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ABSTRACT
Multivariate time series forecasting with hierarchical structure is
pervasive in real-world applications, demanding not only predict-
ing each level of the hierarchy, but also reconciling all forecasts to
ensure coherency, i.e., the forecasts should satisfy the hierarchical
aggregation constraints. Moreover, the disparities of statistical char-
acteristics between levels can be huge, worsened by non-Gaussian
distributions and non-linear correlations. To this extent, we propose
a novel end-to-end hierarchical time series forecasting model, based
on conditioned normalizing flow-based autoregressive transformer
reconciliation, to represent complex data distribution while simulta-
neously reconciling the forecasts to ensure coherency. Unlike other
state-of-the-art methods, we achieve the forecasting and reconcilia-
tion simultaneously without requiring any explicit post-processing
step. In addition, by harnessing the power of deep model, we do
not rely on any assumption such as unbiased estimates or Gaussian
distribution. Our evaluation experiments are conducted on four
real-world hierarchical datasets from different industrial domains
(three public ones and a dataset from the application servers of Ali-
pay’s data center) and the preliminary results demonstrate efficacy
of our proposed method.

CCS CONCEPTS
• Information systems → Temporal data; • Mathematics of
computing → Time series analysis; • Computing methodolo-
gies → Neural networks.
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1 INTRODUCTION
Many real-world applications [1, 5, 10, 17] involve simultaneously
forecasting multiple time series that are hierarchically related via
aggregation operations, e.g., department sales of multiple stores at
different locations and traffic flow in hierarchical regions. These
time series not only interact with each other in the hierarchy, but
also imply coherency, i.e., time series at upper levels are the aggre-
gation/summation of those at lower levels. For instance, as shown
in Figure 1 (i.e., the hierarchical structure of Australian domestic
tourism demand [3]), the data contains 4 levels from top to bot-
tom including, 1 country, 7 states, 27 zones, and 82 regions, among
which, different levels of forecasts have distinct goals. Specifically,
bottom-level forecasts are often about specific demand to help with
regional government decisions, while upper-level forecasts look at
themacro perspective to assist national strategies. On top of the gen-
eral statistical disparities between levels in real-world hierarchies,
the entanglement of their interactions and correlations presents
a great challenge to the prediction model. Therefore, how to ex-
ploit the information among hierarchical time series, while learning
from non-Gaussian data distributions and non-linear correlations,
becomes a critical task for improving the prediction accuracy. Fur-
thermore, coherency constraints [25] also add more complication
to the prediction model. The straight-forward methods to utilize

Figure 1: Hierarchical time series structures for Australian
domestic tourism, aggregated by geographical locations

hierarchical structure include bottom-up forecasting and top-down
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forecasting. As their names suggest, these methods make individual
predictions at the bottom or upper levels and then aggregate accord-
ing to the hierarchical structure. Although these methods naturally
satisfy coherency, they are not able to consider statistics of all levels
for prediction at the same time. Specifically, when forecasting from
a single level of the aggregation structure, these methods either
aggregated or disaggregated to obtain forecasts of all the rest levels.
As a matter of fact, the statistical characteristics at different levels
can be drastically distinct, e.g., time series of upper levels tends to
be more stationary, while those at the bottom levels are often more
fluctuant, for which a flexible adaptation at different levels would
be ideal to better utilize the information at all levels.

To address these problems, the reconciliation method, revising
the predictions for coherency after forecasting all of the series in-
dividually, has become popular in the recent research [8]. These
works usually follow the two-stage approach: First, independently
forecast all the series (i.e., generate incoherent base forecasts); Sec-
ond, reconcile the base forecast by applying forecast combination
using a bottom-up procedure. In other words, the base forecasts
are adjusted so that they become coherent. MinT [28] is one of the
representative methods, which reconciles the base forecasts via the
optimal combination with minimum variance among all unbiased
revised forecasts.

Most previous works, reconciling forecasts of all levels to ensure
coherency, face the following challenges: (i) The base forecast is
obtained independently without any shared information from other
time series. (ii) State-of-the-art methods rely on strong statistical as-
sumptions, such as, unbiased forecasts and Gaussian noises, but the
data distributions in real-world aremostly non-Gaussian/non-linear
across the hierarchy, which calls for a method that can transform
data into Gaussian space where tractable methods can be applied.
(iii) The two-stage approaches reconcile the base forecast without
any regard to the learned model parameters, and cannot fully uti-
lize the power of deep parametric models, resulting in the lack of
information sharing between the process of prediction and reconcil-
iation. (iv)Most methods only focus on generating point estimates,
but the probabilistic forecasts are often necessary in practice to
facilitate the subsequent decision-making processes.

In this paper, we present a novel end-to-end approach that tack-
les forecasting and reconciliation simultaneously for hierarchical
time series, without requiring any explicit post-processing step,
by combining the recently popular autoregressive transformer [11]
and conditioned normalizing flow [15] to generate the coherent
probabilistic forecasts with the state-of-the-art performance.

Specifically, we first obtain the base forecast via the autoregres-
sive transformer, modeling the multivariate time series of all-levels.
Using encoder-decoder transformer structure, which has been suc-
cessful in recent advances in the multivariate time series forecasting
[30], we achieve the information fusion of all levels in hierarchy
via globally shared parameters, while benefiting from the represen-
tation power of the autoregressive transformer model. Transformer
models have also shown superior performance in capturing long-
range dependency than RNN-based models. Second, we reconcile
the base forecasts into coherent forecasts via conditioned normaliz-
ing flow (CNF) [15] with bottom-up aggregation matrix. Since we
need to model complex statistical properties in hierarchical data
for our probabilistic forecasting, normalizing flow (NF), a proven

powerful density approximator, becomes our natural choice. By
extending NF to the conditional case, we can incorporate base
forecasts from all levels into CNF as additional condition for the
latent space, leveraging the information available across all levels
for reconciliation, while modeling the non-Gaussian distributions
and non-linear correlations in the hierarchy to obtain probabilistic
forecasts. Finally, throughout the whole process, we combined
forecasting and reconciliation simultaneously for end-to-end train-
ing, while ensuring the continuity and differentiability at all steps.
Moreover, our framework can accommodate different loss functions
besides log-likelihood, and by sampling from the forecast distri-
bution, sufficient statistics can also be obtained via the empirical
distribution to facilitate more complicated optimization objectives.

Our Contributions. We summarize our contributions as follows:
• Amultivariate autoregressive transformer architecture, mod-
eling each time series simultaneously via globally shared
parameters

• A novel reconciliation method via CNF with bottom-up ag-
gregation matrix to integrate information of all level in the
hierarchy for coherent probabilistic forecast without relying
on any statistical assumption

• An end-to-end learning framework of hierarchical time se-
ries achieving forecasting and reconciliation simultaneously,
without requiring any explicit post-processing step

• Extensive experiments on real-world hierarchical datasets
from various industrial domains and real-life deployment
for traffic forecasting on application servers from Alipay’s
data center.

In the following content, we introduce the involved background
and review related work in Section 2 and Section 3. We then present
our proposed method and describe the procedure of training and
inference in Section 4. Finally in Section 5, we analyse the non-
Gaussian/non-linear properties of real-world hierarchical data and
demonstrate the advantages of our approach through experiments
and ablation study.

2 BACKGROUND
2.1 Hierarchical Time Series and Reconciliation
The hierarchical time series can be expressed as a tree structure
(see Figure 2) with linear aggregation constraints, represented by
aggregation matrix 𝑆 ∈ R𝑛×𝑚 (𝑚 is number of bottom-level nodes,
𝑛 is total number of nodes). Each node in the hierarchy represents
one time series, to be predicted over a time horizon. Given a time
horizon 𝑡 ∈ {1, 2, ...,𝑇 }, we use 𝑦𝑡,𝑖 ∈ R to denote the values of a
multivariate hierarchical time series, where 𝑖 ∈ {1, 2, ..., 𝑛} is the
index of the individual univariate time series. Here we assume that
the index 𝑖 of the individual time series abides by the level-order
traversal of the hierarchical tree, going from left to right at each
level, and we use 𝑥𝑡,𝑖 to denote time-varying covariate vectors
associated with each univariate time series 𝑖 at time step 𝑡 .

In our tree hierarchy, the time series of leaf nodes are called the
bottom-level series 𝑏𝑡 ∈ R𝑚 , and those of the remaining nodes are
termed the upper-level series 𝑢𝑡 ∈ R𝑟 . Obviously, the total number
of nodes 𝑛 = 𝑟 +𝑚, and 𝑦𝑡 = [𝑢𝑡 , 𝑏𝑡 ]𝑇 ∈ R𝑛 contains observations
at time t for all levels , which satisfy (by an aggregation matrix
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Figure 2: Example of hierarchical time series structure for
n=7 time series with m=4 bottom-level series and r=3 upper-
level series

𝑆 ∈ {0, 1}𝑛×𝑚):

𝑦𝑡 = [𝑢𝑡 , 𝑏𝑡 ]𝑇 ⇔ 𝑦𝑡 = 𝑆𝑏𝑡 ⇔
[
𝑢𝑡
𝑏𝑡

]
= 𝑆𝑏𝑡 , (1)

for every time step 𝑡 . For example, in Figure 2, the total number
of series in the hierarchy is 𝑛 = 𝑟 +𝑚 = 3 + 4, i.e., the number of
series at the bottom-level is𝑚 = 4 and the number of upper-level
series is 𝑟 = 3. For every time step 𝑡 , 𝑢𝑡 = [𝑦𝐴,𝑡 , 𝑦𝐵,𝑡 , 𝑦𝐶,𝑡 ] ∈ R3
and 𝑏𝑡 = [𝑦𝐷,𝑡 , 𝑦𝐸,𝑡 , 𝑦𝐹,𝑡 , 𝑦𝐺,𝑡 ] ∈ R4, the 𝑦𝐴,𝑡 = 𝑦𝐵,𝑡 +𝑦𝐶,𝑡 = 𝑦𝐷,𝑡 +
𝑦𝐸,𝑡 + 𝑦𝐹,𝑡 + 𝑦𝐺,𝑡 , and the aggregation matrix 𝑆 ∈ {0, 1}7×4.

Reconciliation of Hierarchical Forecasting. For given multi-
variate hierarchical time series, we first consider ignoring the aggre-
gation constraints and forecasting all time series separately, which
are called base forecasts denoted by 𝑦𝑡 ∈ R𝑛 , where ℎ is the forecast
horizon. Then all forecasting approaches for hierarchical structures
can be represented as

𝑦𝑡 = 𝑺𝑷𝑦𝑡 , (2)

where 𝑷 ∈ R𝑚×𝑛 is a matrix that projects the base forecasts (of
dimension 𝑛) into the bottom-forecast(of dimension𝑚), which is
then summed up by the aggregation matrix 𝑺 ∈ {0, 1}𝑛×𝑚 using the
aggregation structure to produce a set of coherent forecasts 𝑦𝑡 ∈ R𝑛 ,
which satisfy the aggregation constraints. Equation 2 can be easily
extended to ℎ-period-ahead forecast

𝑦𝑡+ℎ = 𝑺𝑷 ˆ𝑦𝑡+ℎ .

Typically, the base and coherent forecasts can be linked by Equation
2 above, which is also called reconciliation process. A main effort
of the state-of-the-art methods is to improve the reconciliation
process, and in Section 3, we will review the related work in this
domain.

2.2 Autoregressive Transformer
Recently, the encoder-decoder transformer structure has been
highly successful in advancing the research on multivariate time se-
ries forecasting, enabled by its multi-head self-attention mechanism
to capture both long- and short-term dependencies in time series
data [16, 30]. Meanwhile, combined with classical autoregressive
models for time series, we can extend the transformer structure to
an autoregressive deep learning model using causal masking, which

preserves the autoregressive property by utilizing a mask that re-
flects the causal direction of the progressing time, i.e., masking out
data from future [11].

Specifically, given D, defined as a batch of time series 𝒀 =

[𝒚1, ...,𝒚𝑇 ] ∈ R𝑇×𝐷 , the transformer takes in the above sequence
𝒀 , and then transforms this into dimension 𝑙 to obtain the query
matrix 𝑸 , the key matrix 𝑲 and the value matrix 𝑽 as follows:

𝑸 = 𝒀𝑾𝑄

𝑙
𝑲 = 𝒀𝑾𝐾

𝑙
𝑽 = 𝒀𝑾𝑉

𝑙
, (3)

where 𝑸 ∈ R𝑑𝑙×𝑑ℎ , 𝑲 ∈ R𝑑𝑙×𝑑ℎ , and 𝑽 ∈ R𝑑𝑙×𝑑ℎ (we denote that
𝑑ℎ is the length of time steps), and the𝑾𝑄

𝑙
,𝑾𝐾

𝑙
, 𝑽𝑉
𝑙

are learnable pa-
rameters. After these linear transformation, the scaled dot-product
attention computes the sequence of vector outputs via:

𝑺 = Attention(𝑸, 𝑲 , 𝑽 ) = softmax

(
𝑸𝑲𝑇√︁
𝑑𝐾

·𝑴
)
𝑽 , (4)

where the mask matrix 𝑀 can be applied to filter out right-ward
attention (or future information leakage) by setting its upper-
triangular elements to −∞ and normalization factor 𝑑𝐾 is the di-
mension of the𝑊𝐾

ℎ
matrix. Finally, all outputs 𝑆 are concatenated

and linearly projected again into the next layer.
Transformer is commonly used in an encoder-decoder archi-

tecture, where some warm-up time series as context are passed
through the encoder to train the decoder and autoregressively ob-
tain predictions.

In this work, we employ the multivariate autoregressive trans-
former architecture, to model each time series simultaneously via
globally shared parameters. By doing so, we achieve the informa-
tion fusion of all levels in hierarchy to generate the base forecasts.
In fact, in our case, base forecasts from the base model do not di-
rectly correspond to un-reconciled forecasts for the base series, but
rather represent predictions of an unobserved latent states, which
can be used for subsequent density estimations.

2.3 Density Estimation Via Normalizing Flow
Normalizing flows(NF) [20], which learn a distribution by trans-
forming the data to samples from a tractable distributionwhere both
sampling and density estimation can be efficient and exact, have
been proven to be powerful density approximators. The change of
variables formula (Equation 5 below) empowers the computation
of exact likelihood [14], which is in contrast to other powerful
density estimator such as Variational Autoencoders or Generative
Adversarial Networks. Impressive estimation results, especially in
the field of nonlinear high-dimensional data generation, have lead
to great popularity of flow-based deep models [12].

NF are invertible neural networks that typically transform
isotropic Gaussians to characterize a more complex data distri-
bution. They map from R𝐷 to R𝐷 such that densities 𝑝𝑌 on the
input space 𝑌 ∈ R𝐷 are transformed into some tractable distribu-
tion 𝑝𝑍 (e.g., an isotropic Gaussian) on space𝑍 ∈ R𝐷 . This mapping
function, 𝑓 : 𝑌 → 𝑍 and inverse mapping function, 𝑓 −1 : 𝑍 → 𝑌

are composed of a sequence of bijections or invertible functions,
and we can express the target distribution densities 𝑝𝑌 (𝒚) by

𝑝𝑌 (𝒚) = 𝑝𝑍 (𝒛) |𝑑𝑒𝑡 (
𝜕𝑓 (𝒚)
𝜕𝒚

) | , (5)
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where 𝜕𝑓 (𝑦)/𝜕𝑦 is the Jacobian of 𝑓 at 𝑦. NF have the property
that the inverse 𝑦 = 𝑓 −1 (𝒛) is easy to evaluate and computing the
Jacobian determinant takes 𝑂 (𝐷) time.

For mapping functions 𝑓 , the bijection introduced by RealNVP
architecture (the coupling layer) [6] satisfies the above properties,
leaving part of its inputs unchanged, while transforming the other
part via functions of the un-transformed variables (with superscript
denoting the coordinate indices){

𝑦1:𝑑 = 𝑧1:𝑑

𝑦𝑑+1:𝐷 = 𝑧𝑑+1:𝐷 ⊙ 𝑒𝑥𝑝 (𝑠 (𝑧)1:𝑑 + 𝑡 (𝑧1:𝑑 )) , (6)

where ⊙ is an element wise product, 𝑠 () is a scaling and 𝑡 () is a
translation function from R𝐷 ↦→ R𝐷−𝑑 , using neural networks. To
model a nonlinear density map 𝑓 (𝑥), a number of coupling layers,
mapping Y ↦→ Y∞ ↦→ ... ↦→ YK−∞ ↦→ YK ↦→ Z, are composed
together with unchanged dimensions.

Conditional Normalizing Flow. Inspired by the conditional ex-
tension of NF [15], with the conditional distribution 𝑝𝑌 (𝒚 |𝒉), we
realize that the scaling and translation function approximators
do not need to be invertible [15], which means we can make the
transformation dependant on condition 𝒉 ∈ R𝐻 . Implementing
𝑝𝑌 (𝒚 |𝒉) on 𝒉 is straight-forward: we concatenate ℎ to both the
inputs of the scaling and translation function approximators of
the coupling layers, i.e., 𝑠 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝒛1:𝑑 ,𝒉)) and 𝑡 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝒛1:𝑑 ,𝒉)),
which are modified to map R𝑑+𝐻 ↦→ R𝐷−𝑑 .

In our work, we can incorporate base forecasts(in Section2.2,
from the outputs of Autoregressive Transformer) from all levels
into CNF as additional condition in the latent space, leveraging the
information available across all levels for reconciliation and while
modeling the non-Gaussian distributions and non-linear correla-
tions in the hierarchy to obtain the coherent probabilistic forecasts.
In Section 4, we will detail this process.

3 RELATEDWORK
Existing hierarchical time series forecasting methods mainly follow
the two-stage approach: (i) Obtain each ℎ-period-ahead base fore-
casts 𝒚̂𝑇+ℎ independently; (ii) Reconcile the base forecasts by the
reconciliation process (Equation 2) to obtain the coherent forecasts
𝒚̃𝑇+ℎ .

This approach has the following advantages:(1) The forecasts
are coherent by construction; (2) The combination of forecasts from
all levels is applied via the projection matrix 𝑷 , where information
from all levels of hierarchy is incorporated simultaneously. The
main work of the current state-of-the-art method is to improve the
reconciliation process, which will be reviewed in this section.

Wickramasuriya et al. proposed Mint [28] to optimally com-
bine the base forecasts. Specifically, assuming the base forecasts
𝑦𝑇+ℎ are unbiased, Mint computes the projection matrix 𝑷 =

(𝑆𝑇𝑊 −1
ℎ

𝑆)−1 (𝑆𝑇𝑊 −1
ℎ

) giving the minimum variance unbiased re-
vised forecasts, i.e., minimizing 𝑡𝑟 [𝑆𝑃𝑊ℎ𝑃

𝑇 𝑆𝑇 ] with constraint
𝑆𝑃𝑆 = 𝑆 , where𝑊ℎ is the covariance matrix of the ℎ-period-ahead
forecast errors 𝜀𝑇+ℎ = 𝑦𝑇+ℎ − 𝑦𝑇+ℎ (𝑺 and 𝑷 are matrices defined
in eq. (2)). However, the covariance of errors𝑊ℎ is hard to obtain
for general ℎ and the strong assumption of unbiased base forecasts
is normally unrealistic.

The unbiased assumption is relaxed inRegularized Regression
for Hierarchical Forecasting [2], which also follows the two-
stage approach and seeks the revised forecasts with the trade-off
between bias and variance of the forecast by solving an empirical
risk minimization (ERM) problem.

Probabilistic Method for Hierarchical Forecasting [19] also
employs the two-stage approach, but in contrast to the above meth-
ods, it considers forecasting probability distributions rather than
just the means (point forecasts). This probabilistic method starts by
generating independent forecasts of the conditional marginal distri-
butions, followed by samplings from the above distributions as the
base forecasts, which are then reconciled using Equation 2. In this
approach, existing reconciliation methods for point forecasts can
be extended to a probabilistic setting. But the reconciliation is only
applied to the samples rather than the forecast distribution, which
creates another level and uncertainty with unsalable computation
complexity.

One typical work in end-to-end modeling of hierarchical time
series is Hier-E2E [22], where base forecasts are obtained using
DeepVAR [23] with diagonal Gaussian distribution, followed by
reconciliation using a closed-form formulation of an optimization
problem, i.e., minimizing the errors of base forecast 𝑦 and recon-
ciling forecast 𝑦 subject to coherent constraints of hierarchical
structure. The reconciliation process is as follows:

𝑦𝑡 = 𝑀𝑦𝑡

𝑀 := 𝐼 −𝐴𝑇 (𝐴𝐴𝑇 )−1𝐴 ,

where𝑀 is a fixed matrix and𝐴 is a structure matrix from the upper
half of the aggregated matrix. In contrast to the previous work, the
model no longer has a relationship with the predicted value 𝑦. The
matrix𝑀 is time-invariant and can be computed offline, prior to the
training. This reconciliation approach is essentially a fine-tuning of
the base forecasts under the coherence constraint, and the learned
model parameters are not used to revise the base forecast in the
reconciliation stage.

Considering the pros and cons of the above models, we combine
the advantages and propose a novel end-to-end model that can not
only obtain the coherent probabilistic forecasts, but can also achieve
the reconciliation in the forecast distributions (rather than just on
samples), ensuring that the reconciliation is related the predicted
value 𝑦 via integrating information from all levels, to improve the
overall performance.

4 METHODOLOGY
In this section, we detail our novel approach, which combines
the multivariate autoregressive transformer and CNF for coherent
probabilistic forecasting.

4.1 Model
A schematic overview of our hierarchical end-to-end architecture
can be found in Figure 3.

4.1.1 Multivariate Autoregressive Transformer . The encoder-
decoder transformer architecture has been highly successful in
advancing the research on multivariate time series forecasting, en-
abled by its multi-head self-attention mechanism to capture both
long- and short-term dependencies, and can be further extended to
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Figure 3: Model Architecture. The red dashed line represents the multivariate autoregressive transformer module (§ 4.1.1) and
the blue dashed line highlights the reconciliation method via CNF with bottom-up aggregation matrix (§ 4.1.2). We can compute
sufficient statistics from the samples via the empirical distribution to facilitate more complicated optimization objectives.

have autoregressive properties by using causal masking. These ad-
vantages motivate the use ofmultivariate autoregressive transformer
as our building block to better capture patterns (e.g., trends and
cycles) inside each individual time series. Note that the global pa-
rameters of the transformer are shared across different time series
to exploit common patterns over the entire history.

We denote the entities of a hierarchical time series by 𝑦𝑡,𝑖 ∈ R
for 𝑖 ∈ {1, 2, ..., 𝑛}, where 𝑡 is the time index. We consider time
series with 𝑡 ∈ [1,𝑇 ], sampled from the complete history of our
data, where for training we split the sequence by some context
window [1, 𝑡0) and prediction window [𝑡0,𝑇 ]. We use 𝑥𝑡,𝑖 to denote
time-varying covariate vectors associated with each univariate time
series 𝑖 at time step 𝑡

In the encoder-decoder transformer architecture, the encoder
embeds𝒚1:𝑡0−1 and the decoder outputs the base forecast of all levels
as condition for the density estimations over 𝒚𝑡0:𝑇 via a masked
attention module:

𝒉𝑡0 = 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝒚1:𝑡0−1, 𝒙1:𝑡0−1);𝜃 )
𝒚̂𝑡 = 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (𝑐𝑜𝑛𝑐𝑎𝑡 (𝒚𝑡−1, 𝒙𝑡−1),𝒉𝑡0 ;𝜙) ,

(7)

where 𝜃 and 𝜙 are parameters of the transformer’s encoder and
decoder, respectively. These parameters are shared globally, achiev-
ing information fusion across all levels in hierarchy to generate the
base forecasts 𝒚̂𝑡 .

During training, care has to be taken to prevent using informa-
tion from future. Specifically, to ensure the autoregressive property

of the model, we employ a mask that reflects the causal direction
of the progressing time, i.e. to mask out future time points.

Note that, in our case, base forecasts 𝒚̂𝑡 do not directly corre-
spond to un-reconciled forecasts for the base series, but rather
represent predictions of an unobserved latent states, which can be
used for subsequent density estimations. The transformer allows
the model to access any part of the historic time series regardless
of temporal distance and thus is potentially able to generate better
condition 𝒉𝑡 ∈ R𝐻 for the subsequent density estimations.

4.1.2 Reconciliation via Conditional Normalizing Flow .
Next we describe how to obtain the coherent probabilistic forecasts,
given the base forecasts described above from the autoregressive
transformer.

To estimate the probability density of data (in order to obtain
probabilistic forecast), one straight-forward method is to use pa-
rameterized Gaussian distribution, but as mentioned above, the
real-world hierarchical data are mostly non-Gaussian/non-linear.
Equipped with the powerful density approximator, NF, we are
able to tackle this challenge, capturing the nonlinear relationships
among all levels in hierarchy.

According to the definition of Equation 2, the reconciliation takes
a projection matrix 𝑷 ∈ R𝑚×𝑛 , projecting from the base forecasts
(of dimension 𝑛) into the bottom-forecasts (of dimension𝑚). In our
approach, this projection is replaced using conditional normalizing
flow (CNF), i.e., the conditional joint distribution 𝑝𝑌 (𝒚̃𝑡 |𝒉𝑡 ), where
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𝒉𝑡 is the condition (base forecasts 𝒚𝑡 in our case) and the current
𝒚̃𝑡 is the reconciled bottom-forecasts (of dimension𝑚).

In the Real-NVP architecture, we extend Equation 6 by concate-
nating condition 𝒉𝑡 to both the inputs of the scaling and translation
function approximators of the coupling layers as follows:

{
𝒚1:𝑑 = 𝒛1:𝑑

𝒚𝑑+1:𝐷 = 𝒛𝑑+1:𝐷 ⊙ 𝑒𝑥𝑝 (𝑠 (𝒛1:𝑑 ,𝒉) + 𝑡 (𝒛1:𝑑 ,𝒉)) , (8)

where 𝒛 is a noise vector sampled from an isotropic Gaussian, func-
tions 𝑠 (scale) and 𝑡 (translation) are usually deep neural networks,
which as mentioned above, do not need to be invertible.

To obtain an expressive distribution representation, we can stack
K layers of conditional flow modules (Real-NVP), generating the
conditional distribution of the future sequences of all time series
in hierarchy, given the past time 𝑡 ∈ [1, 𝑡0) and the covariates in
𝑡 ∈ [1,𝑇 ]. Specifically, it can be written as a product of factors (as
an autoregressive model):

𝑝𝑌 (𝒚̃𝑡0:𝑇 |𝒚1:𝑡0−1, 𝒙1:𝑇 ;𝜃, 𝜙,𝜓 ) =
𝑇∏
𝑡=𝑡0

𝑝𝑌 (𝒚̃𝑡 |𝒉𝑡 ;𝜃, 𝜙,𝜓 ) , (9)

where 𝜃 and 𝜙 are parameters of the transformer and 𝜓 is the
parameter of CNF.

Then with the power of reparameterization trick [13], we can
generate directly a set of Monte Carlo samples from the the above
conditional joint distribution 𝑝𝑌 (𝒚̃𝑡 |𝒉𝑡 ) as the reconciled bottom
forecasts, e.g., in Figure 3, [𝑦𝐷,𝑡 , 𝑦𝐸,𝑡 , 𝑦𝐹,𝑡 , 𝑦𝐺,𝑡 ]. According to Equa-
tion 2 (𝑦𝑡 = 𝑺𝑷𝑦𝑡 ), the bottom forecasts are multiplied by the
aggregation matrix 𝑆 to obtain the coherent probabilistic forecasts
𝒚̃𝑡 of all levels.

Our approach combines prediction and reconciliation into a uni-
fied process using deep parametric models, facilitating the sharing
of information in process described above via global parameters.
Our reconciliation method not only ensures hierarchical coherence
constraints, but also dynamically revises the base forecast via inte-
grating information of all levels, to improve the overall performance.
Unlike current probabilistic method for hierarchical forecasting, we
apply the projection matrix 𝑃 on the conditional joint distribution
of CNF, rather than samples of distribution. In other words, our
model conduct reconciliation in the forecast distribution rather
than just sample points, which makes the estimation exact and
more efficient.

Moreover, our framework can accommodate different loss func-
tions besides log-likelihood, and by sampling from the forecast
distribution, we can also obtain sufficient statistics via the empirical
distribution to facilitate more complicated optimization objectives.

4.2 Training
During training, our loss function is directly computed on the co-
herent forecast samples. Specifically, given D, defined as a batch
of time series 𝑌 := {𝑦1, 𝑦2, ..., 𝑦𝑇 }, and the associated covariates

𝑋 := {𝑥1, 𝑥2, ..., 𝑥𝑇 }, we can maximize the likelihood given by Equa-
tion 9 via SGD using Adam, i.e.

L =
1

|D|𝑇
∏

𝑥1:𝑇,𝑦1:𝑇 ∈D

𝑇∏
𝑡=1

𝑝𝑌 (𝑦𝑡 |𝑦1:𝑡−1;𝑥1:𝑡 , 𝜃, 𝜙,𝜓 )

=
1

|D|𝑇
∏

𝑥1:𝑇,𝑦1:𝑇 ∈D

𝑇∏
𝑡=1

𝑝𝑌 (𝑦𝑡 |ℎ𝑡 , 𝜃, 𝜙,𝜓 )

, (10)

where the globally shared parameters (𝜃 , 𝜙) and 𝜓 are from the
transformer module and the CNF module, respectively.

Please note that we can easily obtain 𝜃 , 𝜙 , and𝜓 for other loss
functions such as quantile loss, CRPS (continuous ranked probabil-
ity score) or any other metrics preferred in the forecasting commu-
nity, as long as we can compute the sufficient statistics from the
Monte Carlo samples {𝑦𝑡 } via the empirical distribution function.

Figure 4: Training Stage. Red dashed line represents multi-
variate autoregressive transformer; Reconciliation via CNF
with bottom-up aggregation matrix is highlighted

4.3 Inference
During inferencing, we can predict using the autoregressive trans-
former in a step-by-step fashion over the time horizon. Specifically,
we first generate the base forecasts 𝑦𝑡 using autoregressive trans-
former for one time step using the covariate vector 𝑥1:𝑡−1 and the
observed value 𝑦1:𝑡−1. Then we can incorporate base forecasts 𝒚̂𝑡
from all levels into CNF as additional condition 𝒉𝑡 in the latent
space to model conditional joint distribution 𝑝𝑌 (𝒚̃𝑡 |𝒉𝑡 ). Lastly, we
directly obtain a set of Monte Carlo samples from the distribution
𝑝𝑌 (𝒚̃𝑡 |𝒉𝑡 ) as the reconciled bottom forecasts, which are multiplied
by the aggregation matrix 𝑆 to obtain the coherent probabilistic
forecasts 𝒚̃𝑡 . Note that we can repeat the above procedure for the
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Figure 5: In themulti-step inference, the dashed line indicates
that the prediction output from the previous step feeds the
inference of the next step via masked attention.

ℎ-period-ahead forecasting to obtain a set of coherent forecasts
{ ˜𝑦𝑇 , ˜𝑦𝑇+1, ..., ˜𝑦𝑇+ℎ}.

5 EXPERIMENTS
In this section, we conduct extensive empirical evaluations on four
real-world hierarchical datasets from different industrial domains,
including three public datasets and one dataset collected from the
application servers of Alipay, which is in the internal review process
for releasing publicly.

5.1 Datasets and Analysis
Datasets. The three public datasets include Tourism [3], Tourism-L
[28], and Traffic [4]. The new dataset is the data traffic collected
from Alipay’s application servers, where our method is deployed
for data traffic forecasting. Three real-world hierarchical datasets
and a dataset of the web traffic from application servers of Alipay
are listed below for our experiments:

• Traffic [4] provides the occupancy rate (between 0 and 1)
of 963 car lanes of San Francisco bay area freeways. We
aggregate sub-hourly data to obtain daily observations for
one year and generate a 207-series hierarchy using the same
aggregation strategy as in [2], which is divided into 4 levels.
Bottom-level contains 200 series, aggregated-levels contain
7 series in total, and the prediction length is 1.

• Tourism [1, 3] includes an 89-series geographical hierarchy
with quarterly observations of Australian tourism flows from
1998 to 2006, which is divided into 4 levels. Bottom-level con-
tains 56 series, aggregated-levels contain 33 series, and the
prediction length is 8. This dataset is frequently referenced
in hierarchical forecasting studies [9, 26].

• Tourism-L [28] is a larger, more detailed version of Tourism,
which contains 555 total series in a grouped structure and
228 observations; This dataset has two hierarchies, i.e., based
on geography and based on purpose-of-travel, respectively,

sharing a common root, which is divided into 4 or 5 lev-
els. Bottom-level contains 76 or 304 series, aggregated-level
contains 175 series, and the prediction length is 12.

• Server-traffic is the data traffic collected from Alipay’s ap-
plication servers over the past 90 days, where our method
is deployed for data traffic forecasting. As shown in Figure
8, this dataset has the three levels: Bottom-level contains 35
series, aggregated-levels contain 4 series and the prediction
length is 8.

Data Analysis. In Figure 6, we plot the relationship between differ-
ent levels of the Australian tourism dataset using seaborn. Country,
states, and zones are the upper-level time series, while regions are
the bottom-level time series. One item (a dot in the Scatterplot)
represents the correlation between two time series.

Figure 6 demonstrates not only non-Gaussian distribution of
data, but also the nonlinear relationship between data at different
levels. Please note that the time series shows nonlinear relationship
among the same level and the non-linearity becomes more obvious
when the levels of the data are further apart.

Figure 6: Plots of pairwise relationship in the Australian
tourism-L dataset using seaborn. The diagonal plots are each
univariate time series’ distributions (histograms). Plots out-
side of the diagonal are Scatterplot analysing correlation
between the two time series. The color of the item represents
the time series of different categories in the same level.

5.2 SOTA Methods and Evaluation Metrics
State-of-the-art Methods. We conduct the performance compar-
ison against state-of-the-art reconciliation algorithms including
MinT [28], ERM [2], and Hier-E2E [22], along with other classical
baselines, including bottom-up (NaiveBU) approach that generates
univariate point forecasts for the bottom-level time series inde-
pendently followed by the aggregation according to the coherent
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constraints to obtain point forecasts for the aggregated series. More
details can be found in Appendix B.

Evalution Metrics. Considering that our method generates proba-
bilistic forecasts instead of point forecasts, it is necessary to evaluate
the corresponding probabilistic accuracy with proper metrics, but
commonly-used Mean Absolute Error (MAE) or Mean Absolute Per-
cent Error (MAPE) cannot be directly used for this purpose. On the
other hand, Continuous Probability Ranked Score (CRPS) generalizes
the MAE for probabilistic measurement, making it one of the most
widely used accuracy metrics for probabilistic forecasts.

In the stage of evaluation, we wiil therefore use the Continuous
Ranked Probability Score (CRPS), which measures the compatibility
of a cumulative distribution function 𝐹−1

𝑡,𝑖
for time series 𝑖 against

the ground-truth observation 𝑦𝑡,𝑖 , to estimate the accuracy of our
forecast distributions. CRPS can be defined as

𝐶𝑅𝑃𝑆 (𝐹𝑡 , 𝑦𝑦) :=
∑︁
𝑖

∫ 1

0
𝑄𝑆𝑞 (𝐹−1𝑡,𝑖 (𝑞), 𝑦𝑡,𝑖 ) 𝑑𝑞 , (11)

where 𝑄𝑆𝑞 is the quantile score for the 𝑞-th quantiles:

𝑄𝑆𝑞 = 2(1{𝑦𝑡,𝑖 ≤ 𝐹−1𝑡,𝑖 (𝑞)} − 𝑞) (𝐹−1𝑡,𝑖 (𝑞) − 𝑦)

We use the discrete version in our experiment, with the integral
in Equation 11 replaced by the weighted sum over the quantile set,
and we use the quantiles ranging from 0.05 to 0.95 in steps of 0.05.

5.3 Details of SOTA Methods
We conduct the performance comparison against state-of-the-art
reconciliation algorithms below:

• ARIMA-NaiveBU and ETS-NaiveBU: NaiveBU generates
univariate point forecasts for the bottom-level time series
independently and then sums them according to the hierar-
chical constraint to obtain point forecasts for the aggregate
series. Specifically, we use ARIMA and ETS with auto-tuning
for base forecast in NaiveBU with the R package hts [7].

• ARIMA-MinT-shr, ARIMA-MinT-ol, ETS-MinT-shr,
ETS-MinT-ols : For MinT, we use the covariance matrix
with shrinkage operator (MinT-shr) and the diagonal covari-
ance matrix corresponding to ordinary least squares weights
(MinT-ols) [28]. In addition, we also use ARIMA and ETS
for auto-tuning of base forecasts in Mint with the R package
hts [7].

• ARIMA-ERM and ETS-ERM: ERM is from Regularized
Regression for Hierarchical Forecasting [2] in related
work discussed in the previous section and we also use
ARIMA and ETS for auto-tuning of base forecasts in ERM
with the R package hts [7].

• N-BEATS-NaiveBU: N-BEATS [18] is an interpretable time
Series forecasting model, which is a deep neural architecture
based on backward and forward residual links and a very
deep stack of fully-connected layers. Also We use the above
NaiveBU method to ensure coherency. The source code is
available at https://github.com/philipperemy/n-beats.

• Transformer-NaiveBU: Transformer [27] is a recently pop-
ular method modeling sequences based on self-attention
mechanism. We use the native transformer implementation

from pytroch. We use the above NaiveBU method to ensure
coherency.

• Informer-NaiveBU: Informer [30] is a probsparse self-
attention mechanism based model to enhance the predic-
tion capacity in the Long sequence time-series forecast-
ing problem, which validates the Transformer-like model’s
potential value to capture individual long-range depen-
dency between long sequence time-series outputs and in-
puts. Also We use the above NaiveBU method to ensure
coherency. The source code is available at https://github.
com/zhouhaoyi/Informer2020.

• DeepAR-NaiveBU: DeepAR [24]is a univariate probabilistic
forecasting model based rnn, which is widely applied in real-
wrold industrial application. Also We use the above NaiveBU
method to ensure coherency. The code is from the Gluonts
implementatin on https://github.com/awslabs/gluon-ts.

• DeepVAR-lowrank-Copula: DeepVAR is a multivariate,
nonlinear generalization of classical autoregressive model
based rnn [23]. We use the vanilla model with no reconcilia-
tion, parameterizing a low-rank plus diagonal convariance
via Copula process. We set the rank of low-rank convari-
ance to be 5. The code is from the Gluonts implementatin on
https://github.com/awslabs/gluon-ts.

• Hier-E2E: In Hier-E2E [22], we use the DeepVAR[23] with
the diagonal covariance matrix to obtain the base forecast,
and use pre-calculated reconciliation matrix 𝑀 to project
into the coherent subspace. The code is from the authors’ im-
plementation on https://github.com/rshyamsundar/gluonts-
hierarchical-ICML-2021.

5.4 Experiment Environment
All experiments run on the Linux server(Ubuntu 16.04) with the
Intel(R) Xeon(R) Silver 4214 2.20GHz CPU, 16GB memory, and the
signle Nvidia V-100 GPU.

5.5 Experiment Results
For evaluation, we generate 200 samples from our probabilistic
model to create an empirical predictive distribution. We run our
method 5 times and report the mean and standard deviation of CRPS
scores. Table 1 shows the performances of different approaches on
the four hierarchical datasets, and we can observe that our proposed
approach (Hier-Transformer-CNF) achieves all best results, with
significant improvements of accuracy on most datasets.

Furthermore the results of experiments proven that effect of
traditional classical statistical methods is far inferior to the deep
learning model based transformer or rnn. By harnessing the power
of deep model, We not only achieve best results but also overcome
the shortcomings of statistical models, which rely on any assump-
tion such as unbiased estimates or Gaussian distribution.

5.6 Ablation Study
To further demonstrate the effectiveness of the designs described
in Section 4, we conduct ablation studies using the variant of our
model and the related models. The results of each aggregation level
are shown in Figure 7.
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method Traffic Tourism Tourism-L Server-Traffic

ARIMA-NaiveBU 0.0808 0.1138 0.1741 0.3834
ETS-NaiveBU 0.0665 0.1008 0.1690 0.3899

ARIMA-MinT-shr 0.0770 0.1171 0.1609 0.2713
ARIMA-MinT-ols 0.1116 0.1195 0.1729 0.2588
ETS-MinT-shr 0.0963 0.1013 0.1627 0.3472
ETS-MinT-ols 0.1110 0.1002 0.1668 0.2652
ARIMA-ERM 0.0466 0.5887 0.5635 0.2320
ETS-ERM 0.1027 2.3755 0.5080 0.2501

N-BEATS-NaiveBU 0.0703 0.1062 0.1912 0.1213
Transformer-NaiveBU 0.0621 0.1102 0.1877 0.1121
Informer-NaiveBU 0.0571 0.0911 0.1601 0.1101
DeepAR-NaiveBU 0.0574±0.0026 0.1023±0.0019 0.1816±0.0088 0.1136±0.0073

DeepVAR-lowrank-Copula 0.0583±0.0071 0.0991±0.0083 0.1781±0.0093 0.1125±0.0041
Hier-E2E 0.0376±0.0060 0.0834±0.0052 0.1520±0.0032 0.0530±0.0127

Hier-Transformer-CNF(𝑶𝒖𝒓𝒔) 0.0217 ± 0.0055 0.0611 ± 0.0077 0.1135 ± 0.0059 0.0314 ± 0.0067
Multivariate Autoregressive Transformer 0.0377 0.0815 0.1471 0.0417

Table 1: CRPS values(lower is better) averaged over 5 runs. We conduct the ablation study in Multivariate Autoregressive
Transformer. State-of-the-art methods except for DeepVAR-lowrank-Copula and Hier-E2E produce consistent results over
multiple runs.

(a) Tourism dataset (b) Traffic dataset

(c) Tourism-L dataset (d) Server traffic dataset

Figure 7: Mean CRPS scores (lower is better) of all aggregation levels in the Tourism, Traffic datasets.

DeepVAR-lowrank-copula is an RNN-based model using the
lowrank Gaussian coupla [23] and Autoregressive Transformer

is based the encoder-decoder transformer architecture [11], enabled
by its multi-head self-attention mechanism to capture both long-
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and short-term dependencies in time series data. Hier-E2E is the
end-to-end model combing DeepVAR(Gaussian distribution) and
projection matrix [22]

It is obvious that transformer-based models outperform RNN-
based models, especially in the upper-level data. The transformer
allows the access to any part of the historic data regardless of tem-
poral distance and is thus capable of generating better conditioning
for NF head, evidenced by our experiments.

The non-Gaussian data distribution and nonlinear correlations
depicted in Figure 7 attest the need for more expressive density
estimators, i.e., CNF, which makes our approach significantly out-
performing other methods especially in the bottom-level data. More-
over, the end-to-end reconciliation method also beats direct predic-
tion model in the forecasting at all levels.

In summary, significant improvements at all levels prove the the
effectiveness of the our approach.

6 INDUSTRIAL APPLICATIONS
Our method is successfully deployed on application servers of Ali-
pay, the world’s leading company of payment technology, to fore-
cast server traffic. Alipay has a giant cluster of application servers
to support its complex financial Internet business, separated into
numerous Internet Data centers (IDC), which is a facility where an
organization or a service provider rely on as computation infras-
tructure. In order to improve the efficiency of resource utilization,
pre-scheduling application services is essential, for which we need
to predict the traffic to facilitate resource management decisions. In
Alipay’s IDCs, the deployment of application services adopts a hi-
erarchical structure. Specifically, each deployment consists of three
levels: the upper layer is call app deployment unit, and the bottom
deployment unit is called zone, which is divided into Gzone, Rzone,
and Czone. Each zone is then divided intomultiple groups, as shown
in Figure 8 below. In practice, the hierarchical prediction for the

Figure 8: A deployment example of Alipay’s application ser-
vice

service traffic at each deployment level facilitates the precise man-
agement and scheduling [29]. In the experiments above as shown
in Table 1, we perform 𝑇 + 8ℎ predictions on the data collected
from real-world servers in Alipay over the past 90 days to verify
the effectiveness of our method. The prediction of server traffic can
be used not only for efficient resource management/allocation in

IDCs, but also for achieving energy savings and reducing carbon
dioxide emissions through server scheduling management [21] to
promote carbon neutrality. Our method was deployed before the
Double 11 shopping festival and according to the certification of
China Environmental United Certification Center (CEC), a reduction
of 394 tons of carbon dioxide and a saving of 640,000 kWh of
electricity were achieved during the shopping festival, marking a
critical step for Alipay’s goal towards carbon neutrality by 2030. Our
forecasting algorithm has been running robustly and contiuously
since then, contributing to the energy efficiency of Alipay’s cloud
service.

7 CONCLUSION
In this paper, we proposed a novel end-to-end approach that tack-
les forecasting and reconciliation simultaneously for hierarchical
time series, without requiring any explicit post-processing step, by
combining autoregressive transformer and conditioned normalizing
flow to generate the coherent probabilistic forecasts. We conducted
extensive empirical evaluations on real-world datasets and demon-
strated the competitiveness of our method under various conditions
against other state-of-the-art methods. Our ablation study proved
the efficacy of every design component we employed. We have
also successfully deployed our method in Alipay as continuous and
robust forecasting services for server traffic prediction to promote
energy efficiency.
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