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Abstract—Continual learning is one of the major challenges of
deep learning. For decades, many studies have proposed efficient
models overcoming catastrophic forgetting when learning new
data. However, as they were focused on providing the best reduce-
forgetting performance, studies have moved away from real-
life applications where algorithms need to adapt to changing
environments and perform, no matter the type of data arrival.
Therefore, there is a growing need to define new scenarios to
assess the robustness of existing methods with those challenges
in mind. The issue of data availability during training is another
essential point in the development of solid continual learning
algorithms. Depending on the streaming formulation, the model
needs in the more extreme scenarios to be able to adapt to new
data as soon as it arrives and without the possibility to review
it afterwards. In this study, we propose a review of existing
continual learning scenarios and their associated terms. Those
existing terms and definitions are synthesized in an atlas in
order to provide a better overview. Based on two of the main
categories defined in the atlas, ’Class-IL” and “Domain-IL”,
we define eight different scenarios with data streams of varying
complexity that allow to test the models robustness in changing
data arrival scenarios. We choose to evaluate Dream Net - Data
Free, a privacy-preserving continual learning algorithm, in each
proposed scenario and demonstrate that this model is robust
enough to succeed in every proposed scenario, regardless of
how the data is presented. We also show that it is competitive
with other continual learning literature algorithms that are not
privacy preserving which is a clear advantage for real-life human-
centered applications.

Index Terms—continual learning, incremental learning, real-
life scenarios, online learning, streaming learning, pseudo-
rehearsal, replay, privacy

I. INTRODUCTION

With advances in artificial intelligence, and in deep learning
algorithms, the tools developed in those fields are becoming
more and more attractive for real-life applications where
data monitoring is essential (healthcare, autonomous driving,
environment...). Nowadays, many smart devices are developed
in order to monitor a wide array of data generated daily by
the users. Traditional deep learning usually proposes to train
models offline with unlimited quantity of stored data that is
used in an independent and identically distributed (i.i.d.) and
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stationary fashion during the training phase. This setting is
unusable for smart devices in a changing environment where
data is not available at all time, notably because of its memory
footprint, power consumption and privacy-preserving issues.
This particular issue can be illustrated with the case of clinical
applications where data storage is not always allowed because
of patient’s privacy concerns [1]. In addition, for those kind
of applications, the i.i.d. assumption is not easy to maintain
even for data coming from the same patient because of the
number of sensors used, temporal changes in physiological
data and other factors due to the recording environment [2].
In order to deal with those continuous data arrival, algorithms
must continuously adapt while minimizing data storage and
complexity.

However, unlike the human ability to keep and fine-tune
concepts continuously, Artificial Neural Networks (ANNs)
encounter the issue of catastrophic forgetting [3]. The catas-
trophic forgetting effect appears when the ANN is trained
on new data and adapts its parameters in order to match
with this new information without taking into consideration
previously learned knowledge. Many studies have aimed to
propose continual learning models that overcome this issue [4].
Some of the models proposed in those studies were designed as
an answer to very specific scenarios of data arrival. In order to
highlight differences between scenarios, [5] made an interest-
ing comparative study on continual learning formulations used
in literature (see section II for more details). They highlighted
the fact that algorithms in the literature were not necessarily
comparable in terms of accuracy and data treatment because
the implemented scenarios could have drastic differences. For
example, some formulations of continual learning need an
oracle to give information about the task being performed
during the test phase while others do not rely on it. This
study will provide an overview of existing continual learning
scenarios while clarifying terms and definitions in a global
atlas. Besides the discrepancies between the existing continual
learning scenarios, the issue of data availability during training
is also fundamental. In fact, depending on the algorithm and
its training environment, data can be treated in small batches
or even one element at the time. This kind of setting, called
online learning or streaming learning consists of dealing with



a restrictive quantity of data available at each learning step
while not allowing the algorithm to review the same data
several times [6]—[9]. Three formulations of streaming learning
are presented in this study in order to explore different level
of constraints in the data stream. The ability of a model to
deal with a wide variety of data arrival is essential when real-
life application are considered. For example, smart sensors
deployed in a changing environment must be able to learn
new data no matter the arrival scenario and stream constraints.
There is a lack of homogeneity in continual learning model
evaluation in literature, more particularly with regard to data
arrival scenarios. That is why, after proposing an overview
of continual learning scenarios and streaming formulations,
we propose a general framework with eight different training
scenarios in order to test and assess the robustness of different
continual learning models. A promising privacy preserving
continual learning model, Dream Net - Data free [10], will be
tested in those eight configurations and compared to baseline
and other literature models. In summary, this paper brings the
following contributions:

e An overview of existing continual learning scenarios and
models with an atlas that enables to synthesize terms and
definitions.

o A framework of eight scenarios that allow to efficiently
test the robustness of continual learning models over data
arrival possibilities.

¢ A validation of Dream Net - Data Free [10] robustness
in the proposed framework compared to other baselines
and literature models.

The next section, provides an overview of different continual
learning scenarios, streaming formulations, and methods while
defining terms in order to better formulate our study settings.
The experimental setup introducing the different test scenarios
and considered databases is established in section IIl. In
section IV we present the results of experiments on Dream
Net - Data free model and discuss them. We finally conclude
and propose some perspectives in section V.

II. LITERATURE OVERVIEW

This section presents the main challenges of continual learn-
ing for streaming data. On one side, during the last decades
a lot of studies have been done on continual learning with
the key challenge of avoiding catastrophic forgetting and a lot
of different approaches have been explored [4]. On the other
side, online or streaming learning is an emerging research field
that challenges the types of data arrivals in order to propose
algorithms able to learn on restrained continual data streams.
We propose a taxonomy of the different concepts that will
highlight one of the major issue of real-life application: the
need for algorithms stable and agnostic to data arrival scenario.

A. Continual learning scenarios and streaming formulations

To begin, in continual learning literature, terms like in-
cremental learning or lifelong learning are sometimes also
used to talk about similar concepts. Some articles propose
different definition for those three terms [11]. Here for more

simplicity in the concept definition, we chose to consider
them as synonyms. Beyond a set of methods for overcoming
catastrophic forgetting, continual learning aims to give ANNs
the ability to deal with a non stationary and never-ending
stream of data [8]. This ability to adapt in a constantly
changing environment is challenging because algorithms have
to not only preserve acquired knowledge through past data but
also adapt to a potential distribution shift. We provide here an
overview of the existing terms and definitions.

1) Task-incremental learning vs Domain-incremental
learning vs Class-incremental learning: In order to evaluate
continual learning methods, several teams agreed on the
definition of three evaluation protocols [12], [13]. In all this
sub-section, the term “task” refers to the process of splitting
a given set of data. Each task can contain one or more classes
depending on the type of scenario.

Task-incremental learning (Task-IL) is the easiest continual
learning scenario. It consists of using an oracle that gives
information about the considered task during training and
testing phases. For example, when one trains a model with
tasks that each contains two classes, during the test phase,
the model has information about the considered task for
the accuracy measurement. The model only has to choose
between two classes and not between all the classes that have
been learned so far. With this kind of protocol, “multi-head”
networks are usually used and are built with different outputs
for each specific task.

For Domain-incremental learning (Domain-IL) approaches,
information about the task identity is no longer available
during the testing phase. However, the model does not takes
into account changes in available labels. It only solves the
task for which it has been designed and does not need to find
out to which task the example belongs. This scenario is very
useful in the case where classes represented in each task are
always the same and where new instances of those classes
appears.

Class-incremental learning (Class-IL) also works with the
condition to not give the task identity during the testing
phase. But unlike domain-incremental learning, the algorithm
should determine task identity of the infered example among
all labels available in tasks learned so far. This approach is
considered as one of the most difficult one.

At the intersection between Domain-IL and Class-IL [14]
proposed a scenario named New Instances and Classes
(NIC). In this scenario, data of a new task belongs to both
known and new classes.

As explained in [15] work, each of the four above approaches
are placed in a framework where tasks are identified during
the training phase and boundaries between them are well
defined at all time, i.e. the algorithm has the information that
current data belongs or not to a new task. From the definition
of these three approaches they suggest a fifth approach
named Task-agnostic incremental learning (Task-agnostic
IL) which consists in not having any information about the
task identity during the training (discrete task-agnostic) and
even about task boundaries (continuous task-agnostic). This



approach is the most restrictive but also the closest to real-life
applications and to the functioning of the human brain which
is able to learn new tasks in a completely agnostic manner
(i.e. without any prior information about the task). However,
we will not deal with this approach in this article as it
requires to mix traditional continual learning architecture
with novelty detection ones [15], [16].

Beyond the type of scenario to be used to process the data,
it is important to take into account how the data will evolve
over time, i.e. data drift possibilities. In classic online deep-
learning studies, neural networks require data independent
and identically distributed (i.i.d) and come from stationary
distributions. In continual learning this assumption is relaxed
in order to create new models able to adapt in a changing
environment. Data distributions can change in different ways.
The type of data drift should be taken into account in order
to correctly design data streams and learning process [11].
[5] highlighted the fact that in current continual learning
formulations, the data-stream is divided into separated tasks
which arrive in a predefined order. They call this particularity
disjoint task formulation and propose a new scenario that
does not use this formulation and which is similar to a
Task-agnostic IL scenario (see Formulation E in table I).
[11] also provides an overview of data stream evolution
possibilities. As explained in the paper, this characterization
of data drift is important in order to have a better visualization
of continual learning strengths and weaknesses. As one of
the goals of this study is to define the different scenarios of
continual learning, it is important to position it in relation
to these definitions. Based on various surveys [17]-[19], the
authors proposed to distinguish two types of context drift: real
concept drift and virtual drift. Real concept drift consists in a
change in the data label distribution i.e. for the same example
the label will change over time. This type of drift will not
be studied here because it is not common in classification
problems where labels does not change over time. Virfual
drift consists in a change in the data distributions that does
not affect labels associated with each samples. It can be
separated into two type of drift: the label shift which is a
drift in samples that leads to new label emergence and the
domain drift which consists in having new instances in the
same label space. Label shift of data is equivalent to class-
IL scenario and domain drift equivalent to domain-IL scenario.

Figure 1 summarizes the concepts described above in an
atlas. It highlights the similarities and differences between
scenarios and unifies literature terms. The atlas is structured
around three questions:

o Definition of task boundaries: if task boundaries are not
defined, the considered scenario is Task-agnostic IL, the
algorithm does not have any information on when it has
to train again the model, a process of novelty detection
has to be deployed in this case.

o Task identity availability: if task identity are available
during testing, we are in the case of a Task-IL scenario,
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Fig. 1: Atlas of continual learning scenarios

if not, the scenario type can be Class-IL, Domain-IL or
NIC depending on data in task 1 compared to task O.

o Shift in data distribution: for the Domain-IL scenario,
data for task 1 can belong to the same distribution as
task O or a shift can exist in the data space.

This figure highlights the similarities and differences between
scenarios and unifies literature terms.

2) Incremental batch learning vs Online continual learning

vs Online streaming learning: This section gives an overview
of existing streaming formulations. [20] and [21] introduced
the term of incremental batch learning. As explained in
both papers, incremental batch learning is a way to present
data for training that is used in most existing continual
learning methods. In this type of setting, samples of the
current task comes by batches and can be seen several times
by the algorithms. The training is possible only after having
accumulated enough data in order to constitute a sufficiently
large batch of examples of the current task. Most of the time,
all the data of a task are presented at the same time and
the algorithm can be trained over several epochs. This type
of formulation was very useful to work on the catastrophic
forgetting issue. In fact, the case where each task contains
only one class is the most prone to forgetting problems as
the distribution of data is non stationary by default in this
type of setting. Nevertheless this formulation does not take
into account certain real-life applications constrains where
algorithms must constantly adapt to a changing environment
with limited memory size.
[5] emphasize the difference between what they call online
and offline continual learning. According to their definition,
offline learning corresponds to incremental batch learning
detailed by [21] as it consists of an unlimited access to all
samples of a given task to update the model. At contrary, in
online continual learning formulation, the model can store
samples when they arrive but is only allowed to use them
once for its update (i.e. the training only covers one epoch at
each step). This formulation provides a better adaptability to
on going data-flows as it requires less computing time and
memory storage thanks to the limitation of training to one
epoch.



[20] and [21] argue that online learning as defined by [5]
does not provide sufficiently strong constraints to be a good
streaming learning setting. They therefore propose a setting
suitable to more restrictive real-life situations, and introduce
the notion of online streaming learning which brings a very
strong constraint for the data stream: each sample arrives one
at a time and the model should adapt to it in a ’single-pass”.
However, even if constraints imposed by online streaming
learning are useful for some applications such as security,
online learning for real-life scenario should not be limited to
this setting. For example, even for an embedded device with
very limited resources, a small amount of storage space may
be available and the reduction of data-stream to one example
at a time not mandatory.

B. Continual learning methods

Since the 90s, various algorithms have been proposed in
order to deal with continual learning issues. [4], [22] divide
them into three groups: regularization, parameter isolation, and
replay.

Regularization methods such as Learning without Forgetting
(LwF) [23] or Elastic Weight Consolidation (EWC) [24] are
based on parameters update control during the model training
phase in order to not loose past knowledge. The issue raised
by this type of algorithm is their difficulty in remaining stable
on past learned knowledge while being enough plastic to learn
new knowledge [25], [26].

Parameter isolation methods, also called ”"Dynamic archi-
tectures” [7], consist in allocating new neuronal resources in
existing ANN when acquiring new knowledge. [27]-[30] pro-
pose models based on neuronal expansion during the learning
process. As explained in [7] paper, the two main drawbacks
of this kind of method are that they are difficult to use in an
online manner. Indeed, they need a lot of information about
the new task in order to train correctly new neuronal resources
and those model need to be used in a task-incremental learning
approach because the current task they are evaluating during
the testing phase needs to be known.

Replay methods are shown in many papers and reviews to
be the best state of the art methods that enable to overcome
catastrophic forgetting in a continual learning setting [4], [9],
[31], [32]. Replay methods can be divided into two categories:
Rehearsal and Pseudo-rehearsal. In the rehearsal approach, a
traditional way to alleviate catastrophic forgetting is to store
a portion of the past knowledge and train it alongside new
examples [5], [33]. Other methods also combine the use of a
memory buffer and knowledge distillation which is a process
that enable to transfer knowledge from a model to another [31],
[34]-[36]. Instead of storing examples from previously learned
knowledge, the pseudo-rehearsal approach consist in generat-
ing an auxiliary set of examples, named pseudo-examples”,
that represent the original past input distribution. Pseudo-
rehearsal methods usually use generative models in order to
generate samples from the latent space of auto-encoders or
generative adversarial networks that represent the previously

learned knowledge [32], [37], [38]. Pseudo-rehearsal is also
possible without a generative model, it consists in capturing
model knowledge function with random noise using a re-

injection procedure and a dual-network architecture [10], [39]-
[41]

C. Summary and problem formulation

Table I summarizes different existing state of the art con-
tinual learning models in the frame of continual learning
scenarios and streaming formulations proposed above. Most
of the models presented here are replay-based methods. In
fact, as explained before, replay-based approaches are the
best state of the art methods for classical continual learning.
Moreover, this type of methods is more compatible with online
learning settings than parameter-isolation ones as they can
be used in all type of existing continual learning scenarios.
Another similarity is that all those models have been studied
in a virtual drift configuration for data streams as defined by
[11] which means that labels will not evolve across time. We
describe here some of the models listed in the table. LwEF,
EWC, Icarl, BIC, UCIR and PoDNet are quite well-known
state of the art models that overcome catastrophic forgeting in
Task-IL or Class-IL scenarios. Icarl, BIC, UCIR and PODNet
are particularly known for scaling up to database with a large
number of classes like Imagenet-100 or Imagenet-1000. [15]
proposed a model designed for Task-agnostic IL, BGD. [42]
and [8] propose two memory-based models, GSS and ER-
MIR which focus on finding the smarter memory update
strategy. The first study takes place in a continual learning
scenario where tasks boundaries are blurry while the second
one is evaluated in a class-IL scenario. [S] propose a memory-
based model, Gdumb, that stores samples in order to keep
classes distribution in a memory and train a network from
scratch with this memory. The authors also propose different
formulations of continual learning which we sum up in table I
with previously exposed terminology. Gdumb’s formulation E
is directly inspired from [42] data stream proposal. Then, [7]
propose a pseudo-generative model for online classification
which is robust in a class-IL scenario with online streaming
formulation. [9], [20], [48] and [21] propose four models,
ExStream, SLDA, REMIND ans CIOSL, that are robust
in an online streaming learning formulation. ExStream and
REMIND are memory-based models while SLDA combines
linear discriminant analysis and Deep learning and CIOSL
use both regularization and replay approaches. In both studies,
the authors define four types of streaming scenarios: (1)
streaming i.i.d: the data stream contains randomly shuffled
samples from all the dataset. (2) streaming class-i.i.d: the data
stream contains samples from all the data set organized by
classes. (3) streaming instance: the data stream is temporally
organized with different instances of each classes (for exam-
ple: 10 instances of boats, 15 instances of cats, 5 instances
of boats etc...). (4) streaming class-instance: the data stream
is organized by class and instances inside each classes are
temporally organized (for example: all instances of boat, all
instances of cats etc...). CWR* and AR1* from [47] are two



TABLE I: Classification of state-of-the-art continual learning models based on continual learning scenarios and streaming
formulations on which they have been evaluated. I-Batch refers to Incremental-Batch learning and Online-Stream to Online-

Streaming learning

CL scenario Model

Streaming formulation
I-Batch | Online | Online-Stream

GSS [42]"
BGD [15]
Gdumb - Formulation E [5]!

Task-Agnostic IL

_ 3 N

LwF [23]
EWC [24]
Gdumb - Formulation C [5]
Gdumb - Formulation D [5]

Task-IL

v
v -

ENENEN N

Icarl [31]

BIC [44]

UCIR [45]

PoDNet [46]

Gdumb - Formulation B [5]
Class-1L
ER-MIR (8]

Gdumb - Formulation A [5]
Pseudo generative model [7]

Dream Net - Data Free [10]
Dream Net - Combined replay [43]

CWR* & AR1* - Scenario NC [47]

ExStream - Class iid / Class instance [48] -
SLDA - Class iid / Class instance [20] - -
Remind - Class iid / Class instance [9] - -

NN NN RN
BN

NN

ENENENEN

Domain-IL SLDA - iid / instance [20]
Remind - iid / instance [9]

CIOSL - iid / instance [21]

CIOSL - Class iid / Class instance [21] - -
CWR* & ARI* - Scenario NI [47] v -
ExStream - iid / instance [48]

NIC

CWR* & ARI* - Scenario NIC [47] v -

I ENENENENY

1

are “blurry” and not non-existent

rehearsal-free methods that have been validated in Class-IL,
Domain-IL and NI scenarios which is not common in the state
of the art. Unlike most other models, those ones have been
evaluated on Core50 database [49] which is well designed
for NIC scenarios. Finally, Dream Net is a pseudo-rehearsal
model that can have two different architectures: Dream Net -
Combined replay [43] that uses a buffer to store some samples
of past knowledge and Dream Net - Data Free [10], a privacy
preserving model that do not store any example previously
learnt. Both models have a dual-network architecture and use
a process of re-injection sampling in order to generate pseudo-
examples that represents learned function. Unlike Combined
replay, Data Free has only been evaluated in a context of facial
emotion recognition.

Based on this state of the art overview, this study will
focus on exploring the possible sub-scenarios of Class-IL and
Domain-IL and evaluate them on Dream Net - Data Free (in
bold in the table) which is particularly promising for real-life
application because of privacy concerns. We decided to not
consider the Task-IL scenario in this study because knowing
the current task during testing phase is not compatible with
a streaming setting. We also leave aside the Task-agnostic IL
scenario as some studies shows that this kind of scenario was
not compatible with a replay-based algorithm alone [15], [16].
The idea of adding novelty detection to replay-based models

we cannot totally consider that those models are evaluated in a Task-agnostic IL scenario as the boundaries

in order to evaluate them on this type of scenario is in this
study’s perspectives. Models in italic in table I are those with
which we will compare the results of Dream Net - Data Free
in some scenarios in section IV.

I1I. EXPERIMENTS
A. Scenarios

The review about different terms and concepts of continual
learning and streaming learning presented in section II
enables to define scenarios for real-life issues like a smart
device learning in a changing environment. In near sensor
settings, algorithms must be able to learn examples from a
new class or from a new data distribution. Table II sums
up the different scenarios we want to explore in this study.
Following the problem formulation done before, two distinct
categories of scenarios are presented: Class-IL scenarios
and Domain-IL scenarios. The four sub-scenarios for each
category are presented below.

Scenarios 1 - Class-IL
Scenario 1.A corresponds to a classical incremental batch
learning scenario of continual learning without taking into
account any streaming restrictions. It is important to test
this scenario in order to position Dream Net with respect to
standard continual learning state of the art. This scenario can



TABLE II: Description of eight continual learning scenarios

Scenario 1 - Class-IL Streaming formulation
A | Class(es) by class(es) Incremental batch learning
B | Shuffled class(es) by class(es) Online learning
C | Exclusively present one already learned class Online learning
D | Present all already learned classes except one Online learning
Scenario 2 - Domain-IL Streaming formulation
A | New samples of already known classes randomly shuffled Online learning
B | New samples of already known classes with one predominant class Online learning
C | New samples of already known classes with different predominant class Online learning
D | 2.A with batch-size 1 Online streaming learning

be trained with several classes in each task, for each database,
a task is composed of a partition of 10% of data (i.e. one
class per task for a dataset with 10 classes and 10 classes
per task for a dataset with 100 classes). Then, with scenario
1.B, we propose to explore an online learning scenario where
tasks are composed of a few samples. Each task contains
examples from different classes (one or several). The training
of each task is done only on one epoch. Scenario 1.C and 1.D
purpose is to evaluate the ability of the model to generalize
and avoid forgetting even if it does not see the examples of
some classes anymore. For both scenarios an initial training
is done with enough examples to reach the offline accuracy
of the model for the concerned database. Then, for scenario
1.C, the data stream is composed of tasks with a little number
of samples from one class exclusively, all other classes are
not represented anymore in the 100 next tasks. Inversely, for
scenario 1.D, the 100 next tasks are composed of all available
classes excepted one.

Scenarios 2 - Domain-IL

In Scenario 2.A, each tasks are composed of only few samples
like in scenario 1.B but all classes available in the dataset are
represented and randomly shuffled. In this scenario there is
therefore a drift of instances of classes over the data stream.
Then, scenario 2.B is similar to 2.A but with one of the classes
over-represented compared to the others in all tasks. In this
scenario, the over-represented class is always the same while
in scenario 2.C, it changes at each task. Scenarios 2.B and
2.C enable to show the effect of over-represented classes on
the training. Those three scenarios are all trained in an online
manner which means on one epoch only. Lastly, scenario 2.D
is an online streaming learning scenario in which the data
stream is composed of shuffled examples of all classes. It
corresponds to the ”iid” definition of ExStream and REMIND
models and is equivalent to scenario 2.A with only one
example per task.

For all online learning formulation, we consider a data stream
composed of tasks containing each 50 samples. We choose
this value as is the batch-size frequently used in literature [5],
[7]. However, it would be interesting to do a study on this
batch size in future work. For the online streaming learning
formulation we consider by definition a data stream with tasks
composed of 1 sample each. All scenarios are trained over

only 1 epoch excepted the 1.A which is trained on 3 or
more epoch depending of the considered database. An initial
training is also provided in each case excepted 1.A as in real-
life scenarios, intelligent systems are usually pre-trained in an
offline manner and must then show their ability to deal with
stream of new data different from the initial definition.

B. Models

Offline - Upper bound
This model is composed of an Auto-Hetero associative
ANN with the same characteristics as Learning Net and
Memory Net. For Domain-IL scenario (Scenario 2), we
train this model with all examples at the same time in a
non-streaming formulation. It gives us the maximum accuracy
that can be achieved by the model. For Class-IL scenario
(Scenario 1) we train this model when each new task appears
with all previous tasks data. This enables to know the
maximum accuracy we can obtain at each step of the training
since classes can be different at each step in this scenario type.

Fine tune - Lower bound

This model is also composed of an Auto-Hetero associative
ANN. We name it “fine-tune” as it only updates the model
with incoming data of the current task without taking into
consideration previous tasks nor being reinitialized between
each task. This model is thus a kind of fine-tuning without any
algorithm specifically designed for continual learning issues.
It make possible to highlight when catastrophic forgetting
appears in scenarios and thus considered as the lower-bound
of the study.

Dream Net - Data Free

As explained in section II, Dream Net - Data Free will be
evaluated on each scenario presented above. As presented
in [10] paper, this model uses two Auto-Hetero associative
ANNs (each auto-encoder and classifier at the same time):
Learning Net and Memory Net. Memory net generates pseudo-
examples that represent already learned knowledge using a re-
injection sampling procedure with random noise. Learning Net
learns conjointly new examples with pseudo-examples that it
generates.



C. Datasets, Hyperparameters and Metrics

Datasets
To evaluate DreamNet, we use three well known datasets:
Mnist, Cifar10 and Imagenet100.

e Mnist dataset contains 70000 gray-scale images of hand-
written digits of size 28 x 28 pixel each [50]. This
database is used in many deep learning studies and is
considered as a proof-of-concept dataset. It is separated
into 10 classes which corresponds to digits from 0 to
9. We consider 60000 images for the training phase
and 10000 for the test phase. For this dataset, feature
extraction is not mandatory as each image can be unfold
into a vector of 784 feature. It is important for us to
benchmark Dream Net - Data Free on this dataset as most
of state of the art models take it as a reference.

e Cifarl0 contains 60000 32x32 images divided into 10
classes representing animals and means of transport [51].
We consider 50000 images for the training phase and
10000 for the test phase. As this dataset is more complex
than Mnist, a feature extraction is done with a Resnet50
network pre-trained on Imagenet [52].

o ImageNet is a database of annotated images in which
1000 classes of objects appear. It presents about 1000
images per class for the training base and 50 for the test
base. It is, since 2010, at the origin of an annual competi-
tion whose goal is to detect and classify as accurately as
possible objects and scenes: ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [53]. It is notably
within this competition that networks such as ResNet
have distinguished themselves by their performances. In
our study, we consider a reduction to 100 randomly
selected ImageNet classes, named ImageNet100. We also
use a Resnet50 network pre-trained on Imagenet for
feature extraction of images.

For scenarios with initial pre-training, algorithms are trained
on 2% of the database for Mnist and Cifar-10 and on 10%
of the database for Imagenet-100. For the purpose of the
experiment, scenarios 1.C and 1.D require a pre-training with
enough data to be close to the the maximum offline accuracy
on this database meaning 30000 examples for Mnist and
Cifar-10, and 70000 examples for Imagenet-100.

Hyper-parameters

For a given database, we do not change hyper-parameters
depending on continual learning scenarios because we want to
demonstrate that the model is robust toward any kind of data
arrival for the same set of hyper-parameters. Nevertheless, we
adapt those hyper-parameters depending on the considered
database and application.

Here, all experiments are performed with hyper-parameters
presented Dream Net - Data Free model’s paper [10]. Note
that for Imagenet-100 database, Dream Net - Data Free and
baseline models have two hidden layers of 1000 neurons and
for Mnist database, the number of unit per hidden layer is
400 instead of 1000.

The random noise used for Dream Net - Data Free is an
isotopic Gaussian noise centered at 0 with 1 as variance,
N(O,1).

Metrics

We measure the performances of the model in each scenario
with the average accuracy of the model after the training of
each new task. We also look at confusion matrix over classes at
the end of the training in order to evaluate the behavior of the
model concerning data drift especially in Class-IL scenarios
where classes change over the data stream. Each experiment is
performed 5 times under the same conditions and our results
are an average of those 5 runs, displayed with confidence
intervals at 95%.

IV. RESULTS
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Fig. 2: Global accuracy across tasks for Class-IL incremental
batch learning sub-scenario 1.A. Dream Net - Data Free is
compared to baseline models and Dream Net - Combined
replay model on Mnist, Cifar10 and Imagenet100

This section presents experimental results of this study over
scenarios and databases and compare them over other state of
the art models. Offline model accuracy for Mnist, Cifar10 and
Imagenet100 are respectively: 97.8% + 0.1%, 91.7% + 0.4%
and 75.5% =+ 0.9%. Due to the auto-hetero architecture of
the model and to absence of hyper-parameters optimization,
accuracy may be lower than for literature models which
are simple classifiers. However, it is important to compare
accuracy results of every scenarios to those of an offline model
that has the same architecture. Figure 2 shows results accross
databases for the first Class-IL sub-scenario. In this scenario,
Mnist and Cifar-10 classes are learned 1 by 1 while Imagnet-
100 classes are learned 10 by 10. For all databases, there
is no initial training. Fine-tune baseline model highlights the
catastrophic forgetting effect. For each database, Dream Net -
Data Free overcomes the catastrophic forgetting issue with a
final accuracy competitive with Dream Net - Combined replay
that uses a buffer to store past knowledge. Figure 3a gives
results of Dream Net - Data Free model over each scenario
defined in figure II. Results are presented with histograms
in order to easily compare final accuracy of Dream Net in
each configuration with baseline models accuracy. This figure
highlights that Dream Net - Data Free is robust in each sub-
scenario and for the three databases. Fine-Tune accuracy show
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that in the case of Class-IL scenarios catastrophic forgetting
appears. But it also brings out the fact that for Mnist, Cifar10
and Imagenet100 databases, domain-IL scenarios do not lead
to catastrophic forgetting. We can explain it by the fact that
there is no shift in data distributions for those databases.
Despite this last comment, those results are very promising
regarding the ability of Dream Net - Data Free to deal with
domain incremental learning scenarios with data distribution
shift. In fact, its stability across scenarios with and without
catastrophic forgetting gives an idea of its ability to deal
with more difficult distribution shifts. Moreover, Dream Net -
Data Free final accuracy is above fine-tune model for scenario
2.D, this confirms again the ability of this model to deal
with complex and restrictive data streams (here data stream
is restricted to one sample at time). Figure 3b provides a
comparison with literature models in italic in table I. As most
models were evaluated only on specific Class-IL scenarios, we
cannot compare Dream Net - Data free in each scenarios. A-
1by1, A-2by2, A-Online and A-initial learning are variants of
sub-scenario 1.A which corresponds respectively to: training
classes one by one, training classes two by two, training on one
epoch only (online learning with large batches) and network
initially trained with 50 classes before training classes one
by one. Even if it does not store any example of the past
knowledge in buffer unlike other models, figure 3b shows that
Dream Net - Data Free is competitive with other state of the art
model. We do not present literature comparison on Domain-
IL scenarios here because models like ExStream, SLDA,
Remind and CIOSL uses a different metric called normalized
incremental learning performance which depends non-linearly
on offline accuracy, it is thus difficult to compare our final
accuracy with it. And CWR* and AR1* were evaluated only
on Core50 database which has not been implemented in this
study.

V. CONCLUSION AND PERSPECTIVES

In real-life applications, a smart device must be agnostic to
data arrival scenarios and be able to learn new information
from new classes or new instances of already known classes.
For this reason, in this paper, we provided an overview
of continual learning scenarios depending on data stream
constitution. We also demonstrated that Dream Net - Data Free
was a robust continual learning algorithm able to deal with
various types of continual learning scenarios and data streams.
This model presents stable results over the eight proposed
scenarios. This robustness is a real asset for Dream Net -
Data Free highlighting its ability to be integrated in real-life
scenarios where the order of arrival of data is unpredictable.
Moreover, this model is very interesting for privacy issues as
it does not store any data learned before. It is for instance
particularly interesting for human-centered applications. The
efficiency of the model has already been proven for face
emotion recognition in the Class-IL scenario [10]. We plan
to extend this study to the other continual learning scenarios
described in this work to explore the model’s ability to
generalize face emotion recognition across multiple ethnicities.

We are also considering other real-life applications such as
health or environment monitoring. One of the next steps of
this work is to test Dream Net - Data Free on databases
where a shift in the distribution of data takes place in order
to explore Domain-IL shift and NIC scenarios. In this type
of setting, we expect catastrophic forgetting because a drastic
shift in data occurs. We especially plan to implement Core50
database in our evaluation framework. Future work will also
move towards a more autonomous system and explore Task-
agnostic IL scenarios to allow the system to incrementally
detect novelty.
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