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Abstract—This paper studies the data sparsity problem in
multi-view learning. To solve data sparsity problem in multiview
ratings, we propose a generic architecture of deep transfer
tensor factorization (DTTF) by integrating deep learning and
cross-domain tensor factorization, where the side information
is embedded to provide effective compensation for the tensor
sparsity. Then we exhibit instantiation of our architecture by
combining stacked denoising autoencoder (SDAE) and CANDE-
COMP/ PARAFAC (CP) tensor factorization in both source and
target domains, where the side information of both users and
items is tightly coupled with the sparse multi-view ratings and
the latent factors are learned based on the joint optimization. We
tightly couple the multi-view ratings and the side information to
improve cross-domain tensor factorization based recommenda-
tions. Experimental results on real-world datasets demonstrate
that our DTTF schemes outperform state-of-the-art methods on
multi-view rating predictions.

Index Terms—multi-view learning, tensor factorization, deep
learning, side information

I. INTRODUCTION

With the data explosion in recent years, recommender sys-
tems are becoming increasingly attractive. Traditional single-
view recommender systems typically operate on twodimen-
sional (2D) user-item ratings. In single-view recommender
systems, there are two primary categories of recommendation
algorithms: content-based methods and collaborative filtering
(CF) based methods, where matrix factorization is effective
in learning effective latent factors for users and items [1].
However, they cannot work well for multi-view recommender
systems that contain multiple view-specific ratings.

With the emergence of multi-modal or multi-aspect data,
multi-view recommendation becomes more and more impor-
tant. The list of applications ranges from social network
analysis to brain data analysis, and from web mining and
information retrieval to healthcare analytic [2], such as online
e-commerce websites and traveling portals. Figure 1 shows an
example in TripAdvisor, where customers can rate hotels by
using multiple view such as value, service, atmosphere, food
and overall, and meanwhile the information of customers and
hotels is also provided.

Prior multi-view techniques can be briefly classified into
three categories: heuristic neighborhood-based approaches
[3], aggregation-based approaches [4], and model-based ap-
proaches [5]. Heuristic neighborhood-based approaches at-
tempt to use various multi-view similarity metrics to collect
the neighbors of a targeted user, and then estimate unknown

Fig. 1. Multi-view ratings and the side information from TripAdvisor

ratings based on the known ratings of those neighbors [3],
[6]. Aggregation-based approaches aim to build a mapping
to aggregate multiple view-specific ratings by assuming that
there is a certain relation between the overall rating and
other viewspecific ratings [4]. Model-based approaches learn
a predictive model by leveraging the observed multi-criteria
ratings and then employing the model to execute prediction
[5].

Tensor factorization is a milestone of model-based tech-
niques and many tensor factorization based techniques have
been developed for multi-view recommender systems [7]–
[10]. Nevertheless, prior techniques suffer from the tensor
sparsity problem. That being said, when the rating tensor
is very sparse in real applications, the performance drops
significantly. To overcome this problem in multi-view ratings,
we attempt to 1) incorporate the side information (or the
auxiliary information) into the ratings to exploit prior features
[11]–[14] and 2) transfer or learn knowledge from relevant
domains for crossdomain recommendations.

In this paper, we propose a generic architecture of deep
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transfer tensor factorization (DTTF) by integrating deep learn-
ing and cross-domain tensor factorization, where the side
information is embedded to provide effective compensation for
the tensor sparsity. Then we exhibit instantiation of our archi-
tecture by combining stacked denoising autoencoder (SDAE)
and CANDECOMP/PARAFAC (CP) tensor factorization in
both source and target domains, where the side information
of both users and items is tightly coupled with the sparse
multi-view ratings and the latent factors are learned based on
the joint optimization. The contribution of this paper can be
summarized as follows

• To solve data sparsity problem in multi-view ratings, we
propose a generic architecture to integrate deep structure
and cross-domain tensor factorization;

• We present DTTF where cross-domain CP tensor factor-
ization is combined with four SDAEs in different domains
for users and items;

• We tightly couple the multi-view ratings and the side
information to improve cross-domain tensor factorization
based recommendations.

II. RELATED WORK

Multi-view learning (MTL) is an emerging direction in
machine learning which considers learning with multiple views
to improve the generalization performance. [15] develop a
multi-view label embedding (MVLE) model by exploiting
the multi-view correlations. Nonlinear relationships usually
exist in real-world datasets, which have not been consid-
ered by most existing methods. In order to address these
challenges, a novel model which simultaneously performs
multi-view clustering task and learns similarity relationships
in kernel spaces is proposed [16]. In order to overcome the
two limitations [17] propose a multi-task multi-view clustering
algorithm in heterogeneous situations based on Locally Linear
Embedding (LLE) and Laplacian Eigenmaps (LE) methods
(L3EM2VC). Comparing with existing methods that separately
cope with each view [18] propose a supervised multi-view
feature learning framework to handle diverse views with a
unified perception. The proposed approach is compared to
different state-of-the-art Radiomics and multi-view solutions,
on different public multi-view datasets as well as on Radiomics
datasets [19]. [20] present a unified multi-view deep learning
framework to capture brain abnormalities associated with
seizures based on multi-channel scalp EEG signals. A novel
deep multi-view clustering model is proposed by uncovering
the hierarchical semantics of the input data in a layer-wise way
[21]. The restricted Boltzmann machine (RBM) and extensions
are rarely used in the field of multi-view learning [22].

Matrix factorization has been widely used in single-view
recommender systems to solve the problem of personal in-
formation overload [1]. To mitigate the cold start and data
sparsity, it is inevitable for matrix factorization models to
exploit additional side information. Singh et al. [23] have
integrated the side information into matrix factorization to
learn effective latent factors from sparse ratings, and shown an

improved performance. Deep learning based matrix factoriza-
tion is designed to mitigate sparse ratings. A collaborative deep
learning based on Bayesian SDAE is proposed in [13] that
attempts to incorporate the side information but only learns
latent representations for items. Deep collaborative filtering
is proposed based on marginalized denoising autoencoder to
learn latent representations for both items and users [24].
An alternative mode of incorporating the side information is
investigated in [11], which considers 2D ratings and the side
information in deep structure. Deep transfer structure shares
cross-domain information via hidden connections [25] or learn
a common network via domain separation network. Different
from these scenarios, we study multi-view recommendations
via 3D tensor factorization instead.

Multi-view recommendation has been studied over decades
and can be briefly grouped into three categories: heuristic
neighborhood-based approaches [26], aggregation-based ap-
proaches [4], and model-based approaches [5]. Tensor factor-
ization is a milestone of model-based techniques.

Heuristic neighborhood-based approaches attempt to use
various multi-view similarity metrics to collect the user
neighbors and then predict based on known ratings of those
neighbors. Different techniques are proposed to find the best
neighbors, including a multi-dimensional distance metric [3],
a preference lattice based on user view preferences [27],
and multiview Euclidean distance [6]. Aggregation-based ap-
proaches build a mapping to aggregate multiple view-specific
ratings for prediction by assuming that there is a certain rela-
tion between overall ratings and individual ratings. Lakiotaki
et al. [4] proposes a utility additive method to aggregate
the marginal user’ preferences on the given criteria. Jannach
et al. [28] uses a support vector regression to learn rela-
tive importance of viewspecific ratings and then combines
regression models for users and items to predict unknown
ratings. A view chain-based method is presented in [29] to
aggregate the multi-dimensional ratings for recommendations
by considering the dependence among multiple view ratings.
The empirical results of the comparative analysis of their per-
formance are presented [30]. Since outputs of expert systems
directly dependent on input signals; interventions to the inputs
coherently cause failures on productions of such systems. [31]
examine shilling attack strategies against multi-criteria prefer-
ence collections, how to extend well-known attack scenarios
against these systems, and propose an alternative attacking
scheme. [32] introduce a tensor factorization method to handle
three-dimensional useritem- criterion rating data. [33] propose
a utility-based multicriteria recommendation algorithm, in
which [33] learn the user expectations by different learning-
to-rank methods. The resulting compressed vectors constitute
latent multi-criteria ratings that [34] use for the recommen-
dation purposes via standard multi-criteria recommendation
methods. [35] propose a novel multi-criteria collaborative
filtering model based on deep learning. The personalized
recommendation technology can establish user files through
the user’s behavior and other information, and automatically
recommend the items that best match the user’s preferences,



thus effectively reducing the information overload problem.
Based on this [36] study the personalized recommendation
algorithm based on user preferences in mobile e-commerce.

Model-based approaches aim to learn a predictive model
and then employ the model to estimate the ratings. Many
techniques have been proposed for recommendations, includ-
ing a probabilistic mixture algorithm [5], an adaptive neu-
rofuzzy inference and self-organizing map clustering [37],
and a multi-linear singular value decomposition [38]. Tensor
factorization is a milestone of model-based approaches and
various methods have been developed for wide applications
[2]. A tensor factorization based ranking is presented in [39] to
predict personalized tags for users. A high-order singular value
decomposition (HOSVD) method is used in [7] to deal with
contextual information for context-aware recommendations,
where the limitation is that it primarily works for categorical
context variables. Rendle et al. [40] proposes a factorization
machine method by extending HOSVD. And Zhang et al.
[41] presents tensor singular value decomposition (t-SVD) that
can perfectly recover a tensor with low tubal-rank under the
certain tensor standard incoherent condition. Based on classic
matrix factorization, Bhargava et al. [9] tackles context-aware
collaborative recommendation by tensor while Yao et al. [10]
presents an application in point-of-interest recommendations.
Chen et al. [42] proposes deep tensor factorization to inte-
grate deep representation learning and tensor factorization for
multiview recommendations.

In this paper, we integrate tensor factorization and deep
structure to incorporate the side information, and link tensor
factorization in source domain with that in the target domain.

III. PRELIMINARY AND OVERVIEW

This paper aim to cope with the multi-view recommendation
problem, similar to some existing works [3], [43]. Gener-
ally, multi-view recommender systems refer to the systems
that leverage multiple categories of ratings based on various
specific view in addition to the overall user-item ratings to
implement recommendation tasks. Figure 2 shows an example
of a 3D user-item-view rating tensor R, where each user rates
on various view of a given item, and the mark “?” means
unobserved ratings. And the rating tensor is extremely sparse
with I users, J items, L view in this paper. Each rating rijl in
the tensor R corresponds to user i rates on the view l of item
j. Given the sparse third-order user-item-view rating tensor
R, the side information matrix M for users and N for items,
the goal is to learn user latent factors U, item latent factors
V and view latent factors C, and then predict the unobserved
ratings in R.

Given 3D user-item-view ratings, tensor factorization is to
map users, items, and view into a joint latent factor space
so that the users’ preferences on specific view of items can
be formulated as the inner products of corresponding latent
factor vectors in the space. The CP is widely used as a
tensor factorization paradigm due to its key advantage of linear

Fig. 2. Rating tensor

Fig. 3. The CP tensor factorization

complexity. We adopt the CP to decompose the rating tensor
in this work.

Figure 3 shows the CP tensor factorization, where a user-
item-view rating tensor R ∈ RI∗J∗L can be decomposed into
a sum of rank-one tensors across the whole set of users. So,
we have

arg min
U,V,C

I‖R−U⊗V ⊗C‖2 (1)

where U ∈ RI×K ,V ∈ RJ×K and C ∈ RL×K represent the
latent factor matrix for users, items and view, respectively;
K is the dimension of latent factor space; and the operator
⊗ detnotes the outer product of latent factor vectors in the
corresponding matrix.

In this paper, we attempt to propose a novel architecture
to combine deep structure and cross-domain CP tensor factor-
ization, where deep structure deals with either only the side
information or both the ratings and the side information, and
tensor factorization deals with the 3D user-item-view ratings.

Four deep structures are designed for users and items in
both source and target domains, where the side information of
users (or items) is involved as an input, and the transformation
of ratings are either taken as one more input or not included
(dashed line). The effective latent representation is learned by
jointly optimizing deep network and latent factors from tensor
factorization. The tightly coupled side information provides a



Fig. 4. The structure of the proposed DTTF

compensation for tensor factorization, so the proposed DTTF
could mitigate the tensor sparsity problem.

For convenient description, define by Ds the source domain
and Dt the target domain. And the domain indices are denoted
as d ∈ {s, t}. In a recommendation setting, the user-item-view
matrix Rd ∈ RId×Jd×L can be decomposed as a sum of rank1
tensors across all users. So, we have

arg min
Ud,Vd,C

‖Rd −Ud ⊗Vd ⊗C‖2 , (2)

where Ud ∈ RId×K ,Vd ∈ RJd×K and C ∈ RL×K represent
the latent factor matrix for users, items and view, respectively;
K is the dimension of latent factor space; and ⊗ denotes the
outer product of latent factor vectors in the corresponding
matrix. The source domain Ds is connected with the target
domain Dt via common latent factors C.

IV. DEEP TRANSFER TENSOR FACTORIZATION

In this section, DTTF instantiation is presented in detail
based on the generic architecture.

A. DTTF Scheme

The specific DTTF scheme is composed of several com-
ponents: a SDAE for users, a SDAE for items and tensor
factorization in both domains, as shown in Figure 4. In
DTTF, the SDAE only takes the side information as the sole
input, similar to [44], where the multi-view ratings are not
considered.

Considering the SDAE for users in Figure 4 , the represen-
tation h

(u)
d,l at each hidden layer and the output at layer L(u)

can be obtained as

h
(u)
d,l = g

(
W

(u)
d,l h

(u)
d,l−1 + b

(u)
d,l

)
p̂

(u)
d,i = f

(
W

(u)

d,L(u)h
(u)

d,L(u) + b
(u)

d,L(u)

)
,

(3)

where l ∈ {1, 2, · · · , L(u)
d − 1}; g(·) and f(·) are activation

functions for the hidden and output layers. The corrupted side
information p̃

(u)
d,i is the input to the first layer, h(ui)

d,r denotes
deep representations from the middle layer and p̂

(u)
d,i denotes

the output of the users’ SDAE. Similar results can be obtained
for the items’ SDAE by replacing (u) with (v).

As observed in Figure 4 , the users’ SDAE takes as input
the side information of users to learn the latent representation
h

(ui)
d,r that is used to compensate latent factor vectors ud,i in

tensor factorization. And the items’ SDAE takes as input the
side information of items to learn latent representation h

(vj)
d,r

that is used to compensate the latent factor vectors vd,j in
tensor factorization.

1) Loss Function: DTTF learns users’ latent factors, items’
latent factors and view latent factors through the following
objective function

min
Θ
J = Lt + Lr + La + λfreg (4)

where the overall loss function J consists of four components:
the loss of tensor factorization Lt, the reconstruction cost of
the side information Lr, the approximation error between deep



representation and latent factors La, and the regularization
term freg that prevent overfitting.

The first term Lt denotes the loss of factorization on a sparse
rating tensor

min
θt

Lt =
∑

d∈(s,t)

‖Id � (Rd −Ud ⊗Vd ⊗C)‖2 , (5)

where θt = {Ud,Vd,C}; the binary tensor Id is an indicator
of sparsity, in which each element indicates whether the
corresponding rating is observed (= 1) or not (= 0); ⊗ means
the outer product of latent factor vectors in the corresponding
matrix; and � is the element-wise production.

Secondly, the reconstruction cost of the side information for
both users and items can be expressed as

min
θr
Lr =

∑
d

[
αd
∑
i

(
p
(u)
d,i − p̂

(u)
d,i

)2
+ βd

∑
j

(
p
(v)
d,j − p̂

(v)
d,j

)2]
,

(6)
where θr = {Wu

d ,b
u
d ,W

v
d,b

v
d} , αd and βd are penalty

parameters.
Furthermore, the approximation error between deep repre-

sentation and latent factor vectors for both users and items can
be expressed as

min
θa
La =

∑
d

[
ρd
∑
i

(
ud,i − h

(ui)
d,r

)2
+ γd

∑
j

(
vd,j − h

(vj)
d,r

)2
]
,

(7)
where θa =

{
Ud,Vd,W

(u)
d ,b

(u)
d ,W

(v)
d ,b

(v)
d

}
, ρd and γd

are penalty parameters.
The last term denotes the regularization term freg as

freg =
∑
d

∑
i

‖ud,i‖2 +
∑
j

‖vd,j‖2


+
∑
d

(∥∥∥W(u)
d

∥∥∥2

+
∥∥∥W(v)

d

∥∥∥2

+
∥∥∥b(u)

d

∥∥∥2

+
∥∥∥b(v)

d

∥∥∥2
)
,

(8)
and the overall Θ = θt ∪ θr ∪ θa in (4).

2) Optimization: To solve this problem, the alternative
optimization algorithm is considered by utilizing the following
three-step procedure.
Step I: Given all weights Wd and biases bd, the gradients of
J in (4) with respect to ud,i,vd,j , can be obtained as

∂J
∂ud,i

= −
∑
j

∑
l

Id,ijl (rd,ijl − ud,ivd,jcl) (vd,jcl)

+ ρd

(
ud,i − h

(ui)
d,r

)
+ λud,i

∂J
∂vd,j

= −
∑
i

∑
l

Id,ijl (rd,ijl − ud,ivd,jcl) (ud,icl)

+ γd

(
vd,j − h

(vj)
d,r

)
+ λvd,j

(9)

Step II: Fixed the users’ latent factors Ud and the items’ latent
factors Vd, d ∈ {s, t}, the common latent factors C (cl) can
be updated by

∂J
∂cl

= −
∑
d

∑
i

∑
j

Id,ijl (rd,ijl − ud,ivd,jcl) (ud,ivd,j)

+ λcl,
(10)

where the binary Id,ijl indicates whether the corresponding
rating is observed (= 1) or not (= 0).
Step III: Fixed the latent factors U,V and C, all weights W
and biases b of both SDAEs can be learned by backpropaga-
tion with stochastic gradient decent (SGD) method

∂J
∂W

(u)
d

= −ρd
∑
i

(
ud,i − h

(ui)
d,r

) ∂h(ui)
d,r

∂W
(u)
d

+ αd

∑
i

(
p

(u)
d,i − p̂

(u)
d,i

) ∂p̂
(u)
d,i

∂W
(u)
d

+ λW
(u)
d

∂J
∂W

(v)
d

= −γd
∑
j

(
vd,j − h

(vj)
d,r

) ∂h(vj)
d,r

∂W
(v)
d

+ βd
∑
j

(
p

(v)
d,j − p̂

(v)
d,j

) ∂p̂
(v)
d,j

∂W
(v)
d

+ λW
(v)
d

(11)

and ∂J
∂b

(u)
d

and ∂J
∂b

(v)
d

can be easily obtained by replacing Wd

with bd in (11). Iterate three steps above until convergence.

V. EXPERIMENTS

A. Experiment Setup

To evaluate various algorithms, we use four public datasets,
two from TripAdvisor (TA) and two from RateBeer (RB).
All these datasets are commonly used for evaluating the
performance of recommender systems [28], [45]. They are
different datasets without any overlap and independent of each
other.
• TripAdvisor-12M (TA-12M): This dataset contains

181,411 records given by 1,750 users based on 4 view
including value, location, service, and overall for 3,546
hotels. Each user gave at least 2 ratings. The sparsity
level of the dataset is around 99.26%.

• TripAdvisor-20M (TA-20M): This dataset contains 63,945
records given by 2,246 users based on 4 view including
value, location, service, and overall for 3,033 hotels. The
sparsity level of the dataset is around 99.76%.

• RateBeer-30M (RB-30M): This dataset contains
1,326,451 records given by 2,167 users for 3,109
beers based on 5 view including appearance, aroma,
palate, taste and overall. The sparsity level of the dataset
is around 96.20%.

• RateBeer-100M (RB-100M): This dataset contains
2,294,766 records given by 1,771 users for 2,627 beers
based on 5 view including appearance, aroma, palate,
taste and overall. The sparsity level of the dataset is
around 90.13%.



TABLE I
PERFORMANCE COMPARISON OF VARIOUS METHODS IN TERMS OF RMSE.

Algorithm TA12M (s) vs TA20M (t) TA20M (s) vs TA12M (t) TA30M (s) vs TA100M (t) TA100M (s) vs TA30M (t)
60% 80% 95% 60% 80% 95% 60% 80% 95% 60% 80% 95%

AFBM 1.219 1.167 1.096 1.178 1.053 1.045 0.787 0.784 0.716 0.950 0.937 0.934
CMF 1.184 1.140 1.130 1.274 1.058 1.038 0.713 0.693 0.653 0.855 0.832 0.810
DCF 1.164 1.094 1.036 1.163 1.069 1.031 0.668 0.643 0.628 0.794 0.772 0.743
HCF 1.128 1.073 1.030 1.089 1.066 1.016 0.653 0.639 0.617 0.761 0.734 0.727

t-SVD 1.181 1.075 1.039 1.151 1.040 0.961 0.620 0.598 0.579 0.671 0.660 0.644
DTF 1.082 1.049 1.029 1.022 1.016 0.869 0.610 0.597 0.578 0.668 0.642 0.632

DTTF 1.037 0.963 0.868 0.930 0.899 0.851 0.604 0.587 0.567 0.660 0.628 0.619

(a) TA-12M (b) TA-20M

(c) TA-30M (d) TA-100M

Fig. 5. Ablation Test Results of DTTF on four datasets.

For TA datasets, the user and item additional matrices are
generated similarly as RB datasets. And the length of the
resulting binary vector is 106 for users and 134 for items.

In our experiments, five-fold cross validation was applied to
each dataset, and we use the root mean squared error (RMSE),
the Hit Ratio (HR) and Normalized Discounted Cumulative
Gain (NDCG) [46] as the evaluation metric.

B. Baseline

In order to evaluate the performance, we consider the
following baselines in our experiments:

• AFBM: Aggregation function based method [26] employs
a matrix factorization to deal with the observed user-view
ratings.

• CMF: Collective matrix factorization [23] is a model
which simultaneously decomposes the ratings and the
side information.HCF: HCF is a hybrid collaborative
filtering model [11] which unifies aSDAE model with
matrix factorization.

• DCF: Deep collaborative filtering [44] is a recommenda-
tion model which combines probabilistic matrix factoriza-
tion with marginalized denoising stacked autoencoders to



achieve recommendation.
• t-SVD: Tensor Singular Value Decomposition [41] is a

model to generalize MF approaches to higher dimensional
multi-view recommendations.

• DTF: Deep tensor factorization [42] is a model to inte-
grate deep representation learning and tensor factorization
for multi-view recommendations.

C. Comparison Experimental Results

We evaluate our proposed DTTF on four datasets in com-
parison to state-of-the-art recommendation baselines.

Table I illustrates the performance of all methods in terms of
the average RMSE, where the lowest RMSE in each dataset
is highlighted in boldface and the second lowest RMSE is
highlighted in italic boldface. The proposed DTTF clearly
outperform all baselines in terms of RMSE, in which DTTF
achieves the best performance for all cases.

Specifically, it is observed that HCF, DCF and CMF outper-
form AFBM in general cases, and DTTF schemes outperform
t-SVD, which demonstrates the effectiveness of incorporating
the side information in either 2D rating matrix or 3D rating
tensor. That DTTF, HCF and DCF outperform CMF indicates
that deep structure can acquire better features of the side
information. HCF, DCF, CMF and AFBM only consider the
correlation between arbitrary two of three dimensions so
DTTF and t-SVD outperform these methods. That DTTF, DTF
outperform DCF and HCF indicates that tensor factorization
methods effectively learn the intrinsic interactions among three
dimensions, which are a good fit for multi-view recommender
systems. And DTTF outperform DTF which only consider
single-domain dataset, validating the effectiveness of cross-
domain learning in multi-view recommendations.

D. Ablation Analysis

The comparison results in terms of per evaluation met-
rics indicate that the proposed DTTF clearly outperform the
wellestablished baselines.

To justify the efficiency of our architecture design, a care-
ful ablation study is conducted. Specifically, we remove the
knowledge transfer from either DTTF and name it as DTTF-
woTrans; we remove the deep structure of side information
from DTTF and name it as DTTFwoSideinfo; we remove the
tensor factorization component from DTTF and name it as
DTTFwoTF.

The test results in terms of RMSE are shown in Figure 5 and
a few observations are worth being highlighted as follows: 1)
The best performance on each dataset is obtained by the com-
plete DTTF, indicating that each of components contributes
to the effectiveness and robustness of the whole model; 2)
The RMSE of DTTFwoSideinfo in TA datasets is significantly
higher than others, indicating that the incorporation of side
information is crucial for the sparsity problem in multi-view
recommender systems. 3) The RMSE of DTTFwoTF in RB
datasets is significantly higher than others. One reason is
that the density of the TA-12M dataset (0.73%) and TA20M
dataset (0.23%) is much lower than RB-30M (3.80%) and

RB-100M dataset (9.87%). Another possible reason is that
RB datasets have a stronger personalization, in which multi-
view ratings are more valuable than side information for
recommendations.

VI. CONCLUSION

DTTF is proposed for cross-domain multi-view recommen-
dation by combining tensor factorization and deep structure
in both source and target domains. Private latent factors link
with deep structures while view latent factor is taken a bridge
between domains, which are learned by jointly optimizing
tensor factorization and SDAEs. Experimental results on the
real-world datasets show that our proposed approach achieves
a superiority compared with state-of-the-art works.

REFERENCES

[1] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 8, pp. 30–37, 2009.

[2] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Tensors
for data mining and data fusion: Models, applications, and scalable
algorithms,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 8, no. 2, pp. 1–44, 2016.

[3] K. Lakiotaki, N. F. Matsatsinis, and A. Tsoukias, “Multicriteria user
modeling in recommender systems,” IEEE Intelligent Systems, vol. 26,
no. 2, pp. 64–76, 2011.

[4] K. Lakiotaki, S. Tsafarakis, and N. Matsatsinis, “Uta-rec: a recom-
mender system based on multiple criteria analysis,” in Proceedings of
the 2008 ACM conference on Recommender systems, 2008, pp. 219–226.

[5] N. Sahoo, R. Krishnan, G. Duncan, and J. Callan, “Research note—the
halo effect in multicomponent ratings and its implications for recom-
mender systems: The case of yahoo! movies,” Information Systems
Research, vol. 23, no. 1, pp. 231–246, 2011.

[6] A. Mikeli, D. Apostolou, and D. Despotis, “A multi-criteria recom-
mendation method for interval scaled ratings,” in 2013 IEEE/WIC/ACM
International Joint Conferences on Web Intelligence (WI) and Intelligent
Agent Technologies (IAT), vol. 3. IEEE, 2013, pp. 9–12.

[7] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver, “Multiverse
recommendation: n-dimensional tensor factorization for context-aware
collaborative filtering,” in Proceedings of the fourth ACM conference on
Recommender systems, 2010, p. 79.

[8] Z. Chen and D. Wang, “Multi-initialization meta-learning with domain
adaptation,” in ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp.
1390–1394.

[9] P. Bhargava, T. Phan, J. Zhou, and J. Lee, “Who, what, when, and
where: Multi-dimensional collaborative recommendations using tensor
factorization on sparse user-generated data,” in Proceedings of the 24th
international conference on world wide web, 2015, pp. 130–140.

[10] L. Yao, Q. Z. Sheng, Y. Qin, X. Wang, A. Shemshadi, and Q. He,
“Context-aware point-of-interest recommendation using tensor factoriza-
tion with social regularization,” in Proceedings of the 38th international
ACM SIGIR conference on research and development in information
retrieval, 2015, pp. 1007–1010.

[11] X. Dong, L. Yu, Z. Wu, Y. Sun, L. Yuan, and F. Zhang, “A hybrid
collaborative filtering model with deep structure for recommender sys-
tems,” in Proceedings of the AAAI Conference on artificial intelligence,
2017, pp. 1309–1315.

[12] Z. Chen, T. Xiao, and K. Kuang, “Ba-gnn: On learning bias-aware graph
neural network,” in 2022 IEEE 38th International Conference on Data
Engineering (ICDE). IEEE, 2022, pp. 3012–3024.

[13] H. Wang, N. Wang, and D.-Y. Yeung, “Collaborative deep learning
for recommender systems,” in Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, 2015,
pp. 1235–1244.

[14] T. Xiao, Z. Chen, D. Wang, and S. Wang, “Learning how to propagate
messages in graph neural networks,” in Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, 2021,
pp. 1894–1903.



[15] P. Zhu, Q. Hu, Q. Hu, C. Zhang, and Z. Feng, “Multi-view label
embedding,” Pattern recognition, vol. 84, pp. 126–135, 2018.

[16] S. Huang, Z. Kang, I. W. Tsang, and Z. Xu, “Auto-weighted multi-view
clustering via kernelized graph learning,” Pattern Recognition, vol. 88,
pp. 174–184, 2019.

[17] Y. Zhang, Y. Yang, T. Li, and H. Fujita, “A multitask multiview
clustering algorithm in heterogeneous situations based on lle and le,”
Knowledge-Based Systems, vol. 163, pp. 776–786, 2019.

[18] Z. Chen, J. Ge, H. Zhan, S. Huang, and D. Wang, “Pareto self-supervised
training for few-shot learning,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2021, pp. 13 663–
13 672.

[19] H. Cao, S. Bernard, R. Sabourin, and L. Heutte, “Random forest dis-
similarity based multi-view learning for radiomics application,” Pattern
Recognition, vol. 88, pp. 185–197, 2019.

[20] Y. Yuan, G. Xun, K. Jia, and A. Zhang, “A multi-view deep learning
framework for eeg seizure detection,” IEEE journal of biomedical and
health informatics, vol. 23, no. 1, pp. 83–94, 2018.

[21] S. Huang, Z. Kang, and Z. Xu, “Auto-weighted multi-view clustering
via deep matrix decomposition,” Pattern Recognition, vol. 97, p. 107015,
2020.

[22] N. Zhang, S. Ding, T. Sun, H. Liao, L. Wang, and Z. Shi, “Multi-view
rbm with posterior consistency and domain adaptation,” Information
Sciences, vol. 516, pp. 142–157, 2020.

[23] A. P. Singh and G. J. Gordon, “Relational learning via collective matrix
factorization,” in Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2008, pp. 650–
658.

[24] S. Gai, F. Zhao, Y. Kang, Z. Chen, D. Wang, and A. Tang, “Deep
transfer collaborative filtering for recommender systems,” in PRICAI
2019: Trends in Artificial Intelligence: 16th Pacific Rim International
Conference on Artificial Intelligence, Cuvu, Yanuca Island, Fiji, August
26-30, 2019, Proceedings, Part III 16. Springer, 2019, pp. 515–528.

[25] G. Hu, Y. Zhang, and Q. Yang, “Mtnet: a neural approach for cross-
domain recommendation with unstructured text,” KDD Deep Learning
Day, pp. 1–10, 2018.

[26] G. Adomavicius and Y. Kwon, “New recommendation techniques for
multicriteria rating systems,” IEEE Intelligent Systems, vol. 22, no. 3,
pp. 48–55, 2007.

[27] Z. Chen, D. Wang, and S. Yin, “Improving cold-start recommendation
via multi-prior meta-learning,” in Advances in Information Retrieval:
43rd European Conference on IR Research, ECIR 2021, Virtual Event,
March 28–April 1, 2021, Proceedings, Part II 43. Springer, 2021, pp.
249–256.

[28] D. Jannach, Z. Karakaya, and F. Gedikli, “Accuracy improvements for
multi-criteria recommender systems,” in Proceedings of the 13th ACM
conference on electronic commerce, 2012, pp. 674–689.

[29] Y. Zheng, “Criteria chains: a novel multi-criteria recommendation
approach,” in Proceedings of the 22nd International Conference on
Intelligent User Interfaces, 2017, pp. 29–33.

[30] M. Hassan and M. Hamada, “Genetic algorithm approaches for im-
proving prediction accuracy of multi-criteria recommender systems,”
International Journal of Computational Intelligence Systems, vol. 11,
no. 1, pp. 146–162, 2018.

[31] A. M. Turk and A. Bilge, “Robustness analysis of multi-criteria collab-
orative filtering algorithms against shilling attacks,” Expert Systems with
Applications, vol. 115, pp. 386–402, 2019.

[32] S. Wang, J. Yang, Z. Chen, H. Yuan, J. Geng, and Z. Hai, “Global
and local tensor factorization for multi-criteria recommender system,”
Patterns, vol. 1, no. 2, p. 100023, 2020.

[33] Y. Zheng, S. Shekhar, A. A. Jose, and S. K. Rai, “Integrating context-
awareness and multi-criteria decision making in educational learning,”
in Proceedings of the 34th ACM/SIGAPP Symposium on Applied Com-
puting, 2019, pp. 2453–2460.

[34] P. Li and A. Tuzhilin, “Latent multi-criteria ratings for recommenda-
tions,” in Proceedings of the 13th ACM Conference on Recommender
Systems, 2019, pp. 428–431.

[35] N. Nassar, A. Jafar, and Y. Rahhal, “A novel deep multi-criteria
collaborative filtering model for recommendation system,” Knowledge-
Based Systems, vol. 187, p. 104811, 2020.

[36] Z. Su, J. Yan, H. Ling, and H. Chen, “Research on personalized
recommendation algorithm based on ontological user interest model,”
Journal of Computational Information Systems, vol. 8, no. 1, pp. 169–
181, 2012.

[37] M. Nilashi, O. bin Ibrahim, and N. Ithnin, “Hybrid recommendation
approaches for multi-criteria collaborative filtering,” Expert Systems with
Applications, vol. 41, no. 8, pp. 3879–3900, 2014.

[38] Q. Li, C. Wang, and G. Geng, “Improving personalized services in mo-
bile commerce by a novel multicriteria rating approach,” in Proceedings
of the 17th international conference on World Wide Web, 2008, pp.
1235–1236.

[39] S. Rendle, L. Balby Marinho, A. Nanopoulos, and L. Schmidt-Thieme,
“Learning optimal ranking with tensor factorization for tag recommenda-
tion,” in Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining, 2009, pp. 727–736.

[40] S. Rendle, Z. Gantner, C. Freudenthaler, and L. Schmidt-Thieme, “Fast
context-aware recommendations with factorization machines,” in Pro-
ceedings of the 34th international ACM SIGIR conference on Research
and development in Information Retrieval, 2011, pp. 635–644.

[41] Z. Zhang and S. Aeron, “Exact tensor completion using t-svd,” IEEE
Transactions on Signal Processing, vol. 65, no. 6, pp. 1511–1526, 2017.

[42] Z. Chen, S. Gai, and D. Wang, “Deep tensor factorization for multi-
criteria recommender systems,” in 2019 IEEE International Conference
on Big Data (Big Data). IEEE, 2019, pp. 1046–1051.

[43] D. Jannach, M. Zanker, and M. Fuchs, “Leveraging multi-criteria
customer feedback for satisfaction analysis and improved recommenda-
tions,” Information Technology & Tourism, vol. 14, no. 2, pp. 119–149,
2014.

[44] S. Li, J. Kawale, and Y. Fu, “Deep collaborative filtering via marginal-
ized denoising auto-encoder,” in Proceedings of the 24th ACM interna-
tional on conference on information and knowledge management, 2015,
pp. 811–820.

[45] J. McAuley, J. Leskovec, and D. Jurafsky, “Learning attitudes and
attributes from multi-aspect reviews,” in 2012 IEEE 12th International
Conference on Data Mining. IEEE, 2012, pp. 1020–1025.

[46] X. He, T. Chen, M.-Y. Kan, and X. Chen, “Trirank: Review-aware
explainable recommendation by modeling aspects,” in Proceedings of the
24th ACM international on conference on information and knowledge
management, 2015, pp. 1661–1670.


	I Introduction
	II Related Work
	III Preliminary and Overview
	IV Deep Transfer Tensor Factorization
	IV-A DTTF Scheme
	IV-A1 Loss Function
	IV-A2 Optimization


	V Experiments
	V-A Experiment Setup
	V-B Baseline
	V-C Comparison Experimental Results
	V-D Ablation Analysis

	VI Conclusion
	References

