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Abstract

A multi-label learning (MLL) method can simultaneously process the
instances with multiple labels, and many well-known methods have been
proposed to solve various MLL-related problems. The existing MLL
methods are mainly applied under the assumption of a fixed label set, i.e.,
the class labels are all observed for the training data. However, in many
real-world applications, there may be some unknown labels outside of this
set, especially for large-scale and complex datasets. In this paper, a multi-
label classification model based on deep learning is proposed to discover
the unknown labels for multi-label image classification. It can simultane-
ously predict known and unknown labels for unseen images. Besides, an
attention mechanism is introduced into the model, where the attention
maps of unknown labels can be used to observe the corresponding objects
of an image and to get the semantic information of these unknown labels.

Keywords: multi-label learning, unknown labels, image classification

1 Introduction

The task of MLL is mainly to learn an efficient classification model from the
training data in order to predict one or multiple possible labels for new data
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Fig. 1 The train set in the upper left corner has the known labels of ”person” and ”motor-
bike”, used as the classification model’s supervision. Moreover, the latent common features
of clustering are obtained from the training set and then obtaining the approximate unknown
label information. The attention map presents the objects corresponding to latent common
features is in the upper right. The approximately unknown label information is used as
self-supervision of classification network to guide network to learn unknown labels. After
learning, the prediction of classification network contains the prediction value of unknown
label ”dog.” Finally, the semantic information of unknown labels is obtained by observing
the attention map.

samples. In the past decades, many methods have been proposed for MLL from
different aspects, such as multi-view MLL [1, 2], partial label [3, 4], missing
label [5–18]. For the training data, existing works mainly assume that all the
labels are observed and known. However, in some applications, this assumption
is not always true. Users only see part of the labels, and some unknown labels
are hidden in the data. In addition, their semantic information and labelled
results of samples are also all unknown for the training data. There are many
possible reasons for this problem [19, 20], such as the high cost of labelling
process, complexity of label semantics, limitation of human knowledge and
data acquisition conditions.

Many kinds of researches have been proposed in the past few decades to
solve the problem of new labels, such as online learning [21–25], class incremen-
tal learning [26–29], zero-shot learning [30–33], Generalized out-of-distribution
detection [34–45], etc. In the zero-shot learning problem, the information of
new labels is usually known during the training stage, including the seman-
tic information and their total numbers. In the generalized out-of-distribution
problem, unknown labels may only appear in the test stage. However, as shown
in Figure 1, this paper aims to study the case with completely unknown labels,
including the semantic information of labels and their labelling results of train-
ing samples. In addition, unknown labels may appear in both training and test
stages.
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Researchers have defined the learning with unknown labels as a new learn-
ing framework. Zhao et al. [46] proposed an ExML method in which unknown
labels are recognized and found by adding new features space. However, this
method is mainly designed to handle multi-class classification and can not be
directly applied in MLL. Pham et al. [19] proposed a discriminatory probabil-
ity model MIMLNC and classified all new instances as a new label. In their
work, it is reported that discovering unknown labels hiding in the data can not
only find interesting knowledge but also improve the performance of known
labels. Zhou et al. [47] proposed DMNL methods. This method optimized a
supervised loss and an unsupervised clustering regular item to model the clas-
sifier of known labels and to discover k latent new labels. Similarly, Huang et
al. [48] proposed a DLCL method to discover unknown labels in the single-
instance data. They used non-negative matrix decomposition (NMF) [49] to
decompose the feature matrix into a coefficient matrix and a complete approx-
imate label representation. At the same time, they built a classification model
from the feature space to the complete label space. This method can improve
the performance of known labels when unknown labels information discovered.

Benefited from the great success of deep neural networks in recent years,
great efforts have been devoted to develop deep-based models to address
multi-label image classification. Besides, deep models can extract high-order
semantic features to obtain more excellent results than shallow models. How-
ever, the current methods to deal with the existence of unknown labels are
based on shallow models. In this paper, we propose a deep model to han-
dle MLL with the existence of unknown labels in the training data. The
contributions of this paper are summarized as follows.
(a) We propose a deep model based on neural networks for multi-label image

classification with unknown labels, and it can predict known and unknown
labels simultaneously for unseen images. Moreover, the unknown label
detection module can be applied in any existing deep classification model.

(b) We use unknown label information obtained to estimate the complete label
relationships and to further improve the performance of known labels.

(c) We use attention maps to observe the regions corresponding to the
unknown labels of an image and obtain the semantic information of
unknown labels.

2 Related Work

Many problems are similar to our research in MLL, such as missing label, zero-
shot learning, generalized out-of-distribution detection, online learning and
class-incremental learning, and Figure 2 shows the differences between them
according the label matrix.

Missing label learning: In missing label learning, the label set is a known
closed set, but part of the labelling results of some examples are missing.
Researchers have proposed many solutions from different aspects, for example,
the missing label data is supplemented or restored first, and then a classifier is
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Fig. 2 The label matrices of four problems are as follows. (a) The problem related to the
existence of unknown labels. There exist r kinds of completely unknown labels. (b) The
problem related to the missing labels. The labels are partly missing rather than completely
missing. (c) The problem related to zero-shot learning. There are new labels in the test
set, and the semantic description or attribute matrix is known. (d) The problem related to
generalized out-of-distribution detection. There are new labels in the test set.

constructed based on the restored labelling result. However, the restored label
can not effectively guide the classification model in such a two-stage recov-
ery strategy. According to the previous researches, some methods can reduce
the impact of missing labels by creating an observation matrix [5, 7–13] to
indicate the missing values. In practice, however, it is difficult to acquire this
prior knowledge in advance. In addition, some other methods [14–18] try to
recover label matrix by matrix completion, matrix decomposition, and label
reconstruction. The existing missing label learning algorithms can be feasible
when each label has at least one positive data sample. If the labelling results
of one class label are completely missing for all the samples, we will not obtain
a satisfactory result. However, in our problem, some of the labels are miss-
ing entirely, and they have no labelled samples. Therefore, the missing labels
methods can not be directly applied to our problem.

Zero-shot learning: Zero-shot learning can mainly solve the existence of
unknown new labels during the test stage. In recent years, zero-shot learn-
ing has attracted considerable attention from researchers, at the same time,
some effective learning methods [30–33] have been proposed. Zero-shot learning
often depends on attribute matrix or label semantic descriptions, and learns
the similarity between semantic description and image features to classify the
unknown labels. Furthermore, in zero-shot learning, the attribute matrix or
the unknown label semantic descriptions are taken as a prior knowledge.

Generalized out-of-distribution detection: Yang et al. [34] proposed
a concept called generalized out-of-distribution detection. It contains five
problems which are anomaly detection (AD) [36–39], novelty detection (ND)
[40–42], open set recognition (OSR) [43–45] and outlier detection (OD) [35].
These problems have similar motivation and methodology. Anomaly detection
(AD) aims to detect any anomalous sample which is deviated from the pre-
defined normality during testing [34]. It just judge whether a test sample is
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”normal” or ”abnormal”, and there is only one class in the train set (data
in this class is regarded as ”normal”). ND is similar to AD. It classify a test
samples as ”known class” or ”novel class”, but there may be multiple classes
in train set (all classes in train set is regarded as ”normal” in test set). OSR
need to classify a test samples as ”known class” or ”novel class”, and it also
need to construct multi-class classifier to judge what known classes accurately.
OD has similar purpose to the above problems. It aims to detect test samples
with non-overlapping labels w.r.t training data. OD is a super-category that
includes semantic AD, one-class ND, multi-class ND, and open-set recognition
[34]. Outlier detection aims to detect samples that are labelled different from
the others in the given observation set. We don’t considered OD in this paper,
because OD does not follow a train-test scheme. Except for OD, the above
problems are all trained on labelled train data, known as in-distribution. And
they are tested on unlabelled data that some samples contain unknown labels,
known as out-of-distribution. In our study, not only do unknown labels appear
in the test stage, but also appear in the train stage. So if the above methods
are directly used in our problem, unknown labels in train set cannot be fully
utilized.

Online learning and class-incremental learning: Online learning is
defined as follows. The training data is input in a sequence, and the model
parameters are updated online to provide better results for new test samples
after each iteration [21–25]. Class-incremental learning can be used to segment
training data into sequences according to tasks, process the tasks in order,
incrementally learn a classification model, and then effectively classify any
new labels in task sequence [26–29]. In class-incremental learning and online
learning tasks, new samples might continually introduce new labels. These two
problems are similar to novelty detection and open set recognition. And They
need to use novel samples for training after detect them. Similarly, regard-
ing class-incremental learning and online learning tasks, if there are unknown
labels in training samples at the initial stage of training, the current methods
cannot classify for unknown labels in the subsequent training process. There-
fore, the methods of online learning and class-incremental learning can not be
directly applied to our problem.

In our research, the problem of the existence of unknown labels in MLL
does not contain any additional prior knowledge of unknown labels, and both
training and test samples may exist unknown labels. Therefore, Current learn-
ing methods based on online learning, class-incremental learning, zero-shot
learning and generalized OOD detection can’t be directly used to solve the
unknown labels problems in our study.

In this paper, we propose a deep model to deal with the existence of
unknown labels, and it can predict unknown and known labels simultaneously.
Finally, we use attention maps to obtain the semantic information of unknown
labels.
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Fig. 3 Overall architecture of our model. Given an image, a CNN network outputs the
image features from different layers to different branches. We fuse the features of different
branches, and then fuse the semantic information obtained by the graph neural network
with the image features as the final feature representation. At the same time, we cluster the
image features to obtain approximate unknown label information to guide the classification
network to learn unknown labels, and use classifier to classify known and unknown labels.
In addition, we use unknown label information to complete the label relationships.

3 Proposed method

3.1 Problem Definition

The image dataset is I ∈ Rn×c×w×h, where n indicates the number of samples,
numbers c, w, and h are the sizes of channels, width, and height, respectively.
The complete label matrix is Ŷ =

[
Y,Y

]
∈ {0, 1}

n×l
, the known label matrix

is Y ∈ {0, 1}
n×q

, and the unknown label matrix is Y ∈ {0, 1}
n×r

. Here, the
number of unknown labels is set to r. Accordingly, the number of complete
labels is l = q+r. If label j appears in the ith image, then yij = 1, and yij = 0

otherwise. The complete label relationship graph is expressed as Ô=
{
D̂, Ŝ

}
,

where D̂ represents the vertex (label) set and Ŝ is the edge set. The ver-

tex feature is the semantic description of complete labels V̂ =
[
V,V

]
∈ Rl×d,

where V = [V1,...,Vq] ∈ Rq×d is the semantic description of known labels and

V =
[
V 1,...,V r

]
∈ Rr×d is the semantic description of unknown labels. Fur-

thermore, the weight of each edge is the co-occurrence probability of complete
labels Â ∈ [0, 1]l×l. Similarly, A ∈ [0, 1]q×q is the co-occurrence probability
matrix of known labels.

The task of this paper is to build a deep model fθ which can map all
the data samples in the image set I into the l complete label space, i.e.,

fθ

(
I, Ô

)
= Ŷ, where θ is the model parameters. Figure 3 shows the over-

all framework of our proposed method which is mainly composed of three
parts, i.e., initialization of the complete label relationship graph, construct-
ing the approximate unknown label matrix, and building a multi-label image
classification model. In the following sections, we will introduce them in detail.
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3.2 Initialization of the complete label relationship graph

For the proposed method, we first need to get a complete label graph Ô

which contains the complete label semantic descriptions V̂ and the label co-
occurrence probability matrix Â. In addition to expanding the size of V̂ and
Â, we also need to initialize the contents of the expanded part of V̂ and Â.
In our problem, no information is provided for the unknown labels. However,
there are more or less certain correlations between the unknown and known
labels. Therefore, we can use the known label relationships to initialize the
unknown labels relationships, i.e. unknown label semantic descriptions and
unknown label co-occurrence probability.

First, we use known label semantic descriptions to initialize the unknown
labels semantic descriptions. The process is conducted as

V k =
1

q

q∑

i=1

Vi, (1)

where Vi ∈ R1×d represents the ith known label semantic description and

V k ∈ R1×d represents the kth unknown label semantic description.

Second, in order to obtain Â, we need to initialize the co-occurrence
times between the ith known label and the kth unknown label, i.e., Lki

and Lik, and the occurrence times of kth unknown labels, i.e., Nk, and
1 ≤ i ≤ q, q + 1 ≤ k ≤ l. Specifically, we calculate the average co-occurrence
times between all known labels with a random value as the co-occurrence times
between the kth unknown label and ith known label. The process is conducted
as follows:

Lki = max

(
1

q

q∑

j=1

Lji + randint(−α×
1

q

q∑

j=1

Lji, α×
1

q

q∑

j=1

Lji), 0

)
(2)

Nk = max

(
1

q

q∑

j=1

Nj + randint(−α×
1

q

q∑

j=1

Nj , α×
1

q

q∑

j=1

Nj), 0

)
(3)

where α is a constant, the function randint(a, b) randomly generate a inte-
ger between a and b, Lji represents the co-occurrence times between the ith
and jth known labels, and the function max(a, b) returns the maximum value
between a and b.

After the initialization of Lki, we can initialize the co-occurrence times
between the kth unknown label and the hth unknown label., q + 1 ≤ k ≤ l,
q + 1 ≤ h<k. The process is as follow:

Lkh = max

(
1

q

q∑

j=1

Lkj + randint(−α×
1

q

q∑

j=1

Lkj , α×
1

q

q∑

j=1

Lkj), 0

)
(4)
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Lkk = 0 (5)

In order to facilitate a better optimization, we symmetrize the co-occurrence
times Lij by Lij = Lji, where 1 ≤ i ≤ l, 1 ≤ j ≤ l.

Following chen et al. [50], we can estimate Âki with the label co-

occurrence times Lki and label occurrence times Nk, i.e., Âki = Lki/Nk, where
q + 1 ≤ k ≤ l and 1 ≤ i ≤ l. And the chen et al. use the threshold τ to filter
noisy edges, the process is as follow:

Âki =

{
0, Âki < γ

1, Âki ≥ γ
(6)

where γ is a threhold, and it is set to 0.4 following chen et al. To alleviate over-
smoothing problem, Chen et al. propose the following re-weighted scheme, the
process is as follow:

Âki =

{
p/
∑l

j=1,i ̸=j Âki, i ̸= j

1− p, i = j
(7)

where p is a hyper-parameter, and it is set to 0.2 following chen et al. Similarly,
the solution for Âik is the same as Âki.

3.3 Constructing the approximate unknown label matrix

After obtaining the complete label relationship graph, we need to construct
an approximate unknown label matrix, and then use it to construct the classi-
fication model. First, we fuse the feature maps from different layers of a deep
convolution neural network. Then, we adopt the deep embedding clustering
(DEC) [51] method to obtain approximate unknown label cluster centers and
an approximate unknown label matrix.

3.3.1 Clustering Feature Fusion

In a deep convolution neural network, feature map from the low layers focus
more on image texture features. It has a high resolution, clear image details,
and unknown label information, but it also has a lot noise. On the contrary, the
feature map from deep layers can abstractly represent the whole image with
less noise but low resolution and less unknown label information. To discover
unknown labels clearly, we fuse feature maps from multiple layers.

Taking ResNet-101, which consists of 4 residual blocks, as the backbone.
The last convolution layers of the latter two residual blocks of ResNet-101 are
used to extract the feature maps: F = {fs}

B

s=1, fs ∈ Rcs×ws×hs , where B = 3,
cs, ws and hs denote the number of channels, width, and height of the feature
map in different layers. f2 represents the feature map of penultimate block.
We use a convolution layer with 1×1 kernel and interpolation with a billinear
mode to project feature maps from f3 to a new f̄3. By concatenating f̄3 and f2,
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we can obtain the feature vector fc∈R
c2+c3 through a global average pooling

layer, the processes are defined as

f̄3 = interpolate (f3, size = (w2, h2))∈R
c3×w2×h2 (8)

fc = avg pool(concat(f2, f̄3))∈R
c2+c3 (9)

where interpolate(·, size) function up samples the input to the given size. The
concat(·, ·) function concatenate different feature maps on the channel dimen-
sion. The avg pool(·) function applies a adaptive average pooling over input
feature maps.

The feature vectors fc of all samples constitute the feature matrix.

X∈Rn×(c1+c2). Based on the feature matrix X, we can adopt the DEC [51]
method to obtain an approximate label matrix of all training samples.

3.3.2 Approximate Unknown Label Cluster Centers

To use DEC, we first need to initialize the cluster centers for it. Here we
adopt the k-means algorithm, and ĝ ∈ Rl×(c2+c3) are the cluster centers for

the labels, including the known and unknown ones. Q̂ ∈ [0, 1]n×l is the soft

cluster assignments, and each element Q̂ij indicates the probability that the ith
sample belongs to the jth cluster center. In this paper, following the student’s
t-distribution [52], each element Q̂ij is calculated according to

Q̂ij =

(
1 + ∥Xi − ĝj∥

2
/η
)− η+1

2

∑
j′

(
1 +

∥∥Xi − ĝj′
∥∥2 /η

)− η+1

2

, (10)

where Xi is the feature vector for the ith image, and ĝj is cluster center vector
for the jth class, and η is the degrees of freedom of the student’s t-distribution.
Following DEC [51], η is set to 1 in this paper for all experiments.

In MLL, each image may have multiple class labels. Based on Q̂, we can
obtain a hard assignment matrix Ĝ ∈ {0, 1}

n×l
with a threshold τ ∈ [0, 1]. Ĝ

can be taken as an approximate complete label matrix, including the known
and unknown labels, and it is more reasonable to MLL problem.

Ĝi,j =

{
1, Q̂i,j > τ

0, Q̂i,j ≤ τ
(11)

Then we split the cluster centers into two parts for known and unknown
labels respectively. Based on the previous research [47], we figure out the best

match between the columns of assignments Ĝ and the known label matrix Y

by maximizing the F1 measure according to

argmax
j

{
F
(
Ĝ:,i , Y:,j

)
, i ∈ {1, ..., l} , j ∈ {1, ..., q}

}
, (12)
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where Ĝ:,i represents the ith column of Ĝ, and Y:,j represents the jth col-
umn of known label matrix Y. According equation (12), we can obtain the
q best matched cluster centers g ∈ Rq×(c2+c3) for known labels, and the rest

ones g ∈ Rr×(c2+c3) are taken as the cluster centers for r unknown labels,

i.e., ĝ = [g, g] ∈ Rl×(c2+c3). Correspondingly, Q̂=
[
Q, Q

]
∈[0, 1]n×l, whereQ ∈

[0, 1]n×q is soft assignments for the known labels and Q ∈ [0, 1]n×r is soft
assignments for the unknown labels.

3.3.3 Deep Embedding Clustering

After the initialization for the cluster centers, we adopt DEC [51] to optimize

the cluster centers ĝ from current high confidence assignments Q̂ using an

auxiliary target distribution P̂=
[
P, P

]
∈[0, 1]n×l, whereP ∈ [0, 1]n×q is target

distribution for the known labels and P ∈ [0, 1]n×r is target distribution for

the unknown labels. The target distribution P̂ is defined as

P̄ij =

Q̂2
ij

Zj

∑
j
′

Q̂2

ij
′

Z
j
′

, (13)

where Zj =
∑

i Q̂ij . It is used to normalize the soft assignments and pre-

vent large clusters. Q̂2
ij is used to put more emphasis on data points assigned

with higher confidence. DEC uses KL divergence to constrain the consistency
between the soft assignments and target distribution.

ℓDEC = KL
(
P̂∥Q̂

)
=
∑

i

∑

j

P̂ij log
P̂ij

Q̂ij

(14)

After each iteration of DEC, we update the soft assignment Q̂ and the
target assignments P̂ according to equations (10) and (13) based on the new
optimized image features and the cluster centers ĝ. Finally, we take P̄ as the
approximate unknown label matrix.

3.4 Establish Complete Label Classification Model

After obtaining the approximate unknown label matrix, we can construct a
classification for multi-label image classification. Specifically, we first fuse the
feature maps from last three blocks of backbone Resnet-101. Then we adopt an
attention mechanism to learn label-specific and group-specific features. Finally,
we construct a label related classifier to classify both known and unknown
labels.
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Fig. 4 After up-sampling and dimension reduction, deep and shallow features are concate-
nated in channel dimensions. Shallow features fuse information about themselves and deep
features.

3.4.1 Multi-layer feature fusion

In order to obtain more meaningful and discriminative features to improve
the classification performance, similar to FPN [53], we fuse the features from
multi-layers. This method can produce a multi-scale feature representation in
which all layers are semantically strong, including the high-resolution layers.
Our feature fusion method is shown in Figure 4.

Firstly, through a 1x1 conv layer, the feature map f3 is interpolated with a

bilinear operation and concatenated with f2 to obtain f
′

2. Then we change its
dimension to obtain new f2 with a 1x1 conv layer. The processes are as follows:

f3 = map(f3, c3, c2),

f
′

2 = concat(interpolate (f3, size = (w2, h2)), f2),

f2 = map(f
′

2, 2c2, c2),

where f
′

2 ∈ R2c2×w2×h2 and f2 ∈ Rc2×w2×h2 . map(·, inchannels, outchannels)
function applies a convolution layer with 1× 1 kernel over input feature maps,
“in channels” is a parameter that represents the number of input channels of
feature maps and “out channels” is a parameter that represents the number
of channels produced by the convolution.

Secondly, we fuse the feature maps f2 and f1 by the same strategy. The
processes are as follows:

f
′

1 = concat (interpolate (map(f2, c2, c1), size = (w1, h1)), f1) ,

f1 = map(f
′

1, 2c1, c1).

After the feature fusion, we can obtain the new feature maps: F = {fs}
B

s=1,

where fs ∈ Rcs×ws×hs and B = 3.
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3.4.2 Label Related Classifier

Motivated by the work MSRN [54], we use an attention mechanism to learn
label-specific and group-specific features, and then construct the label related
classifiers.

First, following MSRN [54], with the graph attention networks (GAT) [55]
and the differentiable graph pooling (Diffpool) [56], we can obtain the semantic
label embeddings El and semantic group embeddings Eg from the complete

label relationship graph Â by

El = GAT
(
V̂ , Â

)
, Eg = Diffpool

(
El, Â

)
, (15)

where El =
{
eil
}l
i=1

∈ R
l×d and Eg =

{
ejg
}z
i=1

∈ R
z×d, eil represents the

semantic label embedding for the ith label, and ejg represents the semantic
group embedding for the jth label group, and there are z groups.

Second, we use the the semantic label embeddings El and semantic group
embeddings Eg to guide the network to learn label-specific and group-specific
features by an attention mechanism. Specifically, we first map the feature maps
from different blocks to the same dimension with the label embeddings, i.e.,
fs = map(fs, cs, d) and finally we get the feature maps F = {fs}

B

s=1, where
fs ∈ Rd×ws×hs . Then, we adopt the same attention mechanism in MSRN [54].
The attention scores of each position of the feature maps are calculated as

slisw,h
= fw,h

b ⊙ eil, sgjsw,h
= fw,h

s ⊙ ejg, (16)

where the ⊙ is Hadamard product, slsw,h
∈ R

1×1×l×d and sgsw,h
∈ R

1×1×z×d.
Then we can obtain the normalized scores als ∈ R

ws×hs×l×d and ags ∈
R

ws×hs×z×d according to

alw,h
s =

exp
(
slsw,h

)
∑

x,y exp
(
slsx,y

) , agw,h
s =

exp
(
sgsw,h

)
∑

x,y exp
(
sgsx,y

) (17)

Then we apply the second Hadamard product to generate position-wise
attention maps according to

os =
∑

w,h

alw,h
s ⊙ fw,h

s , qs =
∑

w,h

agw,h
s ⊙ fw,h

s . (18)

Consequently, for each image, we can obtain the label-specific features K =
{os}

B

s=1 ∈ R
l×(Bd) and the group-specific features J = {qs}

B

s=1 ∈ R
z×(Bd).

Finally, we construct the classifier for labbel prediction. Different from
MSRN [54], for each label yi, the classifier is constructed based on the feature
representation which is composed of its label-specific feature Ki ∈ R1×Bd

(1 ≤ i ≤ l) and the corresponding group features Jk ∈ R1×Bd (1 ≤ k ≤ z)1.

1The ith label belongs the k group.
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Therefore, the classifier for the ith label can be defined as

ui = sum
(
T i ⊙ tanh(Si)

)
+Biasi, (19)

where ui ∈ R1×1, and Si = concat(Ki, Jk) ∈ R1×2Bd. T i ∈ R1×2Bd and

Biasi ∈ R1×1 are learnable model parameters.

3.4.3 Trainning Loss

In this section, we will introduce the training loss function used in this paper.
Firstly, for the known labels, we adopt the BCE loss

ℓknown = −
1

q

q∑

i=1

[
yi × lnW i + (1− yi)× ln

(
1−W i

)]
, (20)

where W i = 1

1+e−ui . y
i is the ground truth of the ith known label.

Same to MSRN, we add the following loss function to constrain the model
to learn more compact group embeddings.

ℓDiff =

z∑

k=1

∑

ei
k
∈Ck

∥∥eil − ekg
∥∥2
2
, (21)

where Ck represents the set of label semantic representations for the kth label
group.

For the unknown labels, we also adopt the BCE loss and constrain the
consistency between the prediction of the classifier and the output of DEC.

ℓunknown = −
1

r

r∑

i=1

[
P

i
× lnW q+i + (1− P

i
)× ln (1−W q+i)

]
, (22)

where W q+i = 1

1+e−uq+i , 1 ≤ i ≤ r. uq+i and P
i
represent the prediction of

classifier and the output of DEC for the ith unknown label respectively.
Therefore, the total loss function of the proposed method is defined as

loss = ℓknown + ℓunknown + ℓDEC + ℓDiff . (23)

According to the above analyses, the training processes of our proposed
method can be summarized in Algorithm 1. Â is complete label relationship
graph, ĝ is cluster centers of DEC, V̂ is complete label semantic description,
and θ is the model parameters. Give a set of test images Itest, the predictions
can be obtained by U = h(Itest, θ).
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Algorithm 1 Training.

Input: I,A,V
Output: the classifier h(θ)

Initialize Â,V
Repeat:

Update θ via SGD and ℓknown

Until convergence or the maximum iteration is reached.
Initialize ĝ.
Repeat:

Update θ, ĝ via SGD and loss
Until convergence or the maximum iteration is reached.

4 Experiments

4.1 Experiment Setting and Evaluation Metrics

To verify the effectiveness of our model on known labels, we compared it with
four advanced models. Detailed configurations of models are summarized as: 1)
MCAR [57]: A multi-class attention classification model via combining global
and local regions. 2) ADD-GCN [58]: A classification model with dynamic
graph. 3) MSRN [54]: A classification model with multi-layered semantic rep-
resentation. We take known label relationship graph as input to GCN. 4)
ResNet-101 [59]: Residual structure. 5) our model: We use kmeans as the ini-
tialize method of DEC, and learning rate of DEC is set to 0.0001. The threshold
τ is set to 0.3, α is set to 0.3. The backbone ResNet-101 is pretrained on Ima-
geNet for accelerating training process. We remove the last average pooling
layer and classifier of backone and apply the MaxPooling with kernel size 2 ×

2 and stride 2 to obtain image features. The initial learning rate of our model
is set to 0.1, and the learning rate decay by 10% each 15 epochs in total 90
epochs. The output dimension of first four models is set to q, and to l for the
proposed method. For all models, we train all models on GeForce RTX 2080Ti-
11GB GPU and set the batch size to 8. The input image size of all models is
448×448.

In the experiment, we evaluate the performance of our proposed model
on known and unknown labels respectively. The evaluation metrics we used
to evaluate the performance of known labels include mean average precision
(mAP) over all categories, precision (CP, OP), recall (CR, OR), and F1 score
(CF1, OF1). We adopt the following metric proposed in Zhu et al. [35] to
evaluate the performance of our model on predicted unknown labels.

Fnovel = max ({F ( U:,q+i , Y:,j) , j ∈ {1, ..., l}}) (24)

WhereU ∈ Rn×l is the label prediction of all samples from classifier.U:,q+i

is the prediction of the (q+ i)th label of all samples. Y:,j is the jth column of
Y.
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4.2 Experiment Results of Known Labels

Our experiments are conducted on three multi-label image classification bench-
mark datasets, i.e., VOC2007 [60], VOC2012 [61] and Apparel2. Following the
settings in previous work [47], the first 70%l, 80%l and 90%l labels are set be
to known labels and the rest are taken as unknown ones respectively. All the
comparing models have the same known and unknown label split. The average
results of each comparing algorithm on the known labels are shown in Tables
1-3.

VOC2007: The comparison results on VOC2007 dataset are shown in
Table 1. There are 5011 images for training and 4952 images for testing. Our
model perform better than state-of-the-art methods on most metrics. When
the numbers of unkonwn labels are 10%l and 20%l, the mAP of ours is 92.979%
and 92.694%, and it is slightly higher than the second-place model by 0.18%
and 0.17%. When the numbers of unkonwn labels is 30%l, our model achieves
95.140% mAP. It is significantly higher than the others. It can be seen that
our model can have better performance when there are more unknown labels.
It indicates that our model can effectively discover unknown label information
and use discovered unknown labels’ information to improve the performance
of known labels.

VOC2012: It consists of 11,540 images as training and validation set, we
use VOC2012 as the training set and VOC2007 as the test set. When the num-
bers of unkonwn labels are 30%l, the comparison results are shown in Table 2,
Our method can achieve 96.007% mAP score. Our model achieves comparable
performance with the state-of-the-art methods, and wins the second place in
terms of CP, CR, CR-3 and OR-3.

Apparel: The comparison results on Apparel dataset are shown in Table
3. In our experiment, we randomly select 50% images from the dataset for
training, and other 50% images for testing. Our model performs better than
Resnet on all metrics.

4.3 Experiment Results of Unknown Labels

Experiments of The Best Matched Labels. The prediction of unknown
labels are matched with the complete label matrix, and Fnovel is used to mea-
sure the compatibility of distributions. In the experiment, the unknown labels
are deleted from the complete labels. Table 4 shows the results of the five
best matched labels for the unknown labels over the VOC2007 dataset with
q = 80%l and r = 20%l. The left column lists the top-5 matched labels for
a predicted unknown label, and the right column indicates the best matched
name of unknown labels. It can be seen that the first label is matched with a
very higher F1 score than other labels. For example, the unknown label “aero-
plane” is matched with the ground-truth with a very high F1 score 0.856.
These experimental results verify that the proposed method can discover these
unknown labels.

2www.kaggle.com/kaiska/apparel-dataset
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Table 1 Experimental results on VOC2007

q = 90%l, r = 10%l mAP CP CR CF1 OP OF1 CP-3 CR-3 CF1-3 OP-3 OR-3 OF1-3

ResNet-101 91.354 0.848 0.833 0.840 0.868 0.861 0.814 0.857 0.835 0.831 0.874 0.852
ADD-GCN 92.65 0.845 0.875 0.86 0.871 0.883 0.847 0.871 0.859 0.874 0.892 0.883
MCAR 92.799 0.761 0.915 0.831 0.781 0.846 0.766 0.909 0.831 0.7873 0.918 0.848
MSRN 91.662 0.857 0.854 0.856 0.872 0.875 0.836 0.869 0.852 0.8448 0.891 0.867

Ours 92.979 0.887 0.848 0.867 0.90 0.886 0.871 0.860 0.866 0.883 0.883 0.883

q = 80%l, r = 20%l mAP CP CR CF1 OP OF1 CP-3 CR-3 CF1-3 OP-3 OR-3 OF1-3

ResNet-101 91.324 0.859 0.811 0.834 0.827 0.820 0.822 0.846 0.833 0.766 0.849 0.805
ADD-GCN 92.44 0.856 0.868 0.862 0.829 0.852 0.856 0.868 0.862 0.829 0.876 0.852
MCAR 92.694 0.777 0.914 0.840 0.751 0.825 0.777 0.914 0.840 0.752 0.915 0.825
MSRN 92.245 0.862 0.864 0.863 0.847 0.856 0.839 0.879 0.858 0.820 0.881 0.849

Ours 92.863 0.885 0.844 0.864 0.880 0.856 0.874 0.854 0.864 0.866 0.845 0.855

q = 70%l, r = 30%l mAP CP CR CF1 OP OF1 CP-3 CR-3 CF1-3 OP-3 OR-3 OF1-3

ResNet-101 93.020 0.8547 0.868 0.861 0.829 0.850 0.824 0.889 0.855 0.790 0.8927 0.838
ADD-GCN 94.73 0.888 0.902 0.895 0.879 0.893 0.889 0.902 0.895 0.880 0.908 0.894
MCAR 94.630 0.8090 0.928 0.864 0.822 0.871 0.810 0.927 0.864 0.822 0.926 0.871
MSRN 92.756 0.8637 0.847 0.855 0.822 0.832 0.870 0.836 0.853 0.832 0.833 0.833

Ours 95.140 0.908 0.880 0.894 0.907 0.894 0.897 0.890 0.893 0.894 0.890 0.892

Table 2 Experimental results on VOC2012

q = 70%l, r = 30%l mAP CP CR CF1 OP OF1 CP-3 CR-3 CF1-3 OP-3 OR-3 OF1-3

ResNet-101 94.294 0.893 0.880 0.886 0.878 0.881 0.872 0.893 0.882 0.854 0.896 0.875
MCAR 95.492 0.947 0.925 0.884 0.852 0.880 0.862 0.904 0.882 0.862 0.910 0.880
MSRN 93.744 0.870 0.843 0.856 0.858 0.853 0.845 0.866 0.856 0.823 0.872 0.847

Ours 96.007 0.909 0.893 0.901 0.901 0.898 0.904 0.899 0.901 0.894 0.902 0.898

Table 3 Experimental results on Apparel

q = 70%l, r = 30%l mAP CP CR CF1 OP OF1 CP-3 CR-3 CF1-3 OP-3 OR-3 OF1-3

ResNet-101 99.281 0.964 0.970 0.967 0.969 0.968 0.970 0.962 0.966 0.974 0.959 0.966

Ours 99.506 0.983 0.974 0.978 0.986 0.981 0.977 0.980 0.978 0.980 0.981 0.981

Table 4 Experimental results of the best matched labels on voc2007 for the three
predicted unknown labels

Top 5 Matched Labels (i.e., label name (F1 score)) Unknown Label

aeroplane(0.856), person(0.039), car(0.028), motorbike(0.004), pottedplant(0.004) aeroplane
bicycle(0.882), person(0.120), motorbike(0.053), car(0.014), bottle(0.013) bicycle
bird(0.717), sheep(0.012), dog(0.006), pottedplant(0.004), person(0.003) bird

Table 5 Experimental results on voc2007 with different clustering algorithms in terms of
Fnovel

cluster algorithm bird train cat chair sofa tvmonitor aeroplane dog horse motorbike

q = 90%l
NMF 0.650 0.5

r = 10%l DEC 0.873 0.902

q = 80%l
NMF 0.544 0.248 0.241 0.330

r = 20%l DEC 0.739 0.490 0 0.637

q = 70%l
NMF 0.293 0.402 0.318 0.050 0.0428 0.3169

r = 30%l DEC 0.792 0.830 0.904 0 0.786 0.770
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person，diningtable，chair pottedplant，chair

person，dog

boat， bird

person，bicycle

person，aeroplane

Fig. 5 In the six images, the left side of each image shows the original image of unknown
labels, and the right side of each image displays the attention map of unknown labels after
discovering by our model. The words below each image are the labels of the image. The
black words are known labels, while the red words are unknown labels.

Experiments with DLCL by setting different clustering algo-

rithms. Since DLCL [48] solves the same problem as we do, we set up an
experiment to compare with DLCL. However, DLCL is a shallow model and
and uses NMF to discover unknown label information, and its feature extrac-
tion ability is pool as that of a deep model, so we replace the DEC component
with NMF in our model. We selected different number of unknown labels to
conduct the experiment. Table 5 shows the results of using different clustering
algorithms over the VOC2007 dataset. It can be seen from first line, unknown
labels are “bird” and “train”. The scores of Fnovel of our model with NMF are
0.650 and 0.5. They are much lower than our model with DEC. However, it
can be seen from second line, when unknown label is “sofa”, Fnovel of DEC is
0, and that of NMF is 0.241. It is suggest that our model is better than DLCL
at most of the time, and cannot discover some unknown labels in some cases.

4.4 Attention Map of Unknown Labels

Our model learns an attention map for each label. After learning the unknown
labels, we output the attention maps of unknown labels. Figure 5 shows six
examples of attention maps for the unknown labels (i.e., chair, dog, bicycle,
bird, and aeroplane). We can observe that the attention maps focus on the
unknown labels, and we can get the semantic information for the unknown
labels from these results. These experimental results clearly demonstrate that
our proposed model can effectively discover unknown labels.
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Table 6 Ablation Study

mAP

Basemodel 89.632
Basemodel + multi-layer feature fusion 90.004
Basemodel + label related classifier 91.374

Ours 93.42

Fig. 6 The attention maps of label ”horse”. The attention maps for three images in the
first line are generated by the basemodel, and the following three ones are generated by our
model.

4.5 Ablation Study

We used basemodel as a benchmark to verify the effectiveness of each compo-
nent of our model. The basemodel uses ResNet-101 to extract features, GAT
and Diffpool to extract semantic embeddings, and a semantically guided atten-
tion mechanism is used to fuse semantics and features. And it does not take
into account unknown labels. On the basis of basemodel, our model added fea-
ture fusion, label related classifier, and module for discovering unknown labels
in our model. At the same time, we use complete label relationship graph as
GAT’s input, including known and unknown labels. We conduct some ablation
studies on VOC2007 dataset, as shown in table 6. From the results, we can
see the mAP of basemodel is 89.632. The mAP of basemodel with multi-layer
feature fusion is 90.004 and that of basemodel with label related classifier is
91.374. These are all slightly higher than basemodel. Ours containing both the
two modules and discovering unknown labels is much higher than the base-
model. These results clearly verify the effectiveness of each component of our
model.

We also visualize the attention maps of the basemodel and our model. It
is shown in Figure 6. The following three images are generated by our model
with the multi-layer feature fusion module. It can be seen that attention maps
of our model focus on more meaningful regions. It also can verify the effective
of our model.
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5 Conclusion

In this paper, we proposed a new deep model that can predict unknown labels
in MLL for image classification. At the same time, we proposed a method
to update graph neural network with the information of unknown labels and
improved the performance of known labels. Finally, we can obtain the semantic
information of unknown labels by attention maps. Extensive experiments on
various datasets demonstrate the effectiveness of the proposed framework on
discovering and predicting unknown labels for multi-label image classification.
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