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Abstract

In this paper, we study knowledge tracing in the domain of
programming education and make two important contribu-
tions. First, we harvest and publish so far the most com-
prehensive dataset, namely BePKT, which covers various
online behaviors in an OJ system, including programming
text problems, knowledge annotations, user-submitted code
and system-logged events. Second, we propose a new model
PDKT to exploit the enriched context for accurate student be-
havior prediction. More specifically, we construct a bipartite
graph for programming problem embedding, and design an
improved pre-training model PLCodeBERT for code embed-
ding, as well as a double-sequence RNN model with expo-
nential decay attention for effective feature fusion. Experi-
mental results on the new dataset BePKT show that our pro-
posed model establishes state-of-the-art performance in pro-
gramming knowledge tracing. In addition, we verify that our
code embedding strategy based on PLCodeBERT is comple-
mentary to existing knowledge tracing models to further en-
hance their accuracy. As a side product, PLCodeBERT also
results in better performance in other programming-related
tasks such as code clone detection.

1 Introduction
Massive open online course (MOOC) has reshaped user
learning experience and become more and more prevalent,
especially in the period of pandemic. For instance, Cours-
era has received 35 million new enrollments between mid-
March and end of July in 20201. For these online learning
platforms, knowledge tracing (Corbett and Anderson 1994)
plays the key role in providing a customized experience ac-
cording to each user’s unique background, ability and status.
Hence, there have been significant research efforts devoted
to knowledge tracing and various models have been pro-
posed, including DKT (Piech et al. 2015), DKT+ (Yeung and
Yeung 2018), DKVMN (Zhang et al. 2017), SAKT (Pandey
and Karypis 2019), CKT (Shen et al. 2020), AKT (Ghosh,
Heffernan, and Lan 2020), PEBG (Liu et al. 2020), and
HGKT (Tong et al. 2020). Details of these works will be
reviewed in the subsequent section.

Despite the success of knowledge tracing in MOOC sys-
tems, we find that negligible attention has been paid to on-

*Corresponding author
1https://www.classcentral.com/report/mooc-stats-pandemic/

line programming platforms, which also have attracted a
massive user base. The White House’s 2016 announcement
about the CS4All2 has driven more and more students to
learn computer science and be equipped with the compu-
tational thinking skills to embrace the era of digital econ-
omy. In the concept of CS4ALL (Barnes 2017), program-
ming is a core CS skill. In this paper, we are motivated to
study programming knowledge tracing so as to provide a
personalized learning experience for online students. In par-
ticular, we make two important contributions to the research
domain.

First, we observe that existing programming datasets,
such as BlackBox (Brown et al. 2014), Code Hunt (Bishop
et al. 2015), Code.org (Kalelioğlu 2015), Cloud-
Coder (Spacco et al. 2015), and CodeBench (Pereira
et al. 2020), are not suitable for the task of programming
knowledge tracing. The reason is that these datasets lack
sufficient context information to provide reliable perfor-
mance. Furthermore, none of them contains knowledge
concept annotations to facilitate the tracing of learning
status, rendering it unable to derive the degree of mastering
for each concept in the knowledge graph. To bridge the gap,
we harvest a comprehensive dataset from our OJ system,
which naturally contains all the online user behaviors.
We also annotate the programming problems with labels
of knowledge concepts and difficulty levels. Finally, we
obtained a dataset, namely BePKT, for Behavior-based
Programming Knowledge Tracing, which will be published
to benefit the research community.

Second, compared with MOOC, online programming
platforms are preferably focused on skill practice instead of
knowledge absorption, which makes a unique feature of pro-
gramming knowledge tracing. Since user-submitted code is
a very important clue to understanding users learning sta-
tus, we need to develop an effective code embedding strat-
egy and integrate it into the programming knowledge trac-
ing framework. Although code representation learning has
attracted attention from the domain of software engineering,
the syntax-tree based strategies (Zhang et al. 2019; Zügner
et al. 2021) are not suitable for programming knowledge
tracing. The reason is that most of the user-submitted codes

2https://obamawhitehouse.archives.gov/blog/2016/01/30/
computer-science-all
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in our OJ system are written by beginners and full of various
compilation errors. Thus, it is challenging to leverage the
syntax structure for code embedding and we need to resort
to token-based embedding. CodeBERT (Feng et al. 2020) is
a pre-training model leveraging the power of RoBERTa (Liu
et al. 2019) to learn code features from a large corpus in
Github. Nevertheless, the discrepancy between the code with
possible errors from beginners and the high-quality code in
Github repository prevents these models working well in
the task of programming knowledge tracing. To address the
gap, we propose a two-stage pre-training model PLCode-
BERT (Programming Learning CodeBERT) to first fine-
tune CodeBERT with a mass amount of student codes from
codeforces3. After that, we propose a supervised classifica-
tion pre-training to further enhance code embedding. The
derived code embedding, together with the semantic features
of problems and concepts learned from bipartite graph em-
bedding, are fused by a double-sequence model with expo-
nential decay attention to predict user learning behavior.

In the experimental study, we compare our proposed
framework with state-of-the-art knowledge tracing models.
To make a fair comparison, we also enhance them with
our proposed code embedding strategy, as a side product
to verify the effect of our code pre-training model. Exper-
imental results on BePKT show that our method outper-
forms its competitors in the task of programming knowledge
tracing. Additionally, we introduce another programming-
related dataset POJ (Mou et al. 2016) with the task of code
clone detection, to verify the effectiveness of PLCodeBERT.
The results both on BePKT and POJ demonstrate the ability
of PLCodeBERT to represent codes in programming educa-
tion.

To sum up, the major contributions of the paper include:

• We harvest and publish a comprehensive dataset BePKT4

for programming knowledge tracing.
• We propose an improved two-stage pre-training frame-

work PLCodeBERT for effective code embedding. It
works well not only in programming knowledge tracing
but also in other programming-related tasks such as code
clone detection.

• We propose a new double-sequence architecture with en-
hanced context embedding for programming knowledge
tracing. Experimental results verified its superiority.

2 Related Works
2.1 Knowledge Tracing
Early solutions rely on traditional machine learning models
and representative works include BKT (Corbett and Ander-
son 1994) and KTM (Vie and Kashima 2019). BKT uses bi-
nary variables to represent latent concepts and adopts hidden
Markov models (HMM) and Bayes rules for model learning.
KTM applies factorization machines to integrate problem-
related information and user behavior.

3https://codeforces.com/
4Download:https://drive.google.com/drive/folders/

1Jt6f0MV1paGLlctJqxHtdF1Vh2mUnsoV?usp=sharing

Recent trend on knowledge tracing has been shifted to de-
vising deep learning models. DKT (Piech et al. 2015) is a pi-
oneering DL model that uses RNN to model students’ learn-
ing status in the temporal dimension. DKT+ (Yeung and
Yeung 2018) improves DKT with a regularization compo-
nent for more consistent prediction. DKVMN (Zhang et al.
2017) introduces a dynamic key-value memory network to
store the knowledge and update the corresponding knowl-
edge state. Its output is the mastery level of each concept.
CKT (Shen et al. 2020) uses hierarchical convolutional lay-
ers to extract individualized learning rates based on con-
tinuous learning interactions. SAKT (Pandey and Karypis
2019) adopts Transformer to deal with data sparsity issue.
AKT (Ghosh, Heffernan, and Lan 2020) combines the at-
tention mechanism and Rasch model (Rasch 1993) to fully
exploit the context information. PEBG (Liu et al. 2020) im-
proves knowledge tracing by pre-training question embed-
ding. There have also emerged works, such as GIKT (Yang
et al. 2020) and HGKT (Tong et al. 2020), trying to solve
knowledge tracing with graph neural networks.

In the domain of programming knowledge tracing, there
exist very few research works. (Wang et al. 2017) is fo-
cused on code representation learning so as to infer a stu-
dent’s knowledge state. Each code submission is represented
as an abstract syntax tree (AST) and fed into a recurrent neu-
ral network. As mentioned, our OJ system contains syntac-
tically incorrect codes. They are unable to be converted to
AST representation and call for a new code embedding strat-
egy.

2.2 Code Embedding
Existing works on code embedding can be classified into
structured-based and context-based strategies. Structured-
based methods represent code based on parse trees.
Code2vec (Alon et al. 2018), ASTNN (Zhang et al. 2019),
CODE TRANSFORMER (Zügner et al. 2021), Graph-
CodeBERT (Guo et al. 2021), and CLSEBERT (Wang
et al. 2021) fall into this category. Early context-based
studies adopt basic text representation models, such as
RNN (Zaremba and Sutskever 2014; Dam, Tran, and Pham
2016) or attention-based model (Iyer et al. 2016). Recently,
researchers directly apply NLP pre-training strategies in
code embedding, such as CodeBERT (Feng et al. 2020),
GPT-C (Svyatkovskiy et al. 2020), and PLBART (Ahmad
et al. 2021). These models are pre-trained on a large code
corpus that is collected from mature software engineering
projects.

3 BePKT Dataset
In this section, we present the collection of BePKT dataset
and compare it with existing programming datasets.

3.1 Data Collection
BePKT is collected from our OJ system with thousands of
registered students in the university. There are two types of
information that are useful for knowledge tracing. One is
the knowledge base with programming problems and their

https://codeforces.com/
https://drive.google.com/drive/folders/1Jt6f0MV1paGLlctJqxHtdF1Vh2mUnsoV?usp=sharing
https://drive.google.com/drive/folders/1Jt6f0MV1paGLlctJqxHtdF1Vh2mUnsoV?usp=sharing


semantic annotations. For each problem, we manually an-
notate its associated knowledge concept and difficulty level.
The other type is users’ online behavior, which we extract
from system logs and organize the data according to the
event types. There are 5 types of such online events, includ-
ing viewing problems, viewing concepts, viewing submis-
sions, viewing ranking and submitting codes. Figure 1 il-
lustrates an example of learning behavior trajectory for the
courses of “The Beginning of C Programming” and “Data
Structure” from the same student. The number of user events
ranges from 0 to 222. In the peak days, the user was mainly
involved in the events of viewing problems. In total, we col-

N o v  8 ,  2 0 1 9  
7 : 5 4 A M  -  9 : 2 9 A M  ( 4 7 ) :
b 0 , b 1 , b 1 , b 7 , b 1 , b 1 , b 7 , b 7 , b 7 , b 7 , b 7 , b 7 ,
b 7 , b 1 , b 7 , b 1 , b 7 , b 1 , b 7 , b 1 , b 7 , b 7 , b 1 , b 7 ,
b 1 , b 7 , b 1 , b 1 , b 5 , b 1 , b 5 , b 1 , b 1 , b 1 , b 1 , b 4 ,
b 5 , b 5 , b 1 , b 1 , b 1 , b 5 , b 1 , b 5 , b 1 , b 5 , b 1
1 6 : 0 5 P M  -  1 7 : 0 3 P M  ( 1 5 ) :
s 4 , s - 1 , s - 1 , s - 1 , s 0 , s 0 , s - 1 , s 0 , s 0 , s 0 , s 0 ,
s - 1 , s - 1 , s 0 , s 0

1 5

1 9 6

1 4 6

6 2 6 3

T h e  b e g i n n i n g  o f  
C  P r o g r a m m i n g
S e p  1 1 ,  2 0 1 9

T h e  e n d  o f  
D a t a  S t r u c t u r e
J u l  1 0 ,  2 0 2 0

C o n t e s t  2 7
O c t  8 ,  2 0 1 9

C o n t e s t  5 2
J u n  2 8 ,  2 0 2 0

C o n t e s t  4 4
M a y  2 0 ,  2 0 2 0

C o n t e s t  2 5
J a n  2 ,  2 0 2 0

C o n t e s t  3 2
D e c  6 ,  2 0 1 9

0

C o n t e s t  2 9
N o v  8 ,  2 0 1 9

2 2 2

1 0 2

Figure 1: An example of a complete timeline for the col-
lection of student behaviors in BePKT. From September 11,
2019, to July 10, 2020, the student has been using our OJ
system, with the number of user events fluctuating daily.

lected learning behavior data from 906 users for nearly two
years (From September, 2019, to July, 2021) of program-
ming learning history. The knowledge base contains 1054
problems and 106 concepts. Each problem is associated with
a difficulty level, as well as one or multiple concepts. There
are 1054 annotated problem-concept pairs.

For the knowledge tracing task, we make two refinements:
• Remove all non-student data.
• Remove student data with less than 20 code submission

records.
Finally, we obtained 422 students’ programming learning
trajectories with an average submission length of nearly 161.

3.2 Comparison with Existing Datasets
In Table 1, we summarize the comparison of our BePKT
with existing programming datasets. We can see that BePKT
is the most comprehensive – it is the only dataset that con-
tains user code, online events, problem text and knowledge
concepts. Most datasets only contain user behavior data, but
lack an informative knowledge base, which we think plays a
vital role in programming knowledge tracing. We believe the
publication of BePKT can benefit the community and attract
more research attention to the topic.

4 Programming Knowledge Tracing
In this section, we give the formal definition of programming
knowledge tracing, and introduce the detailed architecture

design of our method.

4.1 Problem Definition
We formulate a student’s historical programming behav-
ior as a sequence of coding events in our OJ system.
Each coding event at time step t is represented by tuple
〈pt, cpt , dt, rt〉, where pt is the coding problem, cpt con-
tains a set of knowledge concepts associated with pt, dt is
the code submitted by the student and rt is a binary signal
from the system indicating whether the student has correctly
solved the problem. Given a sequence of historical cod-
ing events {〈p1, cp1

, d1, r1〉, . . . , 〈pt−1, cpt−1
, dt−1, rt−1〉},

programming knowledge tracing aims to predict the value of
rt for input 〈pt, cpt

〉. Note that at time step t, user code dt
is not required so that the model can be used to predict for
any programming problems. To facilitate understanding, an
example of data model for programming knowledge tracing
is shown in Figure 2.

Problems

Concepts

Codes

𝑐1 𝑐2 𝑐2 𝑐3 𝑐5 𝑐6 𝑐7 𝑐3 𝑐7 𝑐8

𝑝1 𝑝2 𝑝𝑡−1 𝑝𝑡

𝒓𝟏 = 𝟎 𝒓𝟐 = 𝟏 𝒓𝒕−𝟏 = 𝟏

𝒅𝟏 𝒅𝟐 𝒅𝒕−𝟏

?

Figure 2: Data model for programming knowledge tracing.

4.2 Overall Architecture
We propose a deep learning framework, namely PDKT, to
solve programming knowledge tracing. As shown in Fig-
ure 3, the architecture of PDKT is mainly composed of two
functional modules. The first is context representation learn-
ing, including bipartite graph embedding to learn problem
embedding and a two-stage code pre-training framework
PLCodeBERT. PLCodeBERT obtains code embedding by
fine-tuning pre-trained CodeBERT from an external pro-
gramming corpus and supervised classification pre-training
from BePKT. The second part is a double-sequence model.
It uses two RNNs to effectively capture sequential features
in the problem and code embedding sequences, which are
weighted by exponential decay attention inspired by Ebbing-
haus’ Forgetting Curve (Ebbinghaus 2013) and then fused
with the new problem embedding for final prediction. De-
tails of the sub-modules are introduced in the following.

4.3 Context Representation Learning
Bipartite Problem Embedding since both problems and
concept annotations are available in our dataset, we are mo-
tivated to build a bipartite graph for these two types of in-
formation and adopt existing graph embedding approaches
to fully exploit the relations between problems and concepts
and obtain their semantic representations. In our implemen-
tation, we select GAT (Velickovic et al. 2018) as the under-
lying graph embedding model because it can learn vertex
representations from the explicit relations and implicit rela-
tions concurrently in bipartite networks. In other words, the



Table 1: Comparison between BePKT and existing public programming datasets.

Data Lang Level Source #User Code Click Event Problem Concept

PLAGIARISM(Ljubovic 2020) C/C++ CS1 ide N/A ! # # #
BlackBox(Brown et al. 2014) Java N/A ide 1M N/A N/A N/A N/A

CloudCoder(Spacco et al. 2015) Python/C CS1 online ide 646 N/A N/A N/A N/A
Code.org(Kalelioğlu 2015) Scratch CS0 N/A 500k N/A N/A ! N/A

POJ(Mou et al. 2016) C/C++ CS1 online judge 104 # # # #

CodeHunt(Bishop et al. 2015) Java/C# N/A online ide 258 ! ! # #

CodeBench(Pereira et al. 2020) Python CS1 online judge 2714 ! ! # #

BePKT C/C++ CS1 online judge 906 " " " "

Bipartite Problem Embedding

External 

Corpus

Pre-training Code Embedding

𝑝1

𝑐1

Unsupervised

Embedding

ℎ(𝑡−1)

𝑂ℎ
(𝑡−1)

𝑂𝑔
(𝑡−1)

RNN

RNN
Predict

𝑝𝑡

Double-sequence Modeling

𝑝2 𝑝3

𝑐2 𝑐3 𝑐4 𝑐5

ℎ(𝑡−2)ℎ(1)ℎ(0)

𝑑1 𝑑𝑡−2 𝑑𝑡−1

𝑔(𝑡−1)𝑔(𝑡−2)𝑔(1)𝑔(0)

𝑝𝑡−2 𝑝𝑡−1𝑝1

Exponential Decay Attention 

Attention

FC Layer

Weighted Sum

Supervised

Classification

Pretraining Fine-tuning

WWM

+GNN

CodeBERT

Fine-tuning

PLCodeBERT

Figure 3: The PDKT architecture overview.

implicit relationship between problems or concepts (as illus-
trated by dot lines in Figure 3) can also be effectively learned
by GAT.

Furthermore, in our dataset, problem descriptions and
concept names are provided with plentiful text based on Chi-
nese. In order to capture the semantics, we adopt BERT-
wwm (Cui et al. 2020), a Chinese pre-training model to ini-
tialize the node embeddings in the GAT.

Code Embedding via Pre-training Framework As
aforementioned in Section 2.2, the structured-based code
embedding strategies proposed in the community of soft-
ware engineering cannot be directly transplanted for code
analysis in OJ systems, where a large portion of codes
are associated with compilation errors. In fact, these er-
rors are useful clues to capture a student’s learning status
in our application of programming knowledge tracing. In
this paper, instead of relying on syntax trees, we propose
an improved pre-training framework PLCodeBERT based
on CodeBERT (Feng et al. 2020) that learn features from
raw code text. PLCodeBERT is composed of two stages: 1)
unsupervised pre-training in a mass amount of student codes
to fine-tune CodeBERT and 2) code embedding inspired by
supervised visual feature pre-training via image classifica-

tion in ImageNet.
In the first stage, we perform a further pre-training to fine-

tune CodeBERT inspired by (Gururangan et al. 2020). In the
beginning, we harness an external data source with abundant
codes5, which contains 1, 262, 910 user-submitted codes in
multiple programming languages. Then we use the tokenizer
that comes with the model to tokenize the corpus of all lan-
guages and adopt the MLM (Masked Language Modeling)
task to make further pre-training. Finally, we obtain a new
pre-training model PLCodeBERT.

In the second stage, we propose a supervised learning
strategy to derive more effective code embedding. The idea
is inspired by the common practice in computer vision where
the features pre-trained by image classification in ImageNet
can be directly used as visual embedding to support more
advanced applications. In our setting of code classification,
we construct the target space with 9 distinct labels. If the
code is error-free, we annotate it with the label “correct”.
Otherwise, we define 8 types of submission errors in our OJ
system, such as “Compile Error”, “Wrong Answer”, “Time
Limit Exceeded”, “Memory Limit Exceeded”, and so on.

5https://www.kaggle.com/agrigorev/codeforces-code



In addition to pre-training models, such as CodeBERT
and PLCodeBERT, we also investigate the performance of
basic text representation models on two-stage code embed-
ding. Different from pre-training models, we tokenize6 the
corpus by language and use Word2Vec7 to obtain code to-
ken embedding. Then we apply the same classification task
to derive effective code embedding with different text clas-
sification models. As to text classification model selection,
we offline tried TextCNN (Kim 2014), TextRNN (Liu, Qiu,
and Huang 2016), TextRNN Att (Zhou et al. 2016), as well
as a recent text representation model DRCN (Kim, Kang,
and Kwak 2019). Results show that PLCodeBERT is more
suitable for code classification and final prediction in all ba-
sic text representation models and pre-training models. The
detailed analysis will be presented in Section 5.5.

4.4 Double-Sequence Modeling
Given the derived embeddings for problems and codes, de-
noted by pt ∈ Rd1 and dt ∈ Rd0 , respectively, we are now
ready to present our double-sequence modeling (DSM) with
exponential decay attention to tackle programming knowl-
edge tracing. Initially, the two sequences p1, · · · , pt−1 and
d1, · · · , dt−1 are sent to two separate RNNs, which start for-
ward propagation from an initial states (g(0) for problems
and h(0) for codes). In our implementation, h(0) and g(0)

are initialized as zero tensors, because these students with
no coding activity are considered to be newbies in program-
ming. For each time step from k = 1 to t, we apply the
following equations to update hidden states g(k) and h(k) :

g(k) =tanh(bg +Wgh
(k−1) + Ugq

(k)),

h(k) =tanh(bh +Whh
(k−1) + Uhd

(k)),

where Wg, Ug,Wh, Uh are the weight coefficients, and
bg, bh are the bias terms. To predict the performance at time
step k = t, we use attention to assign higher weight to the
previous problems and codes which are more similar to the
current problem pt. The similarity function is computed by:

Sg = FC(pt)G
T , Sh = FC(pt)H

T ,

where GT and HT denote the transposes of concatenation
of g(k) and h(k) from time step k = 1 to t− 1, respectively,
and FC represents fully connected networks. Furthermore,
inspired by The Ebbinghaus Forgetting Curve (Ebbinghaus
2013), we add an exponential decay to the similarity ma-
trix before applying softmax to get normalized attention
weights:

Ah =softmax(exp(−λD)� Sh),

Ag =softmax(exp(−λD)� Sg),

where λ is the exponential decay hyperparameter, � is the
elementwise multiplication, and D = [t− 2, t− 3, · · · , 1, 0]
is the time step difference vector. The underlying motiva-
tion for applying exponential decay attention is that recent
programming events are much more important to measure a
student’s current learning status.

6https://github.com/dspinellis/tokenizer
7https://radimrehurek.com/gensim/models/word2vec.html

Using weighted sum, we obtain the students’ program-
ming knowledge mastery O(k)

g and coding capability O(k)
h

at k = t− 1:

O(t−1)
g =

∑
k

(Ag)kg
(k), k ∈ {1, 2, · · · , t− 1},

O
(t−1)
h =

∑
k

(Ah)kh
(k), k ∈ {1, 2, · · · , t− 1}.

To calculate the similarity of knowledge masteryO(t−1)
g and

programming ability O(t−1)
h with problem pt, we concate-

nate the corresponding vectors and use two fully connected
networks. Finally, we concatenate the two similarities and
use another fully connected network, through the sigmoid
function to get the final prediction probability r̂t ∈ [0, 1]:

r̂t =SIG(FC(FC(O
(t−1)
h ⊕ pt)⊕ FC(O(t−1)

g ⊕ pt))),

where FC represents fully connected networks, SIG de-
notes sigmoid function, and ⊕ denotes concatenation.

For parameter training, we compute the binary cross-
entropy loss between predictions and ground truths to update
all parameters θ in the proposed model:

L(θ) =
∑
k

−(rk log r̂k + (1− rk) log(1− r̂k)).

5 Experiment
In this section, we first compare the proposed PDKT model
with other knowledge tracing approaches in our crafted
BePKT dataset, whose details have been presented in Sec-
tion 3. Then ablation studies are provided to justify the ef-
fectiveness of three major components in PDKT. Finally,
we take a deep insight into the design of later components,
which are the influence of code embedding strategy, the ef-
fectiveness of PLCodeBERT, and the detailed analysis of ex-
ponential decay attention.

5.1 Comparison Models
The baselines include classic methods proposed for knowl-
edge tracing, as well as two hybrid variants that extend state-
of-the-art models to incorporate our proposed code embed-
ding.

• DKT (Piech et al. 2015) is the first work to apply RNN
to model student’s learning sequence.

• DKVMN (Zhang et al. 2017) introduces a memory-
augmented neural network (MANN) to capture the mas-
tery level of each knowledge concept.

• DKTP (Yeung and Yeung 2018) improves DKT with en-
hanced regularization.

• AKT (Ghosh, Heffernan, and Lan 2020) uses a novel
monotonic attention mechanism based on Transformer
and is considered as state-of-the-art.

• DKTP+PLCodeBERT and AKT+PLCodeBERT are ex-
tended versions of DKTP and AKT, respectively, to in-
corporate our code pre-training model PLCodeBERT.



The implementations of DKMVN, DKTP, and AKT are gen-
erously provided by the authors. For DKT, we use the repro-
duced code in Github8.

5.2 Parameter Setting and Performance Metric
In bipartite problem embedding, we set problem embedding
size to 256. In pre-training code embedding, for basic text
presentation models, we use 100, 512, 5 × 10−4, and 768
as the values for code token embedding size, batch size,
learning rate, and code embedding size, respectively. For
pre-training models, we use 768, 16, 5 × 10−5, and 768 as
the values for code token embedding size, batch size, learn-
ing rate, and code embedding size, respectively. In double-
sequence modeling, we set batch size, learning rate, and ex-
ponential decay λ, to 8, 10−5, and 0.6, respectively. Fol-
lowing (Ghosh, Heffernan, and Lan 2020), we set sequence
length to 200. We use Adam as the default optimizer.

Following previous knowledge tracing works, we also use
AUC as the performance metric. For each method, we repeat
the training process five times and report the average AUC.

5.3 Performance on BePKT
Table 2 shows the AUC performance of all methods on
BePKT, from which we derive the following observations.
1) PDKT outperforms its competitors with a noticeable mar-
gin, verifying the effectiveness of our embedding strategy
and model design. 2) When code embedding is incorporated,
the AUC of DKTP and AKT is boosted by an additional
2.03% and 3.65%, respectively, implying that our code em-
bedding is complementary to existing models and can fur-
ther improve their performances. 3) RNN based methods
(e.g., DKT and DKT+) outperform DKVMN and AKT. It
means RNN is more suitable to capture sequential program-
ming behavior. This observation also motivated us to adopt
RNN in our proposed PDKT model.

Table 2: The AUC results of different methods on BePKT.

Methods AUC

DKT 0.7197
DKVMN 0.7089

DKTP 0.7369
AKT 0.7128

DKTP+PLCodeBERT 0.7572
AKT+PLCodeBERT 0.7493

PDKT 0.7745

5.4 Ablation Studies
To justify the three key components in the proposed PDKT
architecture, including bipartite problem embedding, code
embedding, and attended double-sequence modeling, we
perform ablation studies to evaluate the effect of each com-
ponent. As shown in Table 3, we implement four variants

8https://github.com/chsong513/DeepKnowledgeTracing-DKT-
Pytorch

of PDKT by removing or replacing function modules in our
model.

Table 3: The AUC results of different variants of PDKT.

Methods AUC

Remove code embedding and its RNN encoding 0.7163
Remove problem embedding and its RNN encoding 0.7546

Remove classification for code embedding 0.7050
Replace GAT with Node2Vec 0.7643

PDKT 0.7745

In the first ablation experiment, we remove code embed-
ding and its associated sequential modeling. The model is
reduced to only leverage the features from input problems
and knowledge concepts. The double-sequence modeling
becomes single-sequence and the attention module is re-
moved as it plays no effect in this scenario. We can see that
without integrating code features, the performance degrades
dramatically, verifying the effectiveness of our strategies of
code embedding and its fusion with problem features.

The second ablation experiment is similar to the first one,
except that we remove problem features and their sequential
modeling this time. The AUC drops, but not significantly as
in the first ablation study. This shows that coding embedding
plays a more important role than problem embedding in the
input sources. The user-submitted code contains a more in-
formative context to leverage.

In the third ablation experiment, our goal is to evaluate
the effect of supervised code classification to generate pre-
trained code features for programming knowledge tracing.
It is interesting to observe that without this component, the
AUC is even worse than that in the first ablation study (i.e.,
without using code embedding). It means we cannot simply
rely on unsupervised embedding from corpus pre-training.
The derived features are not discriminative for the task of
programming knowledge tracing and bring negative effects.

In the last ablation experiment, we replace GAT with
Node2Vec (Grover and Leskovec 2016) as an alternative
graph embedding approach. We observe a slight decrease
of the AUC, which means GAT is superior to Node2Vec.
This is because GAT can better learn the vertex representa-
tions from the explicit relations and implicit relations con-
currently in the bipartite graph.

5.5 Selection of Code Embedding Strategies
As mentioned in Section 4.3, we design a supervised clas-
sification task to derived pre-trained code features and use
them to support programming knowledge tracing. In this ex-
periment, we evaluate how code classification strategies can
affect the performance on final prediction. The design space
is set with two knobs on the number of target classes and
text classification models. In the first knob, we set two clas-
sification tasks, namely 2-classification and 9-classification.
The former uses binary labels to indicate the correctness of
user-submitted code. The latter provides more detailed er-
ror labels (details are presented in Section 4.3). The second
knob includes six types of classification models, including



four basic text representation models and two pre-trained
models. In Table 4, we report both classification accuracy
as well as AUC on the final task of PKT for each model in-
stance. From the results, we can see that 1) PLCodeBERT
outperforms the other models in all cases. 2) Code features
trained by 9-classification are more helpful to the task of
programming knowledge tracing than 2-classification fea-
tures. These are the reasons for selecting PLCodeBERT and
9-classification in our PDKT model. 3) There is a positive
correlation between the results of classification accuracy and
AUC, implying that features learned from classification are
also effective for programming knowledge tracing. 4) In all
cases, PLCodeBERT outperforms CodeBERT, demonstrat-
ing the importance of pre-training for effective code embed-
ding.

Table 4: The classification accuracy and final predict AUC
results of different strategy in supervised code classification.

Models 2-classification 9-classification
Accuracy AUC Accuracy AUC

TextCNN 70.06% 0.7420 46.38% 0.7519
TextRNN 68.99% 0.7301 35.17% 0.7406

DRCN 69.58% 0.7318 35.62% 0.7442
TextRNN Att 70.25% 0.7432 46.81% 0.7561

CodeBERT 73.61% 0.7501 63.45% 0.7682
PLCodeBERT 73.95% 0.7543 65.79% 0.7745

5.6 Effectiveness of PLCodeBERT
To further verify the effectiveness of PLCodeBERT in code
embedding, we introduce an extra task called code clone de-
tection, using POJ dataset (Mou et al. 2016) provided by
CodeXGLUE (Lu et al. 2021). POJ is a classic program-
ming learning dataset collected from an online judge system
that supports several programming-related tasks, including
code clone detection, as shown in Table 1. Since the tar-
get is to retrieve the TOP-K codes with the same seman-
tic, we choose MAP@R score, the mean of average preci-
sion scores, as the evaluation metric. We use the same ex-
perimental setting as CodeBERT and only reserve the first
stage of PLCodeBERT. We compare PLCodeBERT to sev-
eral existing representative pre-training models, and report
the performance in Table 5. From the results, we can see
that PLCodeBERT achieves state-of-the-art performance on
the task of code clone detection. In particular, PLCodeBERT
improves the result by nearly 6% compared to CodeBERT.
The results both in Table 4 and Table 5 demonstrate the ef-
fectiveness of PLCodeBERT and the importance of further
pre-training in programming codes.

5.7 Analysis of Exponential Decay Attention
We present a further investigation of exponential decay at-
tention in double-sequence modeling in this experiment.
Figure 4 shows the fitting curves of AUC results on varying
exponential decay values λ with or without attention. When
adding exponential decay with attention (yellow line with
square dots), as λ increases, the performance increases first

Table 5: The MAP@R scores of different methods on POJ
dataset.

Method MAP@R

RoberTa (Liu et al. 2019) 76.67
CodeBERT (Feng et al. 2020) 82.67

GraphCodeBERT (Guo et al. 2021) 85.16
CLSEBERT (Wang et al. 2021) 88.24

PLCodeBERT 88.63

and reaches the maximum value of 0.7745 when λ = 0.6,
then decreases and finally stabilizes. When λ = 0, it is
equivalent to the typical attention, and the performance is
deplorable, which shows the importance of exponential de-
cay. When adding exponential decay without attention (red
line with circle dots), the model ignores the vectors corre-
lation and prediction results are much worse. It is noticed
that the two curves converge to the same value gradually
because when the exponential decay value is too large, the
model only depends on the output of the previous step, and
attention will not work.

0 2 4 6 8 1 0

0 . 7 0

0 . 7 2

0 . 7 4

0 . 7 6

0 . 7 8
AU

C

E x p o e n t i a l  D e c a y  V a l u e

 W i t h  A t t e n t i o n
 W i t h o u t  A t t e n t i o n

Figure 4: The influence of exponential decay value with-
/without attention.

6 Conclusion and Future Work
In this paper, we public a behavior-based programming
knowledge tracing dataset BePKT, with the most compre-
hensive contexts. And we propose a state-of-the-art model
in programming knowledge tracing, namely PDKT. PDKT
employs a double-sequence model with exponential decay
attention to model problem and code sequences. In partic-
ular, we construct a bipartite graph and design a two-stage
pre-training framework PLCodeBERT to strengthen prob-
lem and code embedding, respectively. Extensive experi-
ment results show that our method design is reasonable, and
PLCodeBERT can complement existing knowledge tracing
models and improve the ability of code representation in
programming learning. Avenues of future work include i)
collecting more student data to enrich BePKT, and ii) explor-
ing the influence of clicking events on programming knowl-
edge tracing.
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