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Abstract

Recent work in incremental learning has in-
troduced diverse approaches to tackle catas-
trophic forgetting from data augmentation to
optimized training regimes. However, most
of them focus on very few training steps. We
propose a method for robust incremental learn-
ing over dozens of fine-tuning steps using data
from a variety of languages. We show that a
combination of data-augmentation and an op-
timized training regime allows us to continue
improving the model even for as many as fifty
training steps. Crucially, our augmentation
strategy does not require retaining access to
previous training data and is suitable in scenar-
ios with privacy constraints.

1 Introduction

Incremental learning is a common scenario for prac-
tical applications of deep language models. In such
applications, training data is expected to arrive in
batches rather than all at once, and so incremen-
tal perturbations to the model are preferred over
retraining the model from scratch every time new
training data becomes available for efficiency of
time and computational resources. When multi-
lingual models are deployed in applications, they
are expected to deliver good performance over data
across multiple languages and domains. This is
why it is desirable that the model keeps acquir-
ing new knowledge from incoming training data
in different languages, while preserving its ability
on languages that were trained in the past. The
model should ideally keep improving over time, or
at the very least not deteriorate its performance on
certain languages through the incremental learning
lifecycle.

It is known that incremental fine-tuning with
data in different languages leads to catastrophic
forgetting (French, 1999; Mccloskey and Cohen,
1989) of languages that were fine-tuned in the past
(Liu et al., 2021b; Vu et al., 2022). This means that
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Figure 1: Translation augmented sequential fine-tuning
approach with LLRD-enabled training. We begin with
a pre-trained multilingual model M0 and fine-tune it
over multiple stages to obtain (Mi where i = 0...N ).
At each fine-tuning stage, we train the modelMi over
examples from the training set that is available at that
stage (Di) which is in language Lj . At each step, we
sample a small random subset from Di and translate
that sample into languages (L \ Lj) to create a set of
translated examples Ti. Each step of training includes
LLRD as a hyperparameter.

the performance on previously fine-tuned tasks or
languages decreases after training on a new task or
language. Multiple strategies have been proposed
to mitigate catastrophic forgetting. Data-focused
strategies such as augmentation and episodic mem-
ories (Hayes et al., 2019; Chaudhry et al., 2019b;
Lopez-Paz and Ranzato, 2017), entail maintaining
a cache of a subset of examples from previous train-
ing data, which are mixed with new examples from
the current training data. The network is subse-
quently fine-tuned over this mixture as a whole, in
order to help the model "refresh" its "memory" of
prior information so that it can leverage previous
experience to transfer knowledge to future tasks.

Closely related to our current work is the work
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by M’hamdi et al. (2022); Ozler et al. (2020) of un-
derstanding the effect of incrementally fine-tuning
models with multi-lingual data. They suggest that
joint fine-tuning is the best way to mitigate the ten-
dency of cross-lingual language models to erase
previously acquired knowledge. In other words,
their results show that joint fine-tuning should be
used instead of incremental fine-tuning, if possible.

Optimization focused strategies such as
Mirzadeh et al. (2020); Kirkpatrick et al. (2017)
focus on the training regime, and show that
techniques such as dropout, large learning rates
with decay and shrinking the batch size can create
training regimes that result in more stable models.

Translation augmentation has been shown to be
an effective technique for improving performance
as well. Wang et al. (2018); Fadaee et al. (2017);
Liu et al. (2021a) and Xia et al. (2019) use var-
ious types of translation augmentation strategies
and show substantial improvements in performance.
Encouraged by these gains, we incorporate transla-
tion as our data augmentation strategy.

In our analysis, we consider an additional con-
straint that affects our choice of data augmentation
strategies. This constraint is that the data that has
already been used for training cannot be accessed
again in a future time step. We know that privacy
is an important consideration for continuously de-
ployed models in corporate applications and similar
scenarios and privacy protocols often limit access
of each tranche of additional fine-tuning data only
to the current training time step. Under such con-
straints, joint fine-tuning or maintaining a cache
like Chaudhry et al. (2019a); Lopez-Paz and Ran-
zato (2017) is infeasible. Thus, we use translation
augmentation as a way to improve cross-lingual
generalization over a large number of fine-tuning
steps without storing previous data.

In this paper we present a novel translation-
augmented sequential fine-tuning approach that
mixes in translated data at each step of sequen-
tial fine-tuning and makes use of a special training
regime. Our approach shows minimization of the
effects of catastrophic forgetting, and the interfer-
ence between languages. The results show that for
incremental learning over dozens of training steps,
the baseline approaches result in catastrophic for-
getting. We see that it may take multiple steps to
reach this point, but the performance eventually
collapses.

The main contribution of our work is combin-

ing data augmentation with adjustments in train-
ing regime and evaluating this approach over a
sequence of 50 incremental fine-tuning steps. The
training regime makes sure that incremental fine-
tuning of models using translation augmentation
is robust without the access to previous data. We
show that our model delivers a good performance
as it surpasses the baseline across multiple evalua-
tion metrics. To the best of our knowledge, this
is the first work to provide a multi-stage cross-
lingual analysis of incremental learning over a large
number of fine-tuning steps with recurrence of lan-
guages.

2 Related Work

Current work fits into the area of incremental learn-
ing in cross-lingual settings. M’hamdi et al. (2022)
is the closest work to our research. The authors
compare several cross-lingual incremental learn-
ing methods and provide evaluation measures for
model quality after each sequential fine-tuning step.
They show that combining the data from all lan-
guages and fine-tuning the model jointly is more
beneficial than sequential fine-tuning on each lan-
guage individually. We use some of their evaluation
protocols but we have different constraints: we do
not keep the data from previous sequential fine-
tuning steps and we do not control the sequence
of languages. In addition, they considered only
six hops of incremental fine-tuning whereas we are
interested in dozens of steps. Ozler et al. (2020)
do not perform a cross-lingual analysis, but study
a scenario closely related to our work. Their find-
ings fall in line with those of M’hamdi et al. (2022)
as they show that combining data from different
domains into one training set for fine-tuning per-
forms better than fine-tuning each domain sepa-
rately. However, this type of joint fine-tuning is
ruled out for our scenario where we assume that ac-
cess to previous training data is not available, and
so we focus on sequential fine-tuning exclusively.

Mirzadeh et al. (2020) study the impact of vari-
ous training regimes on forgetting mitigation. Their
study focuses on learning rates, batch size, regular-
ization method. This work, like ours, shows that
applying a learning rate decay plays a significant
role in reducing catastrophic forgetting. However,
it is important to point out that our type of decay is
different from theirs. Mirzadeh et al. (2020) start
with a high initial learning rate for the first task to
obtain a wide and stable minima. Then, for each



subsequent task, slightly decrease the learning rate,
while simultaneously reducing the batch size, as
recommended by Smith et al. (2017). On the other
hand, we apply our decay rate across the trans-
former model’s layer stack so that the deviations
from the current optimum get progressively smaller
as one moves down the layers and we do this at
each step of incremental fine-tuning.

Memory-based approaches such as Chaudhry
et al. (2019b); Lopez-Paz and Ranzato (2017) have
been explored to mitigate forgetting. Such meth-
ods make use of an episodic memory or a cache
which stores a subset of data from previous tasks.
These examples are then used for training along
with the current examples in the current optimiza-
tion step. Similarly, Xu et al. (2021) suggest a grad-
ual fine-tuning approach, wherein models are eased
towards the target domain by increasing the concen-
tration of in-domain data at every fine-tuning stage.
This work builds on the findings from Bengio et al.
(2009), who show that a multi-stage curriculum
strategy of learning easier examples first, and grad-
ually increasing the difficulty level leads to better
generalization and faster convergence. While we
cannot maintain a cache of this sort because of
our constraints, we take inspiration from this line
of research and generate “easier examples” using
translation in languages that are expected to appear
in our data.

Sequential fine-tuning of languages has not been
extensively studied for long sequences. Liu et al.
(2021b) and Garcia et al. (2021) go up to two
stages, whereas M’hamdi et al. (2022) go upto six
stages. We provide an analysis of a much longer
fine-tuning sequence with fifty stages. We are also
the first to present an analysis of sequences with
repetition of languages.

3 Method

We propose a translation augmented sequential fine-
tuning approach for incremental learning in a cross-
lingual setting. Our approach addresses the sce-
nario in which a pre-trained model is incrementally
fine-tuned over dozens of steps without access to
previously seen training data. There is a set of lan-
guages L = L0, ..., LK that can appear during the
incremental fine-tuning steps and we assume that
in each step the data comes from only one language.
We exploit the benefits of data augmentation, as
well as specialized optimization techniques.

We begin with a pre-trained multilingual model

M0 which will be fine-tuned over multiple stages
to create incremental versionsMi where i = 0...N .
The training data in each incremental fine-tuning
step is Di and is in a randomly selected language
Lj , where 0 ≤ j ≤ K. At each step, we sample a
small random subset Ti from Di and translate that
subset to all languages from L except Lj , to create
multiple additional subsets of training data Ti. We
denote the augmented training set as DTi , where

DTi = Di + Ti

Figure 1 provides a graphical representation of
our approach.

3.1 Fine-tuning regime with LLRD
Motivated by Yosinski et al. (2014), we apply a
layer-wise learning rate decay (or LLRD, denoted
by ζ) to the model parameters depending on their
position in the layer stack of the model, based on
the discriminative fine-tuning method proposed by
Howard and Ruder (2018). Layer-wise Learning
Rate Decay (LLRD) is a method that applies higher
learning rates for top layers and lower learning rates
for bottom layers. The goal is to modify the lower
layers that encode more general information less
than the top layers that are more specific to the
pre-training task. This is accomplished by setting
the learning rate of the top layer and using a mul-
tiplicative decay rate to decrease the learning rate
layer-by-layer from top to bottom. We split the
parameters θ into

{
θ1, · · · , θL

}
where θl contains

the parameters of the lth layer of the pre-trained
model. The parameters are updated as follows:

θlt = θlt−1 − ηl · ∇θJ(θ)

where ηl represents the learning rate of the lth layer.
We set the learning rate of the top layer to ηl and
use

ηk−1 = ζ · ηk

4 Experiments

4.1 Data
We use the Multilingual Amazon Reviews corpus
(MARC) (Keung et al., 2020). This dataset is a
large-scale collection of product reviews from 6 dif-
ferent languages and from 31 different categories.
We construct our training sets by extracting reviews
for ten common categories: apparel, automotive,



beauty, drugstore, grocery, home, kitchen, musical
instruments, sports, wireless. The number of re-
views for each language-category combination are
not equal, but to ensure consistency of training ex-
amples at each training step, we create two unique
training sets of size 100 and 150 for each language-
category combination. For our experiments, we use
reviews from all 6 languages provided in the dataset
(Chinese, English, French, German, Japanese and
Spanish). We drop the 3-star reviews and bifurcate
the rest into two class labels: positive (4-star and
5-star) and negative (1-star and 2-star) sentiment.1

Each incremental training set Di contains 100
reviews from a particular language-category com-
bination, for example, de-grocery. To ensure class
balancing, we sample an equal number of positive
and negative records for each training set.

We use the original test-splits for each of the
60 language-category combinations of the MARC
data as our test set.

4.2 Translation augmentation

The translations were generated using the Google
Translate API. In the current work we sample a
fraction of 0.1 of the training examples. For ex-
ample, if the training data is Di has 100 records,
the translation augmented data DTi will have 150
records.

4.3 Constructing the sequence

We tested our approach on a large number of incre-
mental fine-tuning steps using data from various
language-category combinations. To do that we
created 3 random sequences S1, S2, S3 with 50
training sets D1-D50 each. We term each incre-
mental fine-tuning step as a hop. Multiple hops
comprise a sequence.

Each training set Di contains data from a par-
ticular language-category combination. To con-
struct these 3 randomized sequences we used the
following approach. We first generated all possible
language-category combinations, and then sampled
one combination at a time for each hop. The only
constraint placed on the sampling is that it cannot
choose a combination that has already appeared in
the sequence. However, the same language with
a different category and the same category with

1We ensure that both final labels contain an equal number
of examples of their constituent star-ratings. E.g., the negative
sentiment class will contain an equal number of reviews from
1- and 2-star reviews.

a different language still can occur. E.g., if de-
grocery features once in the sequence, it cannot be
repeated, even though de-sports or en-grocery are
possible options. The plots in Fig. 2 and 3 show
the language-category combination for each Di in
all three sequences.

4.4 Model and training

We use multilingual BERT (cased) as our base
model. We run a hyperparameter optimization over
a relatively small search space containing values
that were most effective in our preliminary experi-
ments. Two types of settings were used for training:

• Default settings:

– Epochs: 5

– Learning rate: 2e− 5

– LLRD: 1.0

• LLRD-enabled settings:

– Epochs: 5

– Learning rate: 2e− 5

– LLRD: 0.75, 0.85 2

The best checkpoint from any given stage is cho-
sen for subsequent fine-tuning over the next lan-
guage dataset. At the first stage, we use the pre-
trained mBERT checkpoints released by (Devlin
et al., 2019).3 All experiments have been run on a
single machine with a 6-core NVIDIA Tesla K80
GPU.

Train data ↓ ζ = 0.38 ζ = 0.5 ζ = 0.75 ζ = 0.85 ζ = 0.95 ζ = 1.0

de-100 0.70 0.73 0.76 0.75 0.75 0.69
en-100 0.65 0.64 0.73 0.69 0.65 0.66
fr-100 0.71 0.72 0.73 0.73 0.72 0.69
jp-100 0.62 0.63 0.65 0.67 0.63 0.33
zh-100 0.46 0.57 0.69 0.65 0.59 0.57
es-100 0.70 0.73 0.76 0.75 0.69 0.63

Table 1: Comparison of different LLRD settings (ζ).
We observe that ζ = 0.75 and ζ = 0.85 deliver the
most consistent performance.

2Our preliminary experiments showed that LLRD values
of ζ = 0.75 and ζ = 0.85 are the most suitable candidates for
our scenario. We show in brief the results of other values for
comparison in Table 1. The models are trained over the sports
datasets of all six languages and compare the scores averaged
over the 60 evaluation sets. ζ = 0.75 and ζ = 0.85 deliver
the most consistent performance.

3github.com/google-research/bert/blob/
master/multilingual.md

github.com/google-research/bert/blob/master/multilingual.md
github.com/google-research/bert/blob/master/multilingual.md


4.5 Experimental setup

We show the results with the following four vari-
ations. We start with the default incremental fine-
tuning approach and add modifications such as
translation augmentation, LLRD and the combi-
nation of translation and LLRD.

• Sequential fine-tuning (SEQFT): Data is Di,
default training settings.

• Sequential fine-tuning with LLRD (SEQFT-
LLRD): Data is Di, Trained with LLRD-
enabled settings.

• Translation augmented sequential fine-tuning
(SEQFT-TRANS): Data is DTi , default train-
ing settings.

• Translation augmented sequential fine-tuning
using LLRD (SEQFT-TRANS-LLRD): This
is our approach. Data is DTi , Trained with
LLRD-enabled settings.

4.6 Evaluation Metrics

We evaluate our proposed approach against the
baseline models on overall F1 scores over the fol-
lowing metrics:

• Average hop-wise F1: The F1 scores over
each of the 60 test sets are averaged for every
single fine-tuning hop.

• Overall F1: The averages of hop-wise F1

scores for all stages are averaged to give the
overall performance.

• Forgetting (F): The average forgetting across
languages at the end of sequential fine-tuning.
This evaluation metric measures the decrease
in performance on each of the languages be-
tween the peak F1 score and the F1 score after
final training step of the sequence. We evalu-
ate forgetting by language (F-lang) as well as
by category (F-categ).

• In-language, in-domain performance
(IL/ID): These are the average scores on
all the test sets corresponding to the last
fine-tuned language-category combination.
For example, if the current stage of fine-
tuning uses Chinese zh-grocery data, then the
in-language performance is the F1 over the
zh-grocery test set.

• Out-of-language, in-domain performance
(OL/ID): These are the average scores on
all the test sets corresponding to languages
that were not seen in the previous stage of
fine-tuning but are of the same domain. For
example, if the current stage of fine-tuning
uses zh-grocery data, the test sets used to cal-
culate OL/ID performance are English (en-
grocery), French (fr-grocery), German (de-
grocery), Japanese (jp-grocery) and Spanish
(es-grocery).

• In-language, out-of-domain performance
(IL/OD): The average scores on test sets of
the same language as training but correspond-
ing to the domains that were not used during
training. For example, if the current stage of
fine-tuning uses zh-grocery data, the perfor-
mance on the Chinese test sets of all domains
other than grocery are averaged at each fine-
tuning stage.

• Out-of-language, out-of-domain perfor-
mance (OL/OD): The average scores on
the test sets corresponding to all language-
category combinations except the one that was
used during training.

5 Results

We present below a comparison of our approach
SEQFT-TRANS-LLRD with different variations of
sequential fine-tuning in our results.

5.1 SEQFT (baseline)

Our proposed approach SEQFT-TRANS-LLRD out-
performs SEQFT decisively. We see that it is able
to dramatically improve the overall F1 performance
and reduce forgetting on both forgetting metrics by
one order of magnitude. This is evident from Fig. 2
and Table 2. We see in the plots for average F1 (Fig.
2) that for each of the three sequences, the default
approach SEQFT results in catastrophic forgetting.
It can happen at different hops. In sequence 1, at
the 2nd hop, in sequence 2, at the 17th hop and in
sequence 3, at the 23rd hop. But eventually, the
F1 drops and never recovers. This highlights the
importance of studying sequential fine-tuning over
a large number of steps to be able to observe these
effects. After the model performance collapses, we
observed that the model classifies almost every ex-
ample as negative. It is not clear from our results
in these three different sequences if a particular



Figure 2: SEQFT vs SEQFT-TRANS-LLRD: We show the plots of hop-wise F1 scores for each randomized se-
quence of 50 hops each. Each plot has the details for one sequence. We show the F1 for each language separately
in color-coded lines. The translucent lines show the results for our baseline of no data augmentation and default
fine-tuning settings. The regular lines show the results of our approach. The x-axis shows the language-category
combination in each training set Di.



Figure 3: SEQFT-TRANS: We show the plots of hop-wise F1 scores for each randomized sequence of 50 hops
each. Each plot has the details for one sequence. We show the F1 for each language separately in color-coded lines.
The x-axis shows the language-category combination in each training set Di.



Method Size Seq Overall F1 IL/ID OL/OD IL/OD OL/ID F-lang F-categ

SEQFT 100

1

35.36 35.96 35.35 35.11 35.34 39.32 39.32
SEQFT-LLRD 100 85.44 85.70 85.44 85.94 85.24 2.73 2.66
SEQFT-TRANS 100+50 43.54 43.18 43.55 43.91 42.74 40.50 39.21
SEQFT-TRANS-LLRD 100+50 83.05 84.86 83.02 84.31 82.93 1.54 1.53

SEQFT 100

2

40.71 40.86 40.71 42.39 40.46 38.70 35.83
SEQFT-LLRD 100 85.32 86.39 85.30 86.03 85.09 1.37 1.33
SEQFT-TRANS 100+50 39.94 39.21 39.95 40.55 39.74 43.78 43.37
SEQFT-TRANS-LLRD 100+50 84.67 86.45 84.64 86.00 84.62 2.04 1.75

SEQFT 100

3

48.74 49.73 48.72 49.58 48.65 48.37 48.10
SEQFT-LLRD 100 84.49 86.04 84.46 85.44 83.99 1.31 1.24
SEQFT-TRANS 100+50 35.51 35.18 35.52 36.15 35.39 37.04 36.02
SEQFT-TRANS-LLRD 100+50 84.74 86.02 84.71 85.74 84.42 0.65 0.82

Table 2: Summary of results of our approach in comparison to the baselines.

language or category or combination triggers this
collapse in performance. This is something we in-
tend to explore in future work. Even in the initial
hops before the collapse in performance, SEQFT
under-performs our approach. From Table 2, we
see that our approach outperforms this baseline on
all metrics. There is at least a 36 point improve-
ment on the overall F1 score between SEQFT and
our approach.

In subsections 5.2 and 5.3, we study the effects
of the translation augmentation and specialized
training regime separately to understand their con-
tributions in isolation.

5.2 SEQFT-TRANS (baseline)

We observe that translation augmentation on its
own performs very similarly to the baseline SE-
QFT. It outperforms the baseline only on one se-
quence in terms of overall F1. The overall F1 for
SEQFT-TRANS is significantly lower compared to
our approach. The plots look similar to SEQFT,
but we still provide them in Fig. 3. Augmentation
seems to delay catastrophic forgetting until 6, 15
and 22 hops. However, both approaches eventually
result in catastrophic forgetting. Thus, the perfor-
mance at the end of the sequence is extremely low.
This is reflected in the high values of the F-lang
and F-categ metrics in Table 2.

5.3 SEQFT-LLRD

In contrast to SEQFT-TRANS, using only the spe-
cialized training regime SEQFT-LLRD shows a
strong performance. In fact, it appears that the
main advantage of our approach stems from the op-
timized training regime with LLRD since SEQFT-
LLRD and SEQFT-TRANS-LLRD have comparable
performance on many evaluation metrics. For se-

quence 3, our full approach SEQFT-TRANS-LLRD

shows a slightly higher overall F1 performance as
compared to SEQFT-LLRD. But on the other two
sequences SEQFT-LLRD has a higher F1 score.
However, in terms of the forgetting metrics, our
approaches outperforms SEQFT-LLRD on two out
of three sequences. Also, for sequence 3, the out-
of-domain performance with our full approach is
higher.

In summary, our approach outperforms the base-
line (SEQFT) by a wide margin. Since we use
multiple language and category combinations, we
show results on metrics based on similarity of the
train and test data with respect to language and cat-
egory. Our observations are consistent across all
evaluation metrics. The main performance boost
for our approach comes from including LLRD in
the training regime. However, our combination of
LLRD and translation augmentation slightly out-
performs SEQFT-LLRD in terms of both forgetting
metrics.

6 Conclusion

We introduce a sequential fine-tuning approach
wherein the language data for fine-tuning is aug-
mented by a subset of translated examples. Our
augmentation strategy emulates episodic memory
and decreases the reliance on a cache of stored ex-
amples from previous stages. We also advocate
the use of layer-wise learning rate decay and illus-
trate its effectiveness in mitigating forgetting. With
our results, we show that the proposed approach
can outperform joint fine-tuning based methods, in
spite of not having access to the complete set of
examples from all languages. Crucially, it achieves
robust and consistent performance over multiple



cross-lingual fine-tuning stages. The trajectories of
performances over different languages suggest that
the model can continue learning over new data (or
languages) for even more stages in the sequence
without undergoing a significant reduction in per-
formance. Furthermore, our approach surpasses
all baselines when evaluated on in-domain, out-
of-domain, in-language and out-of-language per-
formance, showing that the model has a strong
generalization ability. All-in-all, we hope our work
provides encourament to the community to pursue
similar recipes that facilitate long-term continual
learning.

7 Limitations

One of the primary limitations of our work is that
the analysis has only been provided for a single
random sequence with only six languages. Diver-
sification of this study with more languages, more
random sequences and an even higher number of
fine-tuning stages is a strong avenue for future work
that we intend to pursue. Additionally, we would
also like to extend this study to other cross-lingual
tasks to see if the findings are similar.

Another limitation is a lack of experimentation
with adapter-based methods. In the future, we
would also like to experiment with varying pro-
portions of translated examples with respect to the
original training size.

We would also like to extend our work to include
a more in-depth study of the underlying linguistic
factors that underpin cross-lingual transfer or for-
getting. A study of this kind would ideally include,
but not be limited to, analyses based on word order,
scripts, morphology and syntax.
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