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Abstract—Data privacy and decentralised data collection has
become more and more popular in recent years. In order to solve
issues with privacy, communication bandwidth and learning from
spatio-temporal data, we will propose two efficient models which
use Differential Privacy and decentralized LSTM-Learning: One,
in which a Long Short Term Memory (LSTM) model is learned
for extracting local temporal node constraints and feeding
them into a Dense-Layer (LabelProportionToLocal). The other
approach extends the first one by fetching histogram data from
the neighbors and joining the information with the LSTM output
(LabelProportionToDense). For evaluation two popular datasets
are used: Pems-Bay and METR-LA. Additionally, we provide an
own dataset, which is based on LuST. The evaluation will show
the tradeoff between performance and data privacy.

Index Terms—Long-Short Term Memory (LSTM), Differential
Privacy, Learning from Label Proportions (LLP), Distributed
Learning, Spatio-Temporal, Traffic, IoT

I. INTRODUCTION

In the last few years, the increased popularity of the Internet

of Things (IoT) has led to an increasing amount of decentral-

ized data collection. According to the current state, the data is

usually sent to a central instance, where the data is processed.

Centralized learning methods have several problems:

The first aspect that becomes clear is the lack of data

protection. Especially with the introduction of the General

Data Protection Regulation (GDPR) [1], a lot has changed

in terms of data privacy, which must be implemented by

everyone using sensitive data. Because of divergent goals

between data protection and learning from data, this is an

urgent topic.

Another aspect is the ever-increasing number of Internet

participants. Taking into account that the maximum Internet

traffic capacity is not increasing at the same rate, the band-

width per device is shrinking. In the long term, this can result

in bottlenecks for participants that need high bandwidth rates.

The two proposed fully distributed deep learning algorithms

will ensure flexible data privacy by setting a hyperparameter

to balance both aspects: privacy and prediction accuracy.

This research has been funded by the Federal Ministry for Economic Affairs
and Climate Action of Germany under grant no. 19S21005N GAIA-X 4
ROMS, as well as the Federal Ministry of Education and Research of Germany
and the state of North-Rhine Westphalia as part of the Lamarr-Institute for
Machine Learning and Artificial Intelligence, LAMARR22B.

Existing Approaches

Since there are already algorithms that cover parts of the

challenges of traffic flow prediction with privacy aspects, we

will briefly distinguish our approach from the existing ones.

Most algorithms usually focus on one of the two relevant

properties, privacy or prediction accuracy. For example, the

dp-LLP algorithm [2], introduced by Sachweh et al., is a fully

distributed learning algorithm that uses only locally collected

data, as well as data from the neighbor nodes, to predict traffic

flow. The authors introduced a variant of Label Proportions,

originally developed in [3]–[5], extended by Differential Pri-

vacy to ensure that data transfer is protected. Key advantages

of this approach are less data traffic during execution and full

Data Privacy. One negative aspect is the low complexity of

the integrated k-Means learning algorithm, which results in

worse prediction accuracy. In addition, the authors do not use

time-dependent features, which is an important feature space

especially for traffic flow.

Another algorithm that uses Label Proportions for data

transfer was developed by Dulac et al. [6]. The authors

use the original Learning from Label Proportions (LLP) [4]

approach and change the learning model by using a Long-

Short Term Memory (LSTM) model. This more complex model

results in higher prediction accuracy results with lower energy

consumption, shown using the MNIST dataset. Since this

approach lacks time-dependent features too, it is not perfectly

suitable for vehicle traffic prediction.

In contrast, [7] makes full use of spatio-temporal data.

One global Graph Convolutional Neural Net (GraphCNN)

model is learned, with decentralized sensors as nodes in the

graph. Local sensor data trains the local neighborhood in the

graph. With this approach original data labels are propagated.

Therefore it is not privacy preserving at all. This approach

also has high energy consumption and is not ready for peer to

peer scenarios.

Our approach builds on the experience of the papers pre-

sented, and will leverage the data protection properties from

[2], as well as comparable performance to [6], [7].

II. FUNDAMENTAL WORK

In the following we provide basic knowledge of various

privacy-preserving data transfer methods, as well as an ex-

planation of Differential Privacy. Long-Short Term Memory

http://arxiv.org/abs/2301.07101v1


(LSTM) models and the k Nearest Neighbor (kNN) classifier

will be described as well.

A. Privacy Preserving Data Transfer

The distributed learning setting has led to more and more

private data transfer methods. Concerning data transfer the

following general concepts can ensure privacy:

• Homomorphic Encryption [8] ensures that encrypted data

is transformed into another space with similar learnable

features. Therefore models can be learned with encrypted

data, as shown in [9]. One downside of this method is

the high usage of computation resources.

• Masking addresses this problem by inserting Camouflage

Values. Those are fake values, that mask the original data

points.

• An alternative to Masking is data aggregation. This has

the advantage of data compression and a lot of variety

in search queries. Temporal aggregation of labels in so-

called label proportions is the core idea of related works

[2], [4]–[6]. Besides the possibility to hide individual data

points in an aggregate, Learning from Label Proportions

(LLP) also reduces communication costs and energy

consumption.

Because of the lack of a central authority in a fully

distributed scenario, encryption does not directly provide a

solution. Recent work that combines learning from label

proportions with differential privacy (compare next section)

[2] is promising, and we therefore utilize Data Aggregation

for our approach aswell.

B. Differential Privacy

Data Aggregation methods, which are applied on very pure

data are problematic, because resulting histograms contain all

information, although data points were aggregated.

Therefore [2] extended Data Aggregation (building his-

tograms) by adding Differential Privacy to the histograms.

Differential Privacy adds noise to each bin to ensure a specific

privacy guarantee.

1) Differential Privacy Definition: In general, an algorithm

is (ε, δ)-differentially private, if for all S ⊆ R Equation 1 is

valid [10]. M : D → R denotes a randomized algorithm and

D′, D′′ ∈ D are sets, which differ at most by one element

(||D′ −D′′||1 ≤ 1).

Pr[M(D′) ∈ S] ≤ eεPr[M(D′′) ∈ S] + δ (1)

The definition states that the probability distributions, that

the output of M is in S for different inputs D′ and D′′ differ

at most by a factor of eε and a constant value of δ. In our

approach the constant factor δ is 0 and called ε-differentially

private if it satisfies the Equation 1.

2) Sensitivity: Sensitivity is needed to gain information

about the maximum influence of a single data point in a dataset

D. Therefore l1-sensitivity is defined as follows:

∆f = max D′,D′′∈D,

||D′−D′′||1=1

||M(D′)−M(D′′)||1 (2)

It states that every two subsets D′, D′′ ∈ D, which differ

exactly by one element, are checked for the maximum l1
distance of the outputs of M with different inputs D′ and

D′′.

3) Laplacian Noise: To satisfy Equation 1, we need to

apply noise to each bin. The noise calculation must be scaled

by the privacy parameter ǫ, as well as the l1-sensitivity. To

achieve this, we introduce Laplacian distribution, defined as

follows:

lap(x|σ, µ) =
1

2σ
e−

|x−µ|
σ (3)

(4)

Parameter µ sets the mean value. In our case, the mean is 0.

By inserting ∆f

ε
for σ, the variance of Laplacian Distribution

is dependent on the l1-sensitivity and the privacy factor ǫ.

Theorem 3.6 in [11] proves, that the Laplace distribution

ensures the (ε, 0)-Differential Privacy border for σ = ∆f

ε
and

µ = 0.

By varying ε, the privacy guarantee can be changed. Ex-

periments have shown ǫ = 0.1 is a good setting in order to

ensure privacy, but keeps enough information for learning on

the differentially private data.

C. Long-Short Term Memory (LSTM)

Long short-term memory (LSTM) [12] is a model often

used for time series prediction (e.g. traffic [13]). Though

temporal loops can enrich Feedforward Networks to process

sequential data in so-called Recurrent Neural networks [14],

this solely Markovian modeling approach has drawbacks.

The concept of recurrent neural networks is to process a

sequence of information, but these models are not capable of

considering different inputs and outputs together. Even if the

information is connected, it was considered individually. This

poses various challenges for many tasks. Clearly, one needs

to know the succeeding data to predict the future since the

two are connected. In some sense, recurrent neural networks

serve as a memory that collects and stores information about

what the system has computed so far. A recurrent neural

network system can look back at some steps to use previous

information for current knowledge.

In LSTM, the data transfer process is the same as in standard

recurrent neural networks. However, the operation to propagate

the information differs. As the information passes through,

the model selects which information to process further and

which to let pass. The network structure consists of cells,

each consisting of 3 gates (input, output, forget). Each of the

gates themselves can be considered a feedforward network.

However, they are connected by the state of the cell. The state

of a cell acts as a path to transmit information. Cells are,

therefore, memories.
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n2(j)n1(j)
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Fig. 1. Network Architecture: Connected nodes specified by an adjacent
matrix. Node j is the observed node and n1(j), n2(j), n3(j) are the direct
neighbor nodes, that are sending aggregated histograms to j for learning.

D. k Nearest Neighbor (kNN)

The k Nearest Neighbor (kNN) classifier is a non-parametric

supervised learning algorithm. It can be adopted to be well

suited for traffic prediction [15]. Originally it was developed

by Fix and Hodges in 1951 [16].

The general concept is to store all measured data. For

example, the traffic flow rate and corresponding time as one

feature vector. There is no training phase. The prediction is

made by determining the distance to all saved feature vectors

and getting the labels of the closest k. Finally prediction is

made by a majority voting over the closest k labels.

III. OUR APPROACH

Our approach is combining the advantages of DP-LLP [2],

and [6] to build a fully decentralized learning algorithm, which

ensures privacy and results in good forecasting performance.

First, we will describe the general data exchange between the

distributed nodes and the integration of Differential Privacy.

Afterwards, we show the advanced LSTM model, which uses

differentially private neighbor information to learn.

A. Distributed Network

A general distributed network setup is shown in Figure 1.

We have a list of nodes and an adjacent matrix, which defines

the edges between nodes.

We denote j the node that is currently observed. For all

i ∈ |Nj|, ni(j) are the neighbors of j and |Nj | denotes the

count of neighbors from j, shown in Figure 1. In our approach,

data is only transferred between direct neighbors, illustrated

with arrows between j and its neighbors. The histograms in

Figure 1 denote that no original data is sent via the network

but just aggregated intervals over larger time frames, so-called

buckets. All transferred data ensure ǫ-Differential Privacy and

are used by the neighbors to learn a LSTM model.

B. Distributed Data Exchange

As mentioned before, transferred data must by ǫ-

differentially private. To ensure this, data is first discretized

and then sliced in fixed time windows of size w. Each window

contains xl for l ∈ [0, w] data points. For each window a

histogram is calculated to aggregate the data. Additionally

laplacian noise is added with σ = 1

ε
and µ = 0. The sensitivity

is fixed to 1 because the maximum influence of a single data

point in a counting query is 1. Finally we get an ǫ-differentially

private histogram, which is send to the neighbors.

However, to say that the whole algorithm will be ε-

differentially private, one has to show that later processing on

ε-differentially private data is at least ε-differentially private.

Fortunately, Proposition 2.1 from [11] proves exactly this. The

authors show, that every Post-Processing on data that is (ε, δ)-
differentially private will result in a (ε, δ)-differentially private

outcome, too.

Using this Proposition, we can prove that applying noise

at each transferred histogram is sufficient to ensure a fully

ε-differentially private algorithm.

C. Model Architecture

In principle, our model can be split into two parts as

visualized in Figure 2. The first part comprises the node-wise

learning block, where each node uses its data for training.

The second block explicitly trains the last layer of the model

by using aggregated data from the neighbors as additional

information.

j ni(j)

x

LSTM Block

Dense

ŷ

yni(j)

Histogram

+ Noise

Fig. 2. Proposed distributed Label Proportion LSTM architecture. The LSTM
Block contains an LSTM layer, followed by a ReLU and a local linear layer.

In Figure 2 it can be seen that we are using the local data of

node j, denoted as x, as inputs for the LSTM model. Parallelly,

the aggregated spatial data from neighbors is built up and sent

to node j. Node j then uses the aggregated data to improve

the learning of the network’s last Dense-Layer. Finally, the

outcome of the Dense-Layer is the prediction ŷ, from which

the gradient could be determined, and all weights will be

updated.

In the following, we will describe in more detail how the

learning in both phases works.

1) Local Node Learning: The local node learning phase

consists of a LSTM [17], [18], which builds features containing

temporal dependencies. Features are learned on fixed time

windows of w = 12 time steps (around 1 hour in PemsBay).

By replacing k−Means with a LSTM model, we gain more

learned information about time-dependent features. When us-

ing multiple features, e.g., speed and density, they are handled

independently by the LSTM. The output is then limited to the

R+ value range by a downstream Rectified Linear Unit (ReLU)

activation function. Outputs of the ReLU are used to feed the



Local Linear Layer, which is initialized by the identity matrix.

The reason for this is first to let all information through and

later, during the training, modify the weights to gain more

information. The process of feeding outputs of the ReLU into

the initialized Local Linear Layer is denoted in Figure 3.

xspeed 1 0 1 1 2 0
xdensity 2 0 2 1 1 0
LSTM + RELU outputs

(

1 0
0 1

)

+ b

(

1 0
0 1

)

+ b

j

Fig. 3. Local Linear Layer. The Parameters of the matrices are not shared
over time stamps, but are trainable and initialized with the identity matrix.

The first block of the model ends before feeding infor-

mation to the Local Linear Layer. This first phase uses the

local information for learning. However, because both blocks

of the model are updated in a single Backpropagation, we

need to describe the second part before determining the loss

calculation.

2) Learning with Aggregated Spatial Information: In the

second phase, we are using the aggregated spatial neighbor in-

formation. To enable this, we use transferred noisy histograms

as described previously. Thus for each time frame we have |N |
histograms of N different direct neighbors.

These histograms are also used as inputs for the model - but

only for the Dense-Layer. To fix the length of the additional

input vector, we had to average the received histograms. This

is needed because we cannot guarantee that the number of

neighbors is always the same.

The resulting averaged histogram is concatenated with the

outputs of the LSTM + ReLU + Local Linear Layer and fed

into the Dense-Layer as inputs. The Dense-Layer is applied

channelwise, such that the histograms of speed and density

are concatenated with time features of speed and density

individually. The arrows denote this data flow from the LSTM

and from the neighbor histogram in Figure 2.

The main advantage of this approach is to use more in-

formation from which the model can be trained. Therefore

we have updated weights with information from neighboring

nodes, which eventually result in better prediction behaviors

after the Dense-Layer.

Nevertheless, there are also some downsides to using this

approach. For example, when predicting a specific node, one

must gather the neighbors’ histogram information. Therefore,

a stable network connection is required. To work around this

problem, one can use previous neighbors’ histogram values or

the own histograms of node j. We consider this architecture

not dependent on the loss regularization term only and assume

it is more accurate because of additional learned information.

A similar assumption was also made by the authors from [2],

[4].

3) Loss Calculation: To this point, we described the data

flow from input x and the histograms to the prediction ŷ.

For development, PyTorch [19], PyTorch Geometric [20] and

a modified Pytorch implementation of [18] were used. There-

fore, all layers in the model architecture result in one Gradient

Graph. Based on this graph, the loss can be backpropagated.

We used the Mean Squared Error (MSE) loss for calculating

the deviation between prediction and actual data values:

lossMSE =
1

|B|

|B|
∑

i

(ŷi − yi)
2 (5)

Because we are using batches with size |B|, the squared

error loss is calculated for every prediction in the batch, and

afterwards, the total amount is normalized by |B|. With this

setup, we can propagate the error back to both, the Dense-

Layer with histograms from the neighbors and the LSTM with

inputs of x.

IV. EXPERIMENTAL EVALUATION

The experimental results compare our approach against

the state-of-the-art kNN in a centralized computation setting

(compare subsection II-D). Performance results are measured

on the real-world, large-scale traffic datasets Pems-Bay [21],

METR-LA [22] and an own generated dataset from Luxem-

bourg SUMO Traffic (LuST) scenario [23]. We aim to show

the level of privacy that we can reach with our distributed

learning approach by putting it in relation to the prediction

accuracy. Before we go into the experiment settings and results

in detail, we will briefly describe the datasets and introduce

relevant steps in the evaluation.

A. Datasets

First we will give a detailed overview over the used datasets,

especially how the LuST dataset is built up.

1) Pems-Bay: The Pems-Bay dataset was collected by the

California Transportation Agencies (CalTrans) utilizing the

Performance Measurement System (PeMS). The dataset is

based on 325 Bay Area sensors collected from Jan 1st, 2017,

to May 31st, 2017, in 5-minute intervals. Each data point

contains information about the traffic density and a normalized

time value. Pems-Bay is mainly used to verify the prediction

accuracy applicable to non-euclidean structural models.

2) METR-LA: METR-LA is a similar dataset as Pems-Bay.

The containing data was collected from Los Angeles County

Highway ring detectors from March 1st, 2012, to June 30st,

2012. In total, 207 sensors were used to collect traffic density

data.

3) LuST: As the third dataset, we introduce a new one

based on the Luxembourg SUMO Traffic (LuST) [24] scenario.

This scenario is executed in the Simulation of Urban Mobility

(SUMO) environment [25], which was built in order to have a

stable basis to develop and test data based mobility solutions.

We let the data simulation run and extracted the traffic

counts for every 5 minutes of each street and the corresponding

speeds. As metadata, we collected the graph information and

built an adjacency matrix in which the relations between streets



were stored. The resulting dataset contains traffic density and

speed for the Luxembourg simulation covering an entire day.

The big advantage of this dataset generation is, that the

same process can be executed on a different simulation, or for

longer intervals. In our setting we use the short time frame of

one day for analyzing, whether the model can learn on short

time periods too.

Our prepared LuST dataset can be down-

loaded from the following google drive:

https://drive.google.com/uc?export=download&id=1OjPkvptYb22eThm-0zOArBEFA aLifqp.

Alternatively one can use the implemented LuSTDataset-

Loader for loading the dataset with PyTorch.

B. Metric

All datasets are designed to predict a forecast value. For

example, Pems-Bay and LuST both want to predict the traffic

density. Therefore we will simply use the Mean Squared Error

(MSE) over the whole test set to evaluate the accuracy. Based

on the fact that we analyze a fully distributed setting with

windows for predictions, our formula for the MSE looks a bit

different:

MSE =
1

|y|

|N |
∑

j=0

|Dtest|
∑

i=0

|Dtest|
w
∑

t=0

(

yijt − ŷijt
)2

(6)

We first iterate over every node from N . For each node, we

are iterating over the test data Dtest of the node and finally

also over the sliced windows of size w. The squared distance

is calculated for each value ŷijt. Finally, all error values are

summed up and normalized.

Before data is processed by the network, every input is

transformed by the instance norm. This is a typical normal-

ization, used to standardize time series data. For a time series

x with mean x and standard deviation σ(x) over the time axis

the instance norm is calculated for each feature channel by

norminst =
x− x

σ(x)
(7)

Before the outputs of the models are analyzed, they are

transformed back to the original data space. With the MSE

metric we have the option, to compare centralized approaches

directly with decentralized ones.

C. Model Variations

This section contains a short overview over the different

approaches compared in the evaluation.

1) kNN: kNN is used as a baseline centralized classifier,

which uses no privacy. It is accessing data from all nodes

in the network at the same time. In the setting of city

traffic, it compares the test sequence of graphs with every

12 subsequent graphs in the history and uses the nearest

prediction in euclidean space. As graphs are averaged over

the buckets, we fixed the amount of nearest graphs to k = 1.

With this assumption, the label of the closest graph can be

returned.

2) LabelProportionLocal: This model is a simple version

of our approach and also works decentralized. One main

difference to our full approach exists. No data is exchanged

between the nodes. Therefore each node just uses its own data

to predict the future. Nevertheless, the model consists of one

LSTM → ReLU → Local Linear Layer → Dense-Layer layer

chain. The part that is missing is the exchange of histogram

information from the neighbors.

3) LabelProportionToDense: The LabelProportionsTo-

Dense model type uses our full approach as described in

section III. This means, that ε-differentially private histogram

data is exchanged to make use of spatial locality. Data transfer

is happening by peer-to-peer communication and without

disclosing private information by using noise as described in

the Differential Privacy subsection.

D. Experiment Settings

The evaluation will show how our approach performs

against a centralized algorithm. Additionally, we want to

show the approximate difference in needed communication

for training as well as the influence of the privacy parameter

ε. The resulting comparison provides a general direction to

indicate whether the accuracy of our approach is good enough

compared to the other approaches with no or less privacy

guarantees.

Later on we will vary the hyperparameter ε that controls

how much noise is applied to the histograms. We will compare

ε = 0.1, ε = 0.5 and no privacy gain to give a meaningful

evaluation of the privacy factor. The general definition of

Differential Privacy states that the higher the value of ε, the

less privacy is guaranteed. Therefore a value of ε = 0.1 gains

a lot of privacy, but when ε is set to 1, no privacy is assured.

Other hyperparameters of the algorithms are set as follows:

The kNN uses k = 1 for the number of nearest neighbors.

Deep Learning models, especially our approaches, are learned

with the ADAM optimizer and with a fixed learning rate of

0.01. The models are trained for 5 epochs for the Pems-Bay

and the METR-LA dataset, while the smaller LuST dataset is

trained for 15 epochs.

For the experiments, Pems-Bay and METR-LA datasets are

used in the typical train-test split with distribution of 80
percent train and 20 percent test. The LuST dataset however,

is performed as a cross-validation with 5 folds. This is due to

the fact that this dataset contains only information gathered in

one day. It can therefore happen, that the typical curve of rush

hour in traffic density is never seen in training, but should be

predicted in the test set. Hence our decision to work with cross

validation, to use each part of the dataset once for testing.

E. Results

Evaluation results are clustered into different sections. First

we will give an overview about the general performance

dependent on the dataset and used algorithm. Afterwards, we

will explain concrete differences using specific extracts from

the test data predictions.

https://drive.google.com/uc?export=download&id=1OjPkvptYb22eThm-0zOArBEFA_aLifqp
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Fig. 4. Testset Prediction for one node in 5 minute prediction intervals on the Pems-Bay dataset. The solid gray line represents the ground truth, whereas the
blue, orange and black dotted lines are the predictions of different algorithms. For clarity, only parts of the test set were plotted for each algorithm.

dataset model ε test loss

LuST kNN x 0.470
LabelProportionLocal x 0.377
LabelProportionToDense x 0.379

0.5 0.381
0.1 0.380

METR-LA kNN x 1.020
LabelProportionLocal x 0.760
LabelProportionToDense x 0.480

0.5 0.664
0.1 0.730

Pems-Bay kNN x 0.369
LabelProportionLocal x 0.496
LabelProportionToDense x 0.305

0.5 0.487
0.1 0.542

TABLE I
OVERVIEW OF THE MSE TEST LOSSES. EACH ALGORITHM WITH

CHANGED ε PRIVACY PARAMETER IS TESTED ON EACH DATASET.

1) MSE: An overview of the general test accuracy based

on MSE is shown in Table I. The first column denotes the

used dataset whereas the second and third column denote the

model and ε privacy parameter. When no privacy degree ε can

be specified, the value is shown as x. It stands out that the

metric ranges from 0.3 to 1.02, lower being better. Obviously,

the general performance is highly dependent on the datasets.

For example, the MSE of the LuST dataset is around 0.38 to

0.47, whereas no value is below 0.48 on the METR-LA dataset.

Looking at the figures, it is obvious that the LabelPro-

portionLocal or LabelProportionToDense algorithm always

achieves better results than the kNN as a centralized approach.

This is probably due to the fact that the integrated LSTM in

our approach is better able to represent temporal components.

Another noticeable aspect is the increasing MSE value for

increasing privacy guarantees by reducing ε. This is also an

expected degradation in terms of accuracy, since adding noise

reduces the information content of the neighbors. But it is in-

teresting to see that the performance is getting worse compared

to the LabelProportionLocal algorithm, which is not using

additional neighbor information. Only when using no noise,

performance of LabelProportionToDense is the best on METR-

LA and Pems-Bay in comparison to the other algorithms.

Based on these general results, one can say that our

approach with sending histograms between direct nodes is

improving the general prediction performance. By using the

LSTM as the central learning model for local data, we

achieved to outperform the centralized kNN algorithm. Using

ε-Differential Privacy to ensure privacy of exchanged data, we

have measured a significant increase of the MSE error, which

results in worse performance, than when using no neighbor

information.

2) Prediction Curve Pems-Bay - Overview: Because a

single metric is not very meaningful, we plotted the predicted

values of the different algorithms on the Pems-Bay dataset

in Figure 4. The actual measured data is depicted by the

solid grey line in the background. In the foreground the three

different algorithms are compared to each other. This chart

contains no privacy preserving approach with privacy param-

eter ε. Predictions of the algorithms are split into sections on

the test set, for better visibility. Therefore, the predictions of

the kNN as the blue line is only plotted for the first 3500 steps.

Following this, the prediction of the LabelProportionLocal

has been plotted in orange up to time step 7500. Finally,

the predicted values of the LabelProportionToDense approach

are shown in black. As seen at the time scale we have

predictions of approximately 10500 time steps which are equal

to 10500 ∗ 5min = 52500min = 875h ≈ 36 days.

Therefore, only the general prediction shape can be seen,

which is quite accurate. At most times, the kNN and our

approaches nearly met the actual prediction curve. There are

some exceptions, where the data cannot be fitted very well.

Especially peaks in the actual car speed measurements are not

recognized by the approaches. For example, the kNN does not

predict the sharp drop in speed at around time step 150. The

same issue occurs, when looking at the LabelProportionLocal

approach around time step 5800. The only algorithm, that fits
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Fig. 5. Testset slice of 200 time stamps. Prediction for one node in 5 minute prediction intervals on the PEMS-BAY dataset. The solid gray line represents
the ground truth, whereas the blue, orange and black solid lines are the predictions of different algorithms. For clarity, only parts of the test set were plotted
for each algorithm. When ε-Differential Privacy is applied, the lines are dashed or dotted.

the curve nearly perfectly by viewing this in large scale is the

LabelProportionToDense approach.

In this overview, the cycles where traffic speed is going

down during rush hour are very good to see. During the

normal day, the density is oscillating around 70 which is the

normal expected traffic speed curve. This can be the reason

why our approaches reach better prediction accuracy, because

time dependent features are extracted by the LSTM.

3) PredictionCurve Pems-Bay - Detailed: In the plot over

the entire test period, you can see tendencies, indicating the

prediction accuracy. For better details, we have cut out a

section of 200 time steps and displayed it in Figure 5. This

plot represents 200 ∗ 5min = 1000min ≈ 17h, which is part

of a day and night phase. It can also be seen by assuming that

rush-hour is visible in the time steps starting from 6535. The

night phase then begins around time step 6610, where a near

constant speed is driven. We chose the slice by analyzing the

dataset for the area, where the MSE was the lowest. Therefore,

we chose the concrete slice from time frame 6468 to 6668.

The actual measurement values are visible in gray. The

kNN, as well as the LabelProportionLocal and LabelPro-

portionToDense are shown solid in the same color as the

previous chart. Additionally there are two more variations

plotted. Those are our approaches (LabelProportionToDense),

where noise is applied by ε-Differential Privacy. Variations

with noise are highlighted by dashed (ε = 0.5) or dotted

(ε = 0.1) lines.

The figure indicates, it is clear that the prediction is not as

accurate as indicated in Figure 4. Here, all little deviations in

density prediction are getting noticed.

By focusing on the kNN it looks like it is mostly under

predicting the real world measurements. Only for steep drops,

visible at around time step 6535, the prediction is not close to

the real curve. In general, the prediction of kNN looks some-

what like a step function. Therefore, all the little variations

are not predicted well.

Compared to this, our approach without histogram transfer

(LabelProportionLocal) fits the real world measurements quite

well. Especially the steep drop, which the kNN could not

handle, is fitted well. For most predictions it is just slightly

above the real world data and at some peaks, like in time step

6590, it is shifted along the time axis. At those points, the

peak is predicted a bit later. But in general, this prediction

curve is quite close to the original measurements.

The only better approach than this is the LabelProportion-

ToDense approach. Variations between the prediction of the

approach and the real data is almost not visible. Only slight

jumps of the original data, which are not relevant for the

general traffic speed, are not predicted. By looking at Figure 5,

this algorithm is approaching the best results from all tested

ones.

However no privacy guarantee can be given for the his-

tograms. Therefore we added differentially private variations.

For ε = 0.5, the dashed curve shows the predictions. Those

predictions are also quite good and fit the real world data well.

Sometimes peaks are predicted with no real speed peak. This

can be seen at time step 6485.

For the LabelProportionToDense with ε = 0.1, the dotted

line shows the predictions. Those are much worse than all

other algorithms. When analyzing the curve, one can see that

it is mostly a prediction around a traffic density of 66. It

varies in the prediction value, but not by much. Therefore,

it looks like the approach has learned to just predict the mean

value. The reason for this can be the applied noise to the

histograms. The noise could have resulted in nearly equally

distributed histograms, so that no information is included.

When this happened, the model could also learn only the

mean distribution, or mean value. For this reason, it looks

like a privacy factor of ε = 0.1 is too high to gain useful

information from neighboring histograms that are afterwards

normalized again over all neighbors.



V. CONCLUSION

In conclusion, the general approach adopted from [6] results

in very good prediction accuracy on spatio-temporal data, as

used in our evaluation with Pems-Bay, METR-LA and LuST.

We could show, that the local approach of using an LSTM

combined with ReLU and Dense-Layer results in a very good

prediction, because temporal information is extracted well by

the LSTM model. By adding information of the neighbors

when integrating histograms, we could improve results by 0.28
on METR-LA and 0.19 on Pems-Bay as shown in Table I for

the Pems-Bay dataset. However, adding Differential Privacy

to the neighboring histograms, has a significant impact on the

learning performance. As shown by the evaluation, sometimes

it is better to use no noisy neighbor data to train the model.

For the future, it is conceivable that either the second-degree

neighbors will be included or that an attempt will be made to

transfer differentially private data with less information loss

or misinformation.
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