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Abstract—Breast density is widely used as an initial indicator
of developing breast cancer. At present, current classification
methods for mammographic density usually require manual
operations or expert knowledge that makes them expensive
in real-time situations. Such methods achieve only moderate
classification accuracy due to the limited model capacity and
computational resources. In addition, most existing studies focus
on improving classification accuracy using only raw images
or the entire set of original attributes and remain unable to
identify hidden patterns or causal information necessary to
discriminate breast density classes. It is challenging to find high-
quality knowledge when some attributes defining the data space
are redundant or irrelevant. In this study, we present a novel
attribute construction method using genetic programming (GP)
for the task of breast density classification. To extract informative
features from the raw mammographic images, wavelet decompo-
sition, local binary patterns, and histogram of oriented gradients
have been utilized to include texture, local and global image
properties. The study evaluates the goodness of the proposed
method on two benchmark real-world mammographic image
datasets and compares the results of the proposed GP method
with eight conventional classification methods. The experimental
results reveal that the proposed method significantly outperforms
most of the commonly used classification methods in binary and
multi-class classification tasks. Furthermore, the study shows the
potential of GP for mammographic breast density classification
by interpreting evolved attributes that highlight important breast
density characteristics.

Index Terms—genetic programming, attribute construction,
breast density, image classification

I. INTRODUCTION

Breast cancer is the most commonly diagnosed cancer with
an estimated 2.3 million new cases and 684, 996 deaths world-
wide, as per global cancer statistics 2020 [1]. Fig. 1 shows
the incidence and mortality rates of the top 10 most common
cancers where breast cancer remains prominent. Breast density
is an important indicator for developing breast cancer [2].
In medical studies, a woman gets 5-fold increased risk of
developing breast cancer if mammographic breast density
(MBD) exceeds 75% [3].

Mammography is the most effective technique for breast
cancer screening [4]. Radiologists qualitatively evaluate the
breast density based on the Breast Imaging and Reporting Data
System (BI-RADS) standards [5]. The standard BI-RADS
criterion has four categories; BI-RADS I: fatty (0–25%), BI-
RADSII: scattered density (26–50%), BI-RADSIII: heteroge-
neously dense (51–75%), and BI-RADSIV: extremely dense
(76–100%) [5]. When radiologists observe mammograms with

the naked eye to classify them into BI-RADS categories, there
is an obvious inter- and intra-reader variability [2]. In addition,
categorizing a large number of mammograms is a tiresome
process for the radiologists. Hence, designing and developing
a fully automatic classification method to accurately classify
mammograms is urgently needed. This requires identification
of strategies that capture informative characteristics such as
texture, scale, local, global and frequency-based properties,
which are conceptually useful to mimic these clinical applica-
tions.

When applied to sub-images, feature extraction extracts
local features, while when applied to the entire image, it
extracts global features. Additionally, features can be extracted
from multiple color channels and scales of an image to
incorporate texture information. Such classification methods
or diagnostic systems are in demand, which can accurately
classify a particular breast density level in real-life scenario. In
addition to correctly classifying, it is also vital to identify sig-
nificant features simultaneously that can provide a radiologist
with critical visual patterns [6]. In medical domain, identifying
a diseased image correctly is more important compared to
identifying a non-diseased image correctly [7]. The raw pixels
or features extracted directly from mammographic images
may not contain enough information to distinguish between
images of different breast density levels to ensure accurate
classification. Consequently, a number of artifacts can result
in redundant or irrelevant extracted features that can affect
classification accuracy. This type of problem can be addressed
with the use of feature selection and feature construction,
which are mainly used to select important features from the
original set, and to construct new informative features based
on the original set of features, respectively [8].

During the last decade, deep learning has been actively
applied and has provided viable outcomes for breast density
classification. Mohamed et al. [9] utlizied AlexNet and transfer
learning approach for binary classification of mammograms.
They resized the original mammographic images to a reduced
size (almost 10 times reduction in size) to suit the architecture
of AlexNet. Li et al. [7] utilized ResNet-50 to classify breast
density from mammographic images. They could not achieve
satisfactory results on a small dataset, as deep learning models
usually require large training data to effectively train the
classification model.

Genetic Programming (GP) is a bio-inspired evolution-
ary computation method that automatically evolves models



 

Fig. 1. Distributions of the top 10 most common cancers in 2020 [1].

(computer programs) to solve a problem by using genetic
operators such as crossover, mutation, and reproduction [10].
GP explores the search space and has a built-in ability to
select prominent attributes with discriminating ability between
classes [11]. In addition, the evolved models by GP are used
to construct new attributes that can help achieve performance
gains [12]. GP can evolve multiple trees in one individual
which is termed as multi-tree GP [13]. GP has not only been
exclusively utilized for classification, but has likewise been
explored extensively for feature selection and construction
[11], [14]. In image analysis, GP has been explored in a wide
range of applications such as object detection [15], feature
extraction [11], feature construction [12], [14], evolving image
descriptors [16], and classification [11]. In medical image
analysis, GP has been recently explored for skin cancer
detection [17], but it has only been studied by Burling et
al. [18] for MBD binary classification in fatty and dense
categories. They extracted statistical and local binary patterns
(LBP) features, and utilized transfer learning in GP for binary
image classification. The results show the potential of GP
for MBD classification but still need improvement to reach
satisfactory results.

Goals: This study aims to develop a novel attribute con-
struction method based on multi-tree GP for breast den-
sity classification from mammograms. Different from most
existing methods, the proposed method aims at evolving a
GP individual with multiple attributes rich in multi-scale,
local, and global textural properties provided by frequency-
based pyramid-structured wavelet decomposition, LBP, and
histogram of oriented gradients (HOG). To better explore the
search space, the multiple trees in a GP individual utilize all-
index crossover during the evolutionary process where the sub-
trees can crossover regardless of their index in a GP individual.
By doing so, the proposed method is expected to automatically
evolve information-rich attributes with discriminating ability
between the MBD image classes. This work aims to address
the following research question:

• Can the proposed multi-tree GP approach automatically
construct multiple informative attributes to provide better

discriminating ability between different breast density
levels in mammographic image datasets?

• How well the proposed GP method perform in compari-
son to the commonly used machine learning classification
algorithms: Naı̈ve Bayes (NB), Support Vector Machines
(SVM), k-nearest neighbor (k-NN), and decision trees
(J48), and ensemble methods: Random Forest (RF), Bag-
ging, Adaboost, and LogitBoost?

• How well does this new method work as compared to
existing GP approach(es) for classifying breast density
mammograms? and

• Which original attributes are most prominent in providing
good classification performance and why?

II. LITERATURE REVIEW

A. Feature Extraction

Feature extraction is used to extract the image features,
similar to those visually detected by radiologists, that can
accurately characterize mammograms into BI-RADS cate-
gories. This study utilizes commonly used statistical features
to encompass global image properties and pyramid-structured
wavelet decomposition to include multi-scale, local, global,
and texture image properties. Moreover, LBP and HOG image
descriptors are utilized to include texture and shape image
properties. This study uses the following three feature extrac-
tion methods:

1) Pyramid Structured Wavelet Decomposition: Texture
analysis helps identify the visual characteristics of mammo-
gram tissues which constitutes the basis of clinical diagnosis
(BI-RADS) [7]. The pyramid-structured wavelet analysis [19]
captures both the local (detailed structure and internal texture)
and global (overall properties) information of the mammo-
graphic image. We have applied three-level pyramid-structured
wavelet decomposition on the original mamographic images as
shown in Fig. 2.

To transform the image data to feature vectors, eight
statistical features are extracted from each of the original
mammogram images. In addition, the eight statistical measures
are used to extract informative features from the wavelet
coefficients. The statistical features include energy, kurtosis,
mean, average energy, standard deviation, entropy, skewness,
and norm. Table I shows the mathematical description of these
features. More details can be found in [20].

2) Local Binary Patterns: Developed in 1994 [21], LBP is
a visual image descriptor widely adopted for texture classifica-
tion. It computes the labels of the pixels in an image according
to the neighborhood of each pixel. By setting each central pixel
in a window as a threshold, it compares the pixels surrounding
the central pixel and generates the result as a binary number.
More details can be found in [21]. In mammographic images,
texture of the breast tissue is an important characteristic to
classify between different density levels [5].

3) Histogram of Oriented Gradients: It is an image descrip-
tor developed by Dalal et al. [22] which focuses on shape and
texture information in image classification. The HOG image
descriptor uses magnitude and orientation of the gradient to
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Fig. 2. Converting mammographic images to feature vectors using pyramid-
structured wavelet decomposition and statistical features.

TABLE I
STATISTICAL FEATURES
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transform an image to a feature vector. The image is divide
into partially overlapping regions/blocks. From these blocks,
it generates histograms using the magnitude and orientations
of the gradient. The computed histograms are concatenated
together to form a final feature vector. More details can be
found in [22].

B. Related Work

Mohamed et al. [9] developed an eight-layer convolutional
neural network (CNN), improved from AlexNet to classify
the mammograms into two classes; scattered density, and
heterogeneously dense. They used their own private mam-
mogram dataset with 22, 000 images to effectively train the
CNN classifier. Their results demonstrated the effectiveness
of utilizing transfer learning compared to training the CNN
model from scratch. Trivizakis et al. [3] developed a MBD
classification method using pre-trained ImageNet weights for
feature extraction, data augmentation on training set, and SVM
classifier. They evaluated their method on two mammographic
datasets. However, they used overall accuracy as a fitness
measure in unbalanced datasets.

Li et al. [7] proposed dilated convolutions and attention
modules using ResNet-50 for MBD classification. They used
two datasets but their method could not provide good results
on the small MBD dataset, since its hard for deep learning

models to classify well on limited data. Recently, Valencia et
al. [6] proposed a breast density classification method using
density map based on texture analysis and fuzzy classifica-
tion based on subtractive grouping algorithm. Although this
method provides a support tool for physicians, the method
does not achieve satisfactory classification accuracy on two
datasets in the BI-RADS breast density classes.

Zhao et al. [4] developed BASCNet based on the series of
ResNet architectures (ResNet-18/34/50/101/152) and adaptive
spatial and channel attention network for MBD classification.
Two datasets are used to evaluate their method. They employed
data augmentation to increase the training data and resizing
mammographic images to suit the input size of ResNet archi-
tecture. They performed multiple experiments with a series of
ResNet-18/34/50/101/152. Though the author performed thor-
ough investigation to increase the classification performance,
the method is not interpretable and cannot identify important
attributes necessary to discriminate between breast density
classes. Li et al. [2] proposed a multi-step process including
breast region segmentation, feature extraction using local Bi-
nary patterns (LBP) and multi-texture fractal features, feature
selection using principal component analysis and an auto-
encoder, and MBD classification using SVM. Their method
is tested on only one dataset and all images are resized to
a single resolution which distorts the aspect-ratio resulting in
loss of texture information.

These deep learning methods have several limitations; 1)
long training time consuming huge computational resources,
2) usually resize images to suit input configurations of the
deep learning model which distorts aspect-ratio and leads to
textural information loss, 3) using overall accuracy as fitness
measure in unbalanced datasets, and 4) black-box architecture
focusing on improving accuracy only and remain hard to
interpret prominent attributes.

III. PROPOSED GP METHOD

This study proposes a novel multiple attribute construction
using GP (MAC-GP) method for breast density classification
using mammographic images. The overall structure of the
proposed method is shown in Fig. 3. The test process is shown
in Fig. 4. After extracting the statistical features from the
original mammographic images and wavelet coefficients, they
are concatenated together to form a final feature vector.

A. Training Process

The training data is provided to GP for multiple attribute
construction using multi-tree GP. In this work, the number
of trees in one GP individual is set to five in order to have
enough number of new constructed attributes while keeping
the evolutionary process computationally less expensive.

This is the first attribute construction method for mammo-
graphic image classification using GP, setting or automatically
evolving a suitable number of constructed attributes is still an
open issue. Since a GP tree is a mathematical expression, its
value can be computed using the original set of attributes.
This computed value is the new constructed attribute. Hence,
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Fig. 3. Training process of the proposed MAC-GP method.

with five trees, five attributes are constructed. This is shown as
attribute construction in Fig. 3, where m shows the number of
GP trees in one GP individual and the number of constructed
attributes. Using these constructed attributes, the original set is
transformed to a new training set with m number of attributes.
This transformed set is provided to Random Forest (RF) for
classification. If the stopping criteria for GP is reached, i.e., a
model with 100% F1-score is found or GP reaches 50 number
of generations, the RF trained model is used to calculate the
classification accuracy. On the contrary, if the stopping criteria
is not met, the process is repeated again but this time the GP
population includes the highest performing GP individual from
the previous generation. Hence, GP explores the search space
and keeps generating better or maintain the best attributes so
far in the subsequent generations with better discriminating
ability between MBD classes.

B. Test Process

After the training process, we get the best GP individual
with five trees as shown in Fig. 4. We use these five trees
(i.e., constructed attributes) and transform the test data. With
this data transformation, we have achieved dimensionality
reduction as now the transformed test data at hand has five
constructed attributes. This transformed test set is provided
to RF for breast density classification which gives the test
accuracy and the F1-score.

C. Terminal Set

The terminal set consists of feature vector formed after the
feature extraction as discussed in Section II-A. It consists of
the following three types of features;

• Wavelet: This feature vector consists of a total of 104
features. 8 statistical features are extracted from the
original mammographic images using the formulae shown
in Table I. 96 features are extracted using three-level tree-
structured wavelet decomposition as shown in Fig. 2. (3
levels × 4 wavelet coefficients × 8 statistical measures
= 96 wavelet decomposition features)

• LBP: It consists of 59 features. This study uses only
uniform LBP patterns as they can encompass more tex-
ture information such as corners, edges, and line-ends to
illustrate breast density in mammograms, as compared to
non-uniform patterns.

• HOG: It consists of 81 features. The HOG histogram is
computed from 9 overlapping blocks of a mammographic
image where magnitude and orientation information of
each block is stored in 9 bins. The bins range from 0◦ to
180◦ where each bin has a range of 20◦. This is adopted
from a previous study [23] where it has shown the best
performance among the different variants of HOG.

D. Function Set

The function set consists of five operators; one conditional
operator {if}, and four arithmetic operators {+,−,×, /}.
Among the arithmetic operators, addition, subtraction, and
multiplication have their original arithmetic meaning whereas
division is protected that returns zero when divided by zero.
The conditional operator {if} takes three input values and
returns the second if the first is greater than the second else
it returns the third input value.
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E. Fitness Function

For unbalanced class distributions, balanced accuracy and
F1-score are appropriate fitness measures. Balanced accura-
cygives equal importance in identifying positive and negative
cases. However, in medical domains, identifying a positive
instance is more important than identifying a negative instance.
In breast density classification, identifying a highly-dense
MBD image is far more important than identifying a fatty
or less-dense MBD image since high density corresponds to
developing breast cancer [4]. Considering the importance of
correctly classifying the positives, we use F1-score as a fitness
function, calculated as:

fitness =
1

z

z∑
i=1

(
2× precisioni × recalli

precisioni + recalli

)
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

where z represents the total number of classes, TP represents
the true positives, FP represents the false positives, and FN
represents the false negatives.

IV. EXPERIMENT DESIGN

The datasets are split using 5-fold cross-validation using
random stratified sampling. We adopt this setting as the
mammographic image datasets used in this study are small
(MIAS has 322 images and INbreast has 410).

Being stochastic in nature, GP is executed for 30 times
using a different seed value each time. The GP method is
implemented using the Evolutionary Computing Java-based
package version 23 [24]. In each GP run on each fold, the
best individual with the highest performance on the training
data having five constructed attributes is used to transform the
original set of training data. Hence, the transformed training
data consists of five constructed attributes that are used to
transform the training data (to train a RF model) and test data
(to measure the performance). It is worth mentioning here that
the test fold remains unseen during the training process to
prevent attribute selection and attribute construction biases.

TABLE II
PARAMETER SETTINGS OF THE PROPOSED MAC-GP METHOD.

Parameter Value Parameter Value

Population Size 1024 Tree maximum depth 7
Generations 50 Tree minimum depth 2
Crossover Rate 0.80 Tournament size 7
Mutation Rate 0.19 Initial Population Ramped half-and-half
Elitism Rate 0.01 Selection type Tournament
Trees in 1 individual 5 Crossover type All-index-crossover

A. Benchmark Methods

To evaluate the goodness of our MAC-GP method, we com-
pare it with four commonly used classification methods: NB,
SVM with a Radial Basis Function (RBF) kernel, k-NN with
k = 5, and decision trees (J48), and four ensemble methods:
RF with 10 trees, and tree depth of 5, Bagging, Adaboost,
and LogitBoost. For implementing these methods, the widely
applied Waikato Environment for Knowledge Analysis pack-
age version 3.8 [25] is used. In this work, these parameters
are empirically defined for MBD classification since they have
produced the best results amongst other settings.

In addition, to the best of our knowledge, GP has been
studied only once in the past for breast density classification
by Burling et al. [18]. We will also look into comparing this
method [18] with the proposed MAC-GP method.

B. Parameter Settings

Table II lists the parameter settings of our proposed MAC-
GP method. The evolutionary process stops when the RF clas-
sifier achieves 100% F1-score or a maximum of 50 generations
is reached.

C. Datasets

1) MIAS [26]: The original MIAS Database was digitized
at 50 micron pixel edge which was later reduced to 200 micron
pixel edge where each image is 1024 × 1024 pixels. The
mini-MIAS1 is publicly available as a scientific database for
research. It consists of 322 mammograms from 161 patients
in pgm format.

Expert radiologists have provided image labels in terms
of breast density, calcification, architectural distortion, asym-
metry, malignancy, and image-coordinates of centre of ab-
normality. The breast density is categorized into 3 classes:

1http://peipa.essex.ac.uk/info/mias.html
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fatty (106 images), fatty-glandular (104 images) and dense-
glandular (112 images). A sample from each of the three
classes is shown in Fig. 5(a).

2) INbreast [27]: This database was acquired at the uni-
versity hospital (Centro Hospitalar de S. Joao Breast Centre)
in Portugal. The images were captured from MammoNovation
Siemens full-field digital mammograhy, with a pixel size of 70
microns and a contrast resolution of 14-bit. The image size is
3328× 4084 or 2560× 3328 pixels. There are a total of 410
images which are saved in DICOM format.

Radiologists have categorized the INbreast dataset based on
breast density, mass, distortion, asymmetry, lesion annotation,
and pectoral muscle annotation. The INbreast database2 is
publicly available for research purposes. The breast density
is divided into four categories; 0−25%, 25−50%, 50−75%,
and > 75%, as shown in Fig. 5(b).

For the binary classification experiments, we adopted the
categorizations by Burling et al. [18] for the two datasets.
In MIAS, we combine the fatty and fatty-grandular classes.
In case of INbreast, we have two classes with breast density
< 50 and > 50.

V. RESULTS AND DISCUSSIONS

Tables III and IV present the results of our experiments
of binary and multi-class classification. These Tables are
vertically divided into three blocks to show the results of
Wavelet, LBP, and HOG features. The values of the MAC-
GP results represent the mean and standard deviation among
the 30 GP runs, where value of one GP run is computed as
the mean of applying 5-fold cross-validation to the datasets.
The deterministic methods are run once, hence, their results
are represented as the mean of 5-fold cross-validation.

To identify the significance of our MAC-GP method, One-
sample t-test is applied on the test accuracies. This test checks
which method has better discriminative ability to correctly

2http://medicalresearch.inescporto.pt/breastresearch/GetINbreastDatabase.html

TABLE III
RESULTS OF binary classification IN TERMS OF BALANCED ACCURACY AND

F1-SCORE USING THE WAVALET, LBP, AND HOG FEATURE SETS.

MIAS INbreast

Algorithm Accuracy F1-score Accuracy F1-score

W
av

el
et

NB 62.76 + 60.00 + 53.59 − 52.74 =
SVM 69.63 + 70.01 + 54.00 − 53.51 −
k-NN 62.50 + 62.46 + 51.72 = 50.72 +
J48 72.31 − 72.02 − 52.19 − 56.52 −
RF 70.35 = 70.03 + 52.75 − 56.66 −
Bagging 70.78 = 71.28 = 50.31 + 53.14 =
Adaboost 72.04 − 72.22 − 51.32 = 55.48 −
LogitBoost 69.13 + 70.01 + 51.52 = 50.01 +

MAC-GP 70.43 ± 1.68 70.75 ± 1.72 51.59± 1.20 53.04 ± 1.52

L
B

P

NB 61.01 + 55.31 + 52.98 + 54.67 +
SVM 74.57 − 74.21 − 53.57 + 54.96 =
k-NN 68.35 + 69.26 + 53.74 = 54.22 +
J48 68.70 + 69.07 + 51.95 + 58.47 −
RF 65.60 + 66.90 + 52.50 + 53.78 +
Bagging 70.18 + 71.05 + 52.57 + 57.22 −
Adaboost 61.89 + 60.34 + 50.65 + 58.60 −
LogitBoost 71.22 + 71.91 = 51.20 + 57.70 −

MAC-GP 72.24 ± 1.30 72.65 ± 1.32 54.37 ± 1.12 55.36 ± 1.09

H
O

G

NB 64.22 + 63.74 + 51.38 + 51.15 +
SVM 67.93 − 68.08 − 51.73 + 51.70 +
k-NN 62.17 + 62.42 + 51.68 + 54.26 =
J48 60.56 + 60.84 + 52.19 + 56.85 −
RF 66.50 = 67.03 = 51.85 + 52.25 +
Bagging 61.93 + 62.20 + 53.47 + 53.65 +
Adaboost 64.21 + 64.29 + 51.82 + 56.25 −
LogitBoost 63.28 + 63.53 + 52.45 + 55.03 =

MAC-GP 65.85 ± 1.59 66.05 ± 1.63 54.33 ± 0.90 54.92 ± 1.11
17+,3=,4- 17+,3=,4- 16+,4=,4- 9+,5=,10-

classify the MBD images. Three symbols “+”, “−” and “=”
are used which represents that the accuracy of MAC-GP
significantly outperforms, is significantly worse, and performs
similarly in comparison to the corresponding method. The last
row in the Tables III, and IV shows the sum of the comparisons
between the MAC-GP and the commonly used classification
methods based on statistical significance test in terms of “+”,
“−” and “=” in the respective column.

A. Binary Classification

Table III presents the binary classification results in terms
of accuracy and F1-score on the two datasets. MAC-GP results
are presented in the last row of each block.

Among the three feature extraction methods, LBP remains
prominent in providing better classification performance com-
pared to wavelet and HOG features. On MIAS dataset, MAC-
GP achieved on average 70.43%, 72.24%, and 65.85% ac-
curacy using wavelet, LBP, and HOG features. On INbreast
dataset, a similar trend is seen where MAC-GP with LBP
features provide better classification performance compared to
wavelet and HOG features.

For INbreast, it seems that all the four classification algo-
rithms (NB, SVM, k-NN, and J48) remain unable to discrim-
inate dense and sparse tissue images with SVM achieving the
highest accuracy at 54.00%. There is a similar trend shown
by the ensemble methods on INbreast dataset, where all the
four ensemble methods provide accuracies just slightly above
50%. This seems a poor result in case of binary classification.



Though the proposed MAC-GP method provided better classi-
fication accuracy, i.e., 54.37% using LBP features on INbreast
dataset, it is still not a good binary classification result. Since
this is the first attribute construction method using GP, there
is a lot of room available to improve the results.

Comparing the results of the eight conventional classifica-
tion methods with our proposed MAC-GP method, we found
that in case of MIAS dataset, SVM remained prominent using
the original set of LBP and HOG features. However, on the
INbreast dataset MAC-GP outperforms SVM by constructing
informative attributes using LBP and HOG features. Hence,
it is difficult this way to jump to conclusions as to which
classification method is performing better. However, we can
consider the overall comparisons made using the statistical
significance test. Out of 24 comparisons, MAC-GP signifi-
cantly outperformed and performed equally well compared to
the commonly used classification methods 20 (17+,3=) and 20
(16+,4=) times on MIAS and INbreast datasets, respectively,
in terms of balanced classification accuracy (columns 3 and
5). MAC-GP only performed worse 4 times in each of the
24 comparisons on the two datasets. This shows the potential
of GP for attribute construction which results in improved
classification performance.

B. Multi-class Classification

Table IV presents the results of multi-class classification on
the two datasets. Among the three feature extraction methods,
i.e., wavelet, LBP, and HOG, LBP features achieved the
highest performance with 60.61% average accuracy on MIAS
dataset compared to wavelet and HOG features with 58.51%
and 47.86% average accuracy, respectively. There is a different
trend seen on INbreast dataset where wavelet features provided
better classification performance with 45.63% average accu-
racy as compared to LBP and HOG features which achieved
42.03% and 29.91% average accuracy, respectively.

It is worthwhile to note here that the MIAS dataset has 3
classes with same size of images (1024× 1024) in the dataset
(easy task) whereas INbreast has 4 classes and has larger and
different image sizes (3328 × 4084 or 2560 × 3328) (more
difficult). The proposed MAC-GP method has provided the
best results achieving 60.61% and 45.63% on the MIAS and
INbreast datasets, respectively.

From the results of the statistical test presented in Table
IV, it is evident that MAC-GP outperforms most of the
eight conventional classification methods on the easy (MIAS)
and difficult (INbreast) datasets. Out of 24 comparisons, the
proposed MAC-GP significantly outperformed and performed
equally well compared to the conventional classification meth-
ods 22 (17+,5=) and 20 (18+,2=) times on MIAS and INbreast
datasets, respectively, in terms of balanced classification accu-
racy (columns 3 and 5). This shows its effectiveness for MBD
image classification problems. MAC-GP only performed worse
2 and 4 times in each of the 24 comparisons on the MIAS and
INbreast datasets, respectively.

TABLE IV
RESULTS OF Multi-class Classification IN TERMS OF BALANCED ACCURACY

AND F1-SCORE USING THE WAVALET, LBP, AND HOG FEATURE SETS.

MIAS INbreast

Algorithm Accuracy F1-score Accuracy F1-score

W
av

el
et

NB 49.70 + 48.57+ 39.24 + 27.17+
SVM 56.20 + 55.34+ 35.39 + 35.64+
k-NN 49.41 + 49.66+ 31.28 + 30.15+
J48 56.40 + 56.31+ 43.89 + 44.79+
RF 55.77 + 55.59 + 38.57 + 38.74+
Bagging 60.10 − 59.59 − 42.19 + 43.17+
Adaboost 49.93 + 41.05 + 31.21 + 23.18+
LogitBoost 57.87 = 57.17+ 41.11 + 41.77+

MAC-GP 58.51 ± 2.34 58.13 ± 2.37 45.63 ± 2.14 46.35 ± 2.10

L
B

P

NB 43.11 + 40.98 + 36.59 + 28.96 +
SVM 60.72 = 60.53 = 42.69 = 42.79 =
k-NN 55.36 + 55.52 + 37.08 + 36.05 +
J48 51.45 + 51.14 + 33.10 + 33.48 +
RF 59.24 + 59.08 + 34.73 + 33.00 +
Bagging 60.12 = 60.22 = 38.33 + 37.34 +
AdaBoost 47.58 + 38.28 + 26.74 + 18.48 +
LogitBoost 57.85 + 57.98 + 36.01 + 34.50 +

MAC-GP 60.61 ± 1.60 60.44 ± 1.67 42.03 ± 1.70 42.20 ± 1.89

H
O

G

NB 46.57 + 45.81 + 34.07 − 23.47 +
SVM 55.03 − 54.95 − 31.25 − 31.20 −
k-NN 48.16 = 47.74 = 25.37 + 23.89 +
J48 41.22 + 40.49 + 27.73 + 27.25 +
RF 46.12 + 45.35 + 29.48 = 27.86 +
Bagging 43.89 + 43.86 + 30.82 − 29.80 =
AdaBoost 43.42 + 34.05 + 25.54 + 18.00 +
LogitBoost 47.73 = 47.12 = 32.00 − 31.33 −

MAC-GP 47.86 ± 1.92 47.12 ± 1.94 29.91 ± 1.47 29.66 ± 1.58
17+,5=,2- 18+,4=,2- 18+,2=,4- 20+,2=,2-

C. Comparison with the existing GP approach

Burling et al. [18] utilized GP for binary classification of
mammographic images. They classified these breast images
into fatty and dense tissue classes. They have used 10-fold
cross-validation, hence, the proposed MAC-GP method cannot
be directly compared. More importantly, they evaluated their
method on imbalanced datasets, and used standard overall
accuracy as a fitness function which usually leads to bias
towards the majority class instances. Hence we remain unable
to compare the proposed MAC-GP method with this existing
GP approach.

VI. FURTHER ANALYSIS

A. Interpretability of an Evolved GP Individual

GP automatically evolve models that are potentially inter-
pretable. This built-in ability of GP greatly helps to identify
the prominent attributes.To show why MAC-GP has achieved
good classification performance, we present a good evolved
GP individual with five GP trees (constructed attributes) as
shown in Fig. 6, achieving 92.53% on the INbreast training
data. We analyze the five trees to show the variety of behaviors
of attribute selection by GP.

GP selects prominent attributes during the evolutionary
process to achieve dimensionality reduction, while still main-
taining good classification accuracy. This property of GP is
evident from the evolved individual shown in Fig. 6. This GP
tree selects 68 unique attributes from a total of 104 attributes
while still providing 92.53% classification accuracy. The five
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Fig. 6. A good evolved GP individual for INbreast dataset achieved 92.53% accuracy on the unseen data in the multi-class classification task.

trees individually select only 30, 15, 12, 11, and 30 attributes
where some attributes overlap among different trees.

Moreover, the sub-trees “if (A56, A29, A62)”, and “if (A17,
A57, A38)” appear three times, which show the importance of
these sub-trees to generate this GP individual. For example,
the A56, A29 and A62 attributes are the energy, norm, and
entropy, computed from the diagonal coefficients at level-2,
level-1, and level-2 decomposition, respectively. The sub-tree
“if (A56, A29, A62)” shows that if the energy value of level-
2 diagonal coefficient of a mammographic image is greater
than the norm value of level-1 diagonal coefficient, the norm
value of level-1 diagonal coefficient is selected, otherwise the
entropy value of level-2 diagonal coefficient is selected. For
different classes, different values are selected which makes
this sub-tree useful in identifying a particular INbreast density
class.

A GP individual selects a variety of original attributes
to incorporate useful information necessary to discriminate
between classes. In the trees shown in Fig. 6, GP has selected
attributes from four coefficients (vertical, horizontal, diagonal,
and approximation) and three decomposition levels. In addi-
tion, it includes all the variety of information provided by the
eight statistical measures. Some attributes appeared in this GP
individual more than three times, which are listed in Table V.
We derive the following observations from this table:

• Among the eight statistical measures, entropy has been
selected most often showing its potential for MBD image
classification.

• Among the four wavelet coefficients, diagonal and verti-
cal coefficients are picked more often in the evolved GP
individual.

• The statistical measures computed from wavelet coeffi-

TABLE V
THE DETAILS OF TOP SELECTED ATTRIBUTES IN THE GP INDIVIDUAL
SHOWN IN FIG. 6 IN TERMS OF OCCURRENCE, DETAIL COEFFICIENTS,

LEVEL OF DECOMPOSITION, AND STATISTICAL MEASURES.

Attribute Occurrence Coefficients Level Measure

A17 6 Vertical 1 Mean
A29 6 Diagonal 1 Norm
A54 4 Vertical 2 Entropy
A56 4 Diagonal 2 Energy
A62 5 Diagonal 2 Entropy
A78 4 Horizontal 3 Entropy
A87 5 Vertical 3 Average Energy
A102 6 Approximation 3 Entropy

cients appear more often compared to these measures
computed from original images. This shows the impor-
tance of multi-scale textural image properties of wavelets.

VII. CONCLUSIONS

This study proposes a novel mammographic image classi-
fication method where GP automatically constructs multiple
attributes for the difficult problem of breast density classi-
fication. Different feature extraction methods are utilized to
extract texture, shape, local, and global information from
mammographic images such as statistical, frequency-based
wavelet decomposition, LBP and HOG features. Wavelet de-
composition applied on MBD images results in rich wavelet
coefficients with discriminative information about the breast
density classes. Multi-tree GP has the potential to construct
highly informative attributes which help improve the fitness
during the evolutionary process.

The results have shown that the proposed MAC-GP method
has significantly outperformed and provided similar classifica-



tion performance compared to the eight commonly used clas-
sification methods on the two mammographic image datasets.
The insights of a good evolved GP individual have shown the
trends of selecting prominent attributes with good discriminat-
ing ability between different density levels. The results have
shown the importance of providing good original attributes
with multi-scale textural properties to GP and the good search-
ability of GP. This is the first attribute construction method
for mammographic image classification using GP which has
shown that GP has the potential to construct informative
attributes and achieve good results for a difficult real-world
problem of breast density classification. In addition, setting
or automatically evolving a suitable number of constructed
attributes is still an open question.

To further improve the classification performance, a pre-
processing step before applying feature extraction will be in-
vestigated in future. Furthermore, the proposed method in this
study does not incorporate domain-specific knowledge that can
be utilized in future to improve performance. For example, the
domain-specific knowledge provided along with the datasets
such as calcification, architectural distortion, asymmetry, and
malignancy, and pectoral muscle annotation can be included in
the GP individual to look for improvement in the classification
performance. This will be employed and investigated in the
future.
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