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Abstract—To solve video-and-language grounding tasks, the
key is for the network to understand the connection between the
two modalities. For a pair of video and language description, their
semantic relation is reflected by their encodings’ similarity. A
good multi-modality encoder should be able to well capture both
inputs’ semantics and encode them in the shared feature space
where embedding distance gets properly translated into their
semantic similarity. In this work, we focused on this semantic
connection between video and language, and developed a multi-
level alignment training scheme to directly shape the encoding
process. Global and segment levels of video-language alignment
pairs were designed, based on the information similarity ranging
from high-level context to fine-grained semantics. The contrastive
loss was used to contrast the encodings’ similarities between the
positive and negative alignment pairs, and to ensure the network
is trained in such a way that similar information is encoded
closely in the shared feature space while information of different
semantics is kept apart. Our multi-level alignment training can be
applied to various video-and-language grounding tasks. Together
with the task-specific training loss, our framework achieved
comparable performance as previous state-of-the-arts on multiple
video QA and retrieval datasets.

Index Terms—video-and-language grounding, multi-level align-
ment, contrastive learning

I. INTRODUCTION

Having a machine that can follow human instructions and
adapt to visual surroundings is the key to building a intelligent
system to aid human beings in our daily activities. To achieve
this goal, the smart system will need to understand the
meaning of the input natural language, and to be aware of
the information embedded in the visual input such as videos.
More importantly, the system has to have the ability to make
connections between the two modalities to further reason with
the joint-modality information.

Neural network models have been proved to be powerful
for understanding complex real-world information, and have
shown their strength in solving video-and-language grounding
problems, such as video question answering (QA) and video
retrieval. Examples of three common video-and-language
grounding tasks are included in Figure 2. Task-specific frame-
works have been developed, targeting each grounding task’s
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(a) (b) (c)

Fig. 1: Three types of visual-linguistic model architectures
for cross-modal learning: (a) Cross-modality type, (b) Joint-
modality type, and (c) Separate-modality type

own challenges. Some auxiliary techniques, e.g., object detec-
tion and scene graph reasoning, have been explored in order
to achieve better performance [1]–[5]. However, these tailored
models are usually lacking generalizability, and serious mod-
ifications are often required for them to handle other types of
grounding tasks [6], [7].

Recently, following the success in natural language pro-
cessing (NLP) tasks [8], large-scale BERT-type models have
been widely applied to vision-and-language grounding prob-
lems [4], [9]–[13]. The models are usually pre-trained with
a large amount of data in both modalities, with standalone
tasks that emphasize networks’ general ability to understand
language and visual information and their interconnection,
such as masked language/frame modeling. When applied to
the specific grounding task, the models are fine-tuned with
the task’s own data to generate certain output, while their
ability to reason upon multi-modality input is reserved. BERT-
type models are versatile and powerful, but considering their
scale, the training process is usually time-consuming and com-
putationally challenging. Moreover, compared to task-specific
frameworks, the reasoning flow between the two modalities is
less well represented inside BERT.

By observing the existing visual-linguistic models, we cat-
egorize their inter-modality reasoning architectures into the
following three main types: 1) cross-modality (Fig. 1(a)),
such as in ViLBERT [9] and LXMERT [14], where vi-
sual and textual representations are encoded by two separate
transformers and then a multi-modal transformer exchanges
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(a) Video QA

(b) Video-text retrieval

(c) Video moment retrieval

Fig. 2: Video-and-language tasks. (a) Video QA task aims to predict answers to natural language questions given a video
as context. (b) Video-text retrieval selects the text description from the candidate pool that best matches the video content
(vice versa, text-video retrieval). (c) Video moment retrieval localizes the video segment that aligns with the query text input.
Ground-truths are colored in blue.

cross-modal information through a novel co-attentional layer;
2) joint-modality (Fig. 1(b)), such as VL-BERT [15] and
VideoBERT [16], who fuses visual and textual information
at the initial stage of a joint transformer model; 3) separate-
modality (Fig. 1(c)), such as COOT [17] and T2VLAD [18],
who encodes visual and textual representations with two
separate streams, then joints the visual-textual feature space
by calculating the inter-modality similarity. Among these
three reasoning types, both cross-modality and joint-modality
calculate pairwise attention betweenM visual patches and N
textual tokens, requiring O(MN) time complexity of intra-
model information exchange. On the other hand, separate-
modality type models only require a time complexity of
O(M + N). With better efficiency, it is favored by recent
portable video-language applications, and our model falls into
this realm.

In this work, we developed a lightweight grounding frame-
work that is versatile for different kinds of video-and-language
grounding tasks. To efficiently train the network, we designed
a set of multi-level video-language alignment losses, which are
built upon contrastive loss with sophisticated designed positive
and negative video-language pairs, to directly shape the feature
space. In the alignment losses, the features of relevant video
and language information are aligned respectively in high to
low semantic levels and across different time spans. Using this
training scheme, the input from different modalities represent-
ing similar subjects is encoded closely in common the feature

space, and this characteristic benefits the downstream video-
and-language grounding tasks. When tested on video QA and
retrieval tasks, our method achieved state-of-the-art results on
multiple datasets, and it also shows a great potential to be
applied in other grounding problems such as video moment
retrieval.

II. RELATED WORK

A. Vision-and-Language Pre-training

Driven by revolutionary advances in NLP led by
transformer-based pre-training frameworks such as BERT [8],
GPT2 [19], XLNet [20], and GPT3 [21], recent years have wit-
nessed a boom in the area of extending the use of transformer
architectures to the visual-linguistic tasks. Pioneering works
such as ViLBERT [9] and LXMERT [14] adopt two separate
transformers for image and text encoding independently and
propose a novel co-attentional transformer layer to fuse visual
and linguistic representations. Inspired by the original BERT
pre-training tasks, ViLBERT [9] is trained through the tasks of
reconstruction of the masked image region or text tokens and
alignment check if the caption describes the image content.
VisualBERT [22], Unicoder-VL [23], VL-BERT [15], and
UNITER [4] advocate single-stream architecture, where the
text and vision sequences are combined as the input of one
shared transformer encoder. A new Word-Region Alignment
task is proposed by UNITER to further explicitly bridge the
fine-grained alignment between visual regions and text tokens.
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It’s worth pointing out that both architectures rely on pre-
trained object detectors for extracting ROIs that are viewed as
individual visual tokens. A few other works, such as Pixel-
BERT [24] and VirTex [25] for images or HERO [11] for
video, operate directly over dense feature maps instead of ROIs
extracted by pre-trained object detectors. In these approaches,
both visual and textual features are fed into a transformer-
based model usually pre-trained with multiple losses. Through
these pre-training explorations, tremendous advances have
been made in the area of vision-and-language representation
learning.

B. Contrastive Learning

Contrastive learning is a framework that learns such an em-
bedding space that similar sample pairs stay close to each other
while dissimilar ones are kept far apart. Contrastive learning
can be used in both supervised and unsupervised settings.
Remarkable progress has been seen in recent studies in un-
supervised visual representation learning [26]–[31] leveraging
the power of contrastive learning. We review several popular
representative contrastive learning methods that benefit from
optimization with negative (dissimilar) samples. Typically,
samples in the current mini-batch are utilized in a way that
its augmented views are considered as positive samples and
are paired with other samples in the same batch as negatives.
Computing embeddings for a large number of negative sam-
ples in every batch could be computationally prohibitive. As
a work-around, memory bank [26] was proposed to store rep-
resentations of all samples in the dataset from past iterations.
The dictionary for each mini-batch is randomly sampled from
the memory bank with no back-propagation, so it can support
a large dictionary size. However, the representations in the
memory bank are from very different encoders all over the
past epoch and they are less consistent. MoCo [30] provides
a framework of unsupervised learning visual representation as
a dynamic dictionary look-up. Compared to memory bank, it
enables us to reuse representations of immediately preceding
mini-batches due to a queue-based dictionary and is more
memory-efficient and can be trained on billion-scale data.
SimCLR [29] learns visual representations by maximizing
agreement between differently augmented views of the same
sample via a contrastive loss in a latent space. It advocates
large batch size negatives, stronger data augmentation and
introduces the learnable nonlinear transformation, altogether
helping improve unsupervised visual representation learning.
Our method also benefits from the large-scale negative sample
learning. The effects of cross-modal learning without negatives
are not discussed in this paper.

C. Video-and-Language Tasks

Popular video-and-language tasks include text-video re-
trieval [32]–[37], video moment retrieval [11], [38]–[40],
video captioning [32], [35], [37], [38], [41], video ques-
tion answering [11], [42]–[46], and video-and-language in-
ference [47]. Text-video retrieval selects a video from a
pool of candidate videos, whose content best matches the

input text query. Compared to text-image retrieval, text-video
retrieval is more challenging that requires the understand-
ing of temporal dynamics and complicated text semantics.
Video moment retrieval requires localizing video segments
from natural language queries. Video captioning is the task
of generating sentences that well describe the input video
content, and video question answering aims to predict an-
swers to natural language questions given a video as context.
These tasks mainly focus on explicit factual descriptions
or explicit information of the video. In contrast, video-and-
language inference requires not only explicit visual cues but
also more sophisticated reasoning skills, such as inferring
reasons and interpreting human emotions. Several efforts [5],
[11], [12], [16]–[18], [48], [49] have been made that leverage
the powerful transformer architecture as the visual backbones
and apply contrastive learning for video-and-language learning
tasks. VideoBERT [16] represents a video with a combined
sequence of textual tokens and selected video frames and ap-
plies a transformer to learn joint representations. ActBERT [5]
distinguishes between global actions and local regional ob-
jects and encodes them jointly with linguistic descriptions.
COOT [17] proposes a hierarchical model that exploits long-
range temporal context to produce video-text embedding based
on hierarchical interactions between local and global context.
Recently, T2VLAD [18] extracts features from the aspects of
scene and action, and performs similarity matching with the
representations of each local token and the global sentence,
while HiT [49] conducts cross-matching between feature-level
and semantic-level embedding. But they do not simultaneously
decompose the video and text to conduct deep alignment,
from where we propose the multi-stream multi-level alignment
framework that can be universally applied to various video-
and-language tasks.

III. METHODS

In this section, we will discuss the proposed multi-level
alignment training scheme in detail. The training objectives,
which models global-level and segment-level alignments, are
designed for the network to capture different levels of semantic
connection between language and vision. Together with tasks’
specific training loss, the training scheme can be readily
applied to various grounding tasks. The overall framework of
our method is described in Figure 3.

A. Network Architecture and Notations

Following the lightweight architecture concept, our network
adopts the typical encoder-decoder structure and models inter-
modality relation using separate-modality design. The lan-
guage and video inputs are encoded with their own encoders,
and then passed on to the task-specific decoder to produce
downstream answers.

Specifically, our text encoder is implemented as LSTM
layers. It takes tokenized sentence T as the input, and pro-
duces every word’s encoding Ew. After self-attention, words’
weighted sum EL represents the general semantic of the
input paragraph. Meanwhile, the video encoder consists of
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Fig. 3: The lightweight video-and-language grounding network and its multi-level alignment training scheme. The video and
language inputs are encoded by their individual encoders, then the downstream decoder produces downstream task results. The
network is trained with the task-specific loss and multi-level alignment losses.

feature extractors and an extra MLP layers. We apply two
streams of feature extractors, specifically, ResNet [50] to
extract static object-level visual features and SlowFast [51] to
extract temporal motion-level features, and the MLP produces
each frame’s representation Ef from the concatenation of the
two. The video encoding EV is the weighted sum of every
frame’s Ef , where the weights are computed from a self-
attention layer.

For each downstream grounding task, a decoder that gen-
erates the task-specific output is designed, which takes the
encodings EL and EV and produces the output result S̃.

B. Training overview

The input of each downstream grounding task is a pair
of language and video samples. These two modalities are
semantically related, as their information together infer the
result of the task. Thus, in this work we design two levels
of semantic alignment losses, Lglob and Lseg , to enforce
the encoders relating the semantic relations between the two
modalities, whose details will be discussed in Section III-C.

For every downstream task, the network will also be trained
on the task-specific objective Ltask, e.g., cross-entropy loss
for multi-choice video QA task. As the multi-level alignment
losses directly shape the encoders, Ltask is indispensable to
train the decoder in order to obtain reasonable results, further
tuning the encoders to learn task-specific information.

To sum up, the overall training loss of our framework is the
weighted sum of the objectives mentioned above, where λi
are hyper-parameters to balance individual loss contribution:

Ltrain = Ltask + λ1 · Lglob + λ2 · Lseg (1)

C. Multi-level Alignment

Our alignment losses train the network to identify semantic
relations by encoding them properly in the feature space. By
contrasting the embedding similarity of modality pairs that are
more relevant to the ones that have less semantic connection,
the network is able to ground the similar information closer
in the shared feature space, bridging the two modalities. Thus,
each of our alignment losses is constructed with the contrastive
loss function, where α is a pre-defined margin:

L(Sneg, Spos) = [α+ Sneg − Spos]+ (2)

It penalizes the similarity score of a negative video-language
alignment Sneg and encourages a higher similarity score of
the positive alignments Spos.

The language and video can be decomposed into word-
wise and frame-wise information units. As the units gradually
group together, they can convey information from details to
overview. Thus, our embedding matching, i.e., the design of
positive/negative pairs in contrastive losses, is conducted on
multiple semantic levels. The global level alignment loss trains
the network to capture high-level global information; while
the segment level alignment focuses on fine-grained details of
language and video inputs. The positive/negative pairs of these
two levels of alignment losses are designed differently; their
matching schemes will be discussed in detail below.

1) Global Alignment Loss: The highest level of embedding
alignment is conducted globally. Lglob is designed for the
network to capture the overall semantic relation of a video clip
and its language description, potentially benefiting the video-
and-text retrieval task. It aligns the corresponding video and
language pair from large video and language pools. As shown
in Figure 4(a), the language pool contains all the language
descriptions of the dataset and the video pool contains all the

4



Language Pool

The man places the 
coin in his palm.

The young boy 
gives a thumbs 
up to the camera.

Video Pool

negative
positive

(a) Global Alignment

Candidate Answers

+
positive

negative

"Which is the safety 
item for his eye?”

Question

Cooling glass

Shield
Sheet
Hand

Video

true

false

false

false

Language
samples Segments

true

false

(b) Segment Alignment

Fig. 4: Multi-level alignment: the positive/negative matching scheme of global level and segment level.

video clips; meanwhile, each description has a video corre-
spondence as the dataset provided. The embedding similarity
of a video-language pair is computed as the cosine distance
cos(∗, ∗) between the language and video encoding vectors:

Sglob = cos(EL, EV ) (3)

The global alignment loss will contrast the similarity score
of the positive video-language pair, which both describe the
same theme, to the scores of negative pairs that mismatch.
Since the choice of positive or negative is relevant to the scale
of the entire dataset, in practice we use the batch-wise hardest
negative alignment in Lglob:

Lglob = L( max
{i∈batch}

Snegi
glob , S

pos
glob) (4)

Therefore, with Lglob, the overall features of language and
video are encoded closely in the feature space if they both
represent similarly themed information.

2) Segment Alignment Loss: To train the network to capture
more fine-grained alignment, we further introduce the segment
level alignment loss Lseg . For downstream datasets, ground
truth sometimes highlights the details and contains additional
information that can be used for further supervision. For
instance in video QA tasks, the ground-truth answer can
serve as additional knowledge, and the dataset may provide
the time-span information on which the question is based.
As shown in Figure 4(b), the fine-grained alignment can be
constructed using the additional information, benefiting the
QA task. The question combining the correct answer and
other candidate answers forms the “true” and “false” language
samples. Meanwhile, the video clip can also be divided into
the “true” segment, which contains the frames that the question
is based on, and the “false” segments that are irrelevant. The
positive alignments are between the “true” language sample
and the frames from the “true” segment, while the negative
alignments are between the “false” language sample and

“true” frames or vice versa. Here, the similarity score of each
alignment is computed as

Sseg = cos(
1

2
(EL + Eans), Ef ) (5)

where Eans denotes the answer’s encoding.
Compared to the global alignment, the segment level align-

ment focuses on the interior relation of a single video-language
context, so the loss Lseg is implemented on the data sample-
wise:

Lseg = L( max
{j∈sample}

Snegj
seg , Spos

seg ) (6)

The elaborate matching from Lseg further tunes the feature
space, and benefits the tasks such as video QA and moment
retrieval that generally require understanding subtle details.

IV. EXPERIMENT

Our framework is versatile for various kinds of video-and-
language grounding tasks. We applied our method on two
public video QA datasets, How2QA [52] and ActivityNet-
QA [45], and a video-text retrieval dataset, TGIF [36],
where our multi-level alignment training scheme helps the
lightweight network achieve comparable results to previous
state-of-the-arts. Besides, we explored the possibility to apply
our method to the video moment retrieval task, testing on
How2R dataset [52].

A. Implementation Details

For an input video, we used ResNet [50] to extract static
visual features frame-by-frame and SlowFast [51] to extract
temporal motion features. Both ResNet and SlowFast feature
extractors were loaded with pre-trained parameters that were
fixed during training. Specifically, we used the implementation
of ResNet152 pre-trained on ImageNet data [53] from Torchvi-
sion and SlowFast pre-trained on Kinetics [54]. For every
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Dataset Method Accuracy (%)

How2QA
[52]

HERO [11] 60.42
Ours 63.11

ActivityNet-QA
[45]

E-SA [45] 31.8
CoMVT [56] 36.6
VQA-T [57] 36.8

Ours 36.3

TABLE I: Video QA results: our method compared to the
previous state-of-the-arts on the same experimental settings,
no subtitle and no pre-training.

experiment listed in this section, the network was trained for
50 epochs, with a mini-batch size of 64. We used AdamW [55]
to optimize model parameters, with a learning rate 1e − 4,
β1 = 0.9 and β2 = 0.98, weight decay 0.01. Due to the fixed
weights of feature extractors, we were able to complete the
50 epochs of either QA or retrieval task training within 1 day
on one V100 GPU.

B. Video QA Results

The How2QA dataset [52] contains Youtube instructional
videos with their annotated questions, whose corresponding
time spans are also given. The answer to each question will
be chosen from four candidates. We trained our network on
their public training set, which contains 34k questions, and
the result in Table I is reported on the public validation
set that contains about 3k questions. To get the best result
of How2QA dataset, we found our best setting is λ1 = 0
and λ2 = 1.0 in the alignment scheme Eq. 1, which means
only activating the segment matching constraint. Although the
dataset also provides the subtitle paragraphs of the videos, we
did not include this information in training and testing; when
compared to the previous state-of-the-art method HERO [11]
in the same setting (without pre-training), our lightweight
model achieved better performance than the BERT-type model,
with an improvement in accuracy of absolute 2.69%.

The ActivityNet-QA dataset [45] contains 58k QA pairs
that come from 5.8k activity videos. The questions are open-
ended, but we took the most frequently occurred 1k answers as
the candidates. In our segment-level alignment, we randomly
picked three “false” answers from the candidates, and as no
time span information was provided, no “false” video segment
was contrasted. Meanwhile, in the global-level matching, the
language pool was the set of question-answer pairs in the batch
while the video pool contained the videos. When trained with
λ1 = 1.0 and λ2 = 2.0, our network achieved 36.3% accuracy
on the public test set, which is comparable to the performance
of previous state-of-the-art methods [56], [57] in the same
non-pre-training setting.

1) Ablation Study:
a) Multi-level alignments: To study the effect of our

multi-level alignment scheme, on the How2QA dataset we did
the ablation study of different loss combinations. As shown in
the first section of Table II, when the network is only trained
with task-specific loss and no alignment loss was applied, the

Study Method Accuracy (%)

Alignments

None 59.84
Global 60.90

Segment 63.11
Global + Segment 61.96

Feature
extractors

ResNet 62.47
SlowFast 62.63

ResNet + SlowFast 63.11

TABLE II: Ablation studies: the effect of different align-
ment loss combinations and feature extractors, tested on
How2QA [52].

accuracy is lower than 60%. When one of the alignment losses
was added, the performance improved, and the best result
came from adding the segment level matching. However, we
notice that when both levels of alignment were applied, the
performance was slightly worse than applying the segment
alignment alone. The possible reason may be the characteristic
of this dataset, where the question can only correspond to a
small fraction of the video, thus the global alignment may
cause confusion with information from irrelevant frames while
the network simultaneously learning the more fine-grained
segment alignment. This finding informs future applications to
activate alignment levels differently according to the feature
of their data.

b) Visual features: As we applied two streams of feature
extractors in our framework (Fig. 3), we also studied the
necessity of using them both. As shown in the second section
of Table II, when the network was only given one type of
visual features, i.e., ResNet static features or SlowFast motion
feature, the performance decreased slightly, indicating the
merit of applying both types of features.

2) Alignment Visualization: To further analyze the effect
of alignment losses, we visualize the correlation between the
encodings of two modalities. In Fig. 5, we show two cases
from the How2QA test set, with the results from the network
trained without or with alignment losses. The heatmaps show
the cosine similarity between the encoding features of each
language (question+candidate answer) and frame pair. The
brighter the color is, the stronger the vision and language are
correlated to each other.

In the first example, the person is showing an orange to the
camera at the beginning of the video and near the end. For
the network trained without the alignment scheme, it failed to
correlate the “holding” action with the corresponding frames
of the video, predicting the wrong answer. However, the
network trained with our alignments successfully recognized
the action in early frames as the similarities there are higher,
therefore giving the right answer. Similarly, in the second case,
the feature similarity between the correct answer (blue straw)
and the frames in the corresponding timespan is the highest
when alignment losses were used. On the other hand, without
the alignment training, the information from irrelevant frames
distracted the network, causing it to predict the straw as white.

The visualization of the feature similarities in these test
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Question: Which colour 
straw did the guy use?

Candidates: 
(1) Orange 
(2) White 
(3) Yellow 
(4) Blue

Question: What does the 
woman hold in her hand?

Candidates: 
(1) Some fruit 
(2) Orange fruit 
(3) Apple fruit 
(4) Some grapes

Without alignment training With alignment training

Fig. 5: The heatmaps show the encoding feature vectors’ similarity between each pair of question+candidate and video frame.
When the network was not supervised with alignment losses, the correlation between two modalities was less clear; wrong
answers (marked as red) may get more “attention” at the wrong time, as the heatmaps shows on the left. When the alignment
loss was added, the predicted correlation became more reasonable, leading to the correct predictions (marked as blue).

cases clearly shows the benefit of using additional alignment
information in the training. The correlation between the two
modalities is better learned by the network, leading to better
performance on the QA task.

C. Video-text Retrieval Results

Method Retrieval R@1

Text-to-video Video-to-text

DeViSE [58] 2.2 2.1
Corr-AE [59] 2.1 2.2

Order [60] 1.6 1.7
VSE++ [61] 1.6 1.4
PVSE [62] 3.0 3.3
HGR [6] 4.5 –

Ours 4.7 6.1

TABLE III: Video-text retrieval results on TGIF dataset [36].
The results of previous works were reported in literatures [6],
[62].

Our framework can also be applied to the video-text retrieval
task, where the network’s job is to find the corresponding
text/video of the given video/text. In this application, global
level alignment is activated, which alone should be capable
for the job; meanwhile, the task-specific loss function is not
needed and segment matching is not applicable. We tested
our method on the TGIF dataset [36], which contains short
gif videos and their descriptions. We used their training set

that contains 80k videos for the training, and the results
in Table III are reported on the official test set with 11k
videos. Compared to the previous methods [6], [62] that were
specifically designed for retrieval, our framework can achieve
the state-of-the-art result of the recall at the top 1 ranking,
showing the capability of our method to be applied to different
types of grounding tasks.

D. Video Moment Retrieval Results

Alignment tIoU ≥ 0.5 (%) tIoU ≥ 0.7 (%)

None 9.2 2.5
Global 10.9 3.9

Segment 10.4 3.0
Global + Segment 11.0 3.8

TABLE IV: Our approach’s video moment retrieval results on
How2R dataset [52], under different alignment settings.

Lastly, we explored the possibility to apply our multi-level
alignments on the video moment retrieval task How2R [52],
where the description of a certain segment of the video is
given, and the network needs to predict the time span of that
segment. For our global level alignment, language and video
pools were implemented as the collections of the data in the
mini-batch; in the segment level, no “false” language sample
was contrasted. We used the cross-entropy loss as the task-
specific loss for the network to further learn the correct starting
and ending timestamps.
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Table IV lists our approach’s results under different align-
ment settings, evaluating under temporal Intersection over
Union (tIoU) that measures the overlap between the predicted
span and the ground-truth span. Compared to the network
trained without any alignment loss, the performance improved
as we added either global or segment alignment loss to further
constrain the training. This indicates the merit of alignment
losses in video moment retrieval tasks. However, we notice
that using both alignments did not outperform applying only
one alignment. This might due to the nature of the dataset, and
better hyper-parameter searching to balance global-segment
information might potentially improve the performance.

V. CONCLUSION

In this work, we developed a multi-level alignment training
scheme for video-and-language grounding tasks. To better en-
code the visual and linguistic modalities in the shared feature
space, global level alignment loss focuses on training the net-
work to capture context information, while the segment level
alignment emphasizes fine-grained semantics. The application
scenario of our multi-level alignment scheme is not restricted.
It can be applied to video QA, video-text retrieval and video
moment retrieval tasks, and was able to help the lightweight
model achieve good performance on multiple datasets.
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