaki [13]
model the payment system CHAPS (a UK real-time gross
settlement payment system) as a graph and investigated its
properties. They found that it is a well-connected network
whose properties hardly change from day to day. Soramaki,
Bech, Arnold, Glass and Beyeler [14] perform a similar analy-
sis for the interbank payments network. In the specific setting
of mobile payment platforms [15] models the evolution of
Vipps, a peer-to-peer payment solution by Norway’s financial
services group DNB, by means of a network formation pro-
cess that combines preferential attachment with node fitness.

9The Value of acquired users is computed at the end of the dataset, thus
including the activity of these new users.
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Fig. 10: Joint distribution of users’ value and their total P2P
transfer amount.

Interestingly, both their setting and results are in the same
spirit as ours, as they describe the evolution of the network as
a process that is driven by a combination of network features
and the intrinsic quality of users.

Recent works use graph mining approaches to detect fraud
and prevent financial crime. Tam et al. [16] use Graph Con-
volution Network (GCN) to identify illicit accounts. They use
GNN to learn embeddings of nodes and edges, which they
exploit to characterize users and ultimately identify abnor-
mal/suspicious financial transactions. Similarly, Li et al. [17]
model the payment system as a temporal interaction graph
and propose a representation learning based framework to
detect anomalies and illicit users. The applicability of these
approaches in real-world systems is discussed by Kurshan and
Shen [18], who highlight the difficulties in implementing graph
solutions in real-time financial transaction processing systems
at an industrial scale.

Other problems have been addressed using graph ap-
proaches, including: Preventing deadlocks in payments [19];
Resilience to disasters [20]; Financial risk [21], [22]; Privacy
issues in “I owe you (IOU)” transaction networks [23]. A
similar work to ours was carried out by Liu et al. [24]
from the Alipay payment platform. They propose a graph
representation learning method for transaction networks that
aims to optimize the allocation of incentives to run efficient
marketing campaigns with a limited budget. In contrast to our
approach, they aim to provide incentives to merchants rather
than end users, and thus move towards modeling the sensitivity
to incentives for each merchant.

VI. CONCLUSIONS

In this paper, we proposed an effective way to measure the
value of users in modern payment platforms characterized by
a network structure, and we demonstrated our approach on the
YAP platform, an operational payment system with millions
of users. Our methodology extends the classical RFM model
used in marketing. It fits into the field of graph data science
by leveraging the connections between entities to enrich the
quantitative metrics of users with new knowledge derived



from the interactions between users. Specifically, we defined
a graph-based measure of user value that combines individual
user information with the structure of the invitation network
that describes the expansion of the platform. We provided a
practical way to compute user value using an iterative graph
algorithm based on the literature on opinion formation in social
networks, with provable convergence on general topologies
and finite time convergence in the case under study.

Our results confirmed the usefulness of our approach in ana-
lyzing and supporting the administration of payment platforms.
We discussed relevant applications of our measure to inform
business strategies. We first showed how our metric allows
evaluating the performance of marketing campaigns, not only
in terms of the number of newly acquired users, but also in
terms of their value. We also illustrated how the proposed
metric could suggest new targeting strategies that focus more
on high value users or on low value users with high potential,
allowing to adjust the trade-off between valorization of top
users and exploration of the user base.
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APPENDIX A

In the context of opinion formation and dynamic [12], it is
assumed that the opinion of each individual in a networked
society is locally influenced by that of their peers as each
individual forms their own opinion by combining their per-
sonal belief with that of people in their neighborhood. We
adapted these ideas to the novel setting of a payment platform
so that the value of each user is obtained as a combination
of their intrinsic value (referred as exogenous conditions) and
the value of other users they are connected to by invitations
(referred to as endogenous conditions). In particular, our model
is a special case of the “Group consensus models” presented
in [12, Section “Model for static conditions”] obtained by
assuming that all parameters (including the graph structure)
are immutable over time while the agents’ opinion is the only
factor to evolve and by making the following identifications:
• vector Y , which represents the opinion of agents in [12],

corresponds to vector V measuring the value of users,
• the contribution of exogenous variables, denoted by XB

in [12], corresponds to the vector of intrinsic user val-
ues I ,

• the scalar value α weights the relevance of connections
in both approaches,

• the scalar value β, which in [12] weights the effect of
exogenous conditions, is set to 1 in our setting.

This correspondence also guarantees convergence of our algo-
rithm (4) to the solution of (3) for generic graph topologies,
as this is equivalent to convergence of the opinion dynamics
process proved in [12].


	I Introduction
	II Dataset and its graph representation
	III Methodology for assessing user value
	III-A Intrinsic Value
	III-B Network Value

	IV Results
	IV-A Intrinsic and Network Values
	IV-B Temporal Evolution

	V Discussion
	V-A Applications to Marketing and Business
	V-B Related Works

	VI Conclusions
	References
	Appendix A

