
TGLib: An Open-Source Library for Temporal
Graph Analysis

Lutz Oettershagen
University of Bonn

Bonn, Germany
lutz.oettershagen@cs.uni-bonn.de

Petra Mutzel
University of Bonn

Bonn, Germany
petra.mutzel@cs.uni-bonn.de

Abstract—We initiate an open-source library for the efficient
analysis of temporal graphs. We consider one of the standard
models of dynamic networks in which each edge has a discrete
timestamp and transition time. Recently there has been a massive
interest in analyzing such temporal graphs. Common computa-
tional data mining and analysis tasks include the computation of
temporal distances, centrality measures, and network statistics
like topological overlap, burstiness, or temporal diameter. To
fulfill the increasing demand for efficient and easy-to-use imple-
mentations of temporal graph algorithms, we introduce the open-
source library TGLIB, which integrates efficient data structures
and algorithms for temporal graph analysis. TGLIB is highly
efficient and versatile, providing simple and convenient C++ and
Python interfaces, targeting computer scientists, practitioners,
students, and the (temporal) network research community.

Index Terms—temporal graph, data mining, centrality, open-
source library

I. INTRODUCTION

TGLIB is an open-source C++ template library with an easy-
to-use Python front-end focusing on efficient temporal graph
analysis tasks. Network data often originates from dynamic
systems that change over time: Links are formed or broken,
such that the topology of the network changes over time.
Temporal graphs capture these changes. A temporal graph is a
graph that changes over time, i.e., each edge has a time stamp
that determines when the edge exists in the graph. Hence, the
topology of the graph changes in discrete time steps. Temporal
graphs are often good models for real-life scenarios due to the
inherently dynamic nature of most real-world activities and
processes. In many situations, events, e.g., communication in
social networks, are time-stamped, such that temporal graphs
naturally arise from the recorded data.

A finite temporal graph consists of a finite set of (static)
vertices and a finite set of temporal edges. A temporal edge
connects two vertices at a discrete availability time, and edge
traversal costs a (usually) non-negative amount of time (called
the transition time). The availability time denotes the time
when an edge is available for transition, and the transition
time defines how long the transition takes.

This work introduces TGLIB, an open-source toolkit for
handling and analyzing temporal graphs. Our library is geared
towards a variety of research communities that often need to
work with increasingly larger temporal graphs. The applica-
tions of temporal graphs are manifold:

Python Library via PyBind11

TGLib - Temporal Graph Library

Data Structures:
- Ordered Edge List
- Incident Lists
- Static Representations

Algorithms:
- Centrality Measures
- Temporal Distance/Path
- Global/Local Properties

uses

Data:
- I/O
- Filtering
- Cleaning

Fig. 1. Overview of the high-level architecture of the TGLIB library. The
data structures and temporal graph algorithms are implemented in efficient
C++. A Python front-end provides easy-to-use access.

–Communication networks are a prime example of the appli-
cation of temporal graphs. Email (or text message) networks
model the (almost) instantaneous communication between the
participants, and have been used to identify different dynamics
of communication as well as properties of the participants [1]–
[3]. Vertices of the network represent the participants and
temporal edges represent each communication.
–Proximity and contact networks record the contacts between
individuals by measuring their proximity. For example, mod-
ern smartphones are ubiquitous and can record the prox-
imity of users to identify contacts or build opportunistic
networks [4], [5]. Several works discuss the spreading of
diseases in contact networks, e.g., [6], [7].
–Social networks, formal or informal, are a fundamental part of
human life. Nowadays, online social networks, like Facebook
or WeChat, host billions of users. In online and offline social
networks, participants join and leave the network over time and
form or end relations with each other. Recent works discuss
the importance of temporal properties, e.g., [8], [9].

There are many more prominent use-cases for temporal
graphs, like modeling transportation networks [10], [11] or
applications in biology, e.g., modeling dynamic protein-protein
interactions [12], [13], and neural brain networks [14].
Contributions: We introduce TGLIB, an open-source tempo-
ral graph library under the permissive MIT license. Our library
focuses on temporal distance and centrality computations and
other local and global temporal graph statistics. TGLIB is
designed for performance and usability by an efficient and
modular C++ implementation of the core data structures
and algorithms and an easy-to-use Python front-end allowing
users and researchers without in-depth (C++) programming

ar
X

iv
:2

20
9.

12
58

7v
1

 [
cs

.D
S]

 2
6

Se
p

20
22

lutz.oettershagen@cs.uni-bonn.de
petra.mutzel@cs.uni-bonn.de

a b

cd

(2, 1)

(5, 2)

(1, 5) (7
, 2
)

(6, 1)

(6, 2)

(8, 4)

Fig. 2. Example of a temporal graph G. At each edge the availability and
transition time is given as pair (t, λ).

a,5

a,2

a,1

b,7 c,6

c,12

d,6

d,8

d,9

0

0

0

0

0

5

1

2

1

2

2

4

Fig. 3. Example for the static time-respecting representation introduced
in [15] of the temporal graphs shown in Figure 2.

experience to use our new library.
Additionally, we offer the first implementations of new

algorithms for the earliest arrival distance using the temporal
graph data structure introduced in [15], a variant of the
fastest path algorithm from [16] for shortest temporal paths, a
top-k harmonic closeness algorithms for shortest temporal path
distance based on the algorithmic ideas of the top-k closeness
algorithm using minimum duration distance [16], and finally,
an algorithm for the temporal edge betweenness based on the
directed line graph representation [17].

II. PRELIMINARIES

A temporal graph G = (V, E) consists of a finite set of
vertices V and a finite set of directed temporal edges E . A
temporal edge e = (u, v, t, λ) consists of the vertices u, v ∈ V ,
availability time (or time stamp) t ∈ N and transition time
λ ∈ N, i.e., e = (u, v, t, λ) ∈ V × V × N2. We model
an undirected temporal graph by a directed temporal graph
using a forward- and a backward-directed edge with equal
time stamps and traversal times for each undirected edge.

We use n = |V | and m = |E| to denote the numbers of
vertices and temporal edges, respectively. The arrival time of
an edge e = (u, v, t, λ) (at vertex v) is t + λ. We use V (G)
to denote the set of vertices of G, the minimal number of
incoming (outgoing) temporal edges over all vertices by δ−min
(δ+min). Similarly, we define δ−max (δ+max) for the maximal
incoming (outgoing) degree. Furthermore, we denote with
N(u) = {v | (u, v, t, λ) ∈ E} the neighborhood of u.
With T (G), we denote the set of all availability times of
edges in G, i.e., T (G) = {t | (u, v, t, λ) ∈ E}. Given a
temporal graph G = (V, E), it is common to restrict algorithms
and computations on G to a given restrictive time interval
I = [a, b] with a, b ∈ N, such that only the temporal subgraph
G′ = (V, E ′) with E ′ = {(u, v, t, λ) ∈ E | t ≥ a and t+λ ≤ b}
needs to be considered.

III. DESIGN GOALS, ARCHITECTURE, AND TEMPORAL
GRAPH DATA STRUCTURES

In the following, we will discuss the design goals and
motivations for the high-level architecture of TGLIB. Fur-
thermore, we introduce the data structures used for efficiently
representing temporal graphs.

A. General Architecture

Figure 1 shows a high-level view of the general architecture
of TGLIB. It consists of two main components: 1) the C++
template library and 2) the Python binding. The C++ library
provides the generic temporal graph data structures and con-
tains the implementations of temporal graph algorithms. Fur-
thermore, the C++ library offers functionality for IO, filtering,
and data cleaning temporal graphs, which are common task
necessary for real-world temporal graph data sets.

The Python interface allows non-C++-experts to use the
efficient algorithms provided by TGLIB. We used Pybind111

for generating the Python binding.

B. Design Goals

We developed TGLIB under the following design goals:
1) Performance and Efficiency: All running-time critical

code is written in a modern C++ template library focusing on
efficiency. Furthermore, many of the algorithms benefit from
straightforward shared-memory parallelization; hence, when
possible, we use OpenMP for loop parallelization and take
advantage of modern shared-memory parallel processing capa-
bilities. The lean temporal graph data structures are templates
based and designed for running time and memory efficiency.

2) Usability and Integration: The C++ template library is
provided as a platform-independent header-only library that
can be easily integrated into existing or new C++ projects.
Furthermore, we provide an easy-to-use Python interface with
clear workflows for temporal graph algorithms and analysis to
make TGLIB widely available to researchers and practitioners.

3) Exentability, Reuseability, and Sustainability: The C++
source code of TGLIB is based on a generic object-oriented
modular designed to be easily extendable and reusable. To
this end, we use class templates for the temporal graph
data structures to allow extension with customized data. For
example, weighted temporal graphs or temporal graphs with
time-dependent node labels can be realized by providing
corresponding edge or node datatypes. Our implementation
is fully documented, and we use unit tests and static code
verification to ensure correctness and sustainability [18].

C. Temporal Graph Data Structures

We implemented the temporal graph data structures listed
in Table I. The temporal graph data structures are provided as
generic class templates. Table I shows the worst-case sizes of
the data structures using the implemented default classes. In
the following, we discuss the implemented data structures.

1 https://github.com/pybind/pybind11

https://github.com/pybind/pybind11

TABLE I
OVERVIEW OF THE TEMPORAL GRAPH DATA STRUCTURES.

Name Edge Type Size Reference

Temporal Edge Stream (STREAM) Temporal O(m) [19]
Edge Incidence Lists (ILISTS) Temporal O(n+m) [16]
Time-Respecting Static Graph (TRS) Static O(n+m) [15]
Directed Line Graph (DLG) Static O(m2) [17]
Aggregated Graph (AGGR) Static O(n2) [20]

TABLE II
OVERVIEW OF THE IMPLEMENTED ALGORITHMS.

Type Algorithm Data Structure Reference

Distance

Earliest Arrival/
Latest Departure

STREAM [19]
ILISTS [21], [22]
TRS New

Min. Transition Sum/
Min. Hops

STREAM [19]
ILISTS New
TRS [15]

Fastest
STREAM [19]
ILISTS [16], [23]
TRS [15]

Centrality

(In/Out-)Degree STREAM [14]
ILISTS [14]

Temporal Closeness STREAM/ILISTS/TRS [24]
Top-k Closeness (Min. duration) ILISTS [16], [23]
Top-k Closeness (Shortest) ILISTS New
Temporal Edge Betweeness DLG New
Temporal Katz STREAM [25]
Temporal PageRank STREAM [26]
Temporal Walk Centrality STREAM [27]

Global/Local
Properties

Burstiness (Edges) STREAM/ILISTS [28]
Burstiness (Nodes) STREAM/ILISTS [28]
Temporal Clustering Coeff. STREAM/ILISTS [29]
Temporal Diameter STREAM/ILISTS/TRS [20]
Temporal Efficiency STREAM/ILISTS/TRS [29]
Topological Overlap STREAM/ILISTS [30], [31]

1) Temporal Edge Streams (STREAM): The temporal graph
is given as a sequence of its m edges, chronologically ordered
by the availability time of the edges in increasing order, with
ties being broken arbitrarily [19]. This representation is often
natural when events represented by the edges are sequentially
recorded over time. Algorithms for temporal edge streams
usually pass over the edges in forward or backward sequential
order and are often very efficient. However, the STREAM data
structure can be disadvantageous for local computations, e.g.,
if we are interested in the immediate neighborhood of a single
vertex, as we cannot directly access these neighbors.

2) Edge Incidence Lists (ILISTS): Here, the temporal graph
consists of a set of temporal vertices, and each vertex has a
list of temporal edges to its neighbors [16]. The advantage of
this representation is the local access to neighbors of a node,
which is not directly possible in the temporal edge stream
representation.

3) Static Expansions: Various static representations of tem-
poral graphs offer different trade-offs between the size of the
resulting static graph and the loss of temporal information. We
implemented the following versions:

a) Time-Respecting Static Graph (TRS): This represen-
tation was introduced in [15] and is an improved version

of a data structure from [19]. Here, the temporal graph is
transformed into a static, i.e., non-temporal, graph. The time-
respecting static graph representation S(G) = Gs = (Vs, Es)
of a temporal graph G = (V, E) is defined as follows. First, let
Vo(u) = {(u, t) | (u, v, t, λ) ∈ E}, and tm(w) = max{t+ λ |
(v, w, t, λ)} if w has at least one incoming temporal edge. We
define V ′(u) = Vo(u) ∪ {(u, tm(u))} (or V ′(u) = Vo(u) if
u does not have an incoming edge) and Vs =

⋃
u∈V V

′(u).
For each temporal edge (u, v, t, λ) ∈ E , we introduce a with
λ weighted static edge ((u, t), (v, t′)) where t′ is the smallest
arrival time at v larger or equal to t + λ. Furthermore, for
each u ∈ V , the vertices in V ′(u) are connected with zero
weighted edges in ascending order. Figure 3 shows the TRS
of the temporal graph shown in Figure 2.

b) Directed Line Graph (DLG): The directed line graph
expansion has been previously used for survivability and
reliability analysis [32], [33]. In [7], [17], the authors used
the DLG for lifting static graph kernels to the temporal
domain. In a recent work [27], the authors use the DLG for
algebraic weighted walk counting. Given a temporal graph
G = (V, E), the directed line graph DL(G) = (V ′, E′) is
the directed graph, where every temporal edge (u, v, t, λ) in
E is represented by a vertex ntuv , and there is an edge from
ntuv to nsxy if v = x and t+ λ ≤ s.

c) Aggregated Static Graph (AGGR): Given a temporal
graph G, removing all time stamps and traversal times, and
merging resulting multi-edges, we obtain the aggregated, or
underlying static, graph A(G) = (V,Es) with Es = {(u, v) |
(u, v, t, λ) ∈ E}. The edges can be weighted depending on the
number of temporal edges, e.g., using the contact frequency,
i.e., φ((u, v)) = |{(u, v, t, λ) ∈ E}|. The aggregated graph
can be much smaller than the temporal graph as its number of
edges is in O(n2). However, it does not preserve the temporal
information of the network.

IV. IMPLEMENTED ALGORITHMS

Table II gives an overview of the implemented algorithms
and the underlying data structures. All implemented algorithms
can be restricted to only consider a given time interval I
without increasing the running times. In the following, we
discuss the implemented algorithms.

A. Temporal Paths, Reachability, and Distances

Finding temporal paths, deciding reachability, and deter-
mining temporal distances are essential tasks in various ap-
plications and scenarios, e.g., in the computation of temporal
centrality measures [16], [34], solving time-dependent trans-
portation problems [35]–[37], or in the simulation and analysis
of epidemics [38], [39].

Definition 1. A temporal walk in a temporal graph G is
an alternating sequence (v1, e1, . . . , ek, vk+1) of vertices and
temporal edges connecting consecutive vertices where for
1 ≤ i < k, ei = (vi, vi+1, ti, λi) ∈ E , and ei+1 =
(vi+1, vi+2, ti+i, λi+1) ∈ E the time ti + λi ≤ ti+1 holds.
A temporal path P is a temporal walk in which each vertex is
visited at most once.

For notational convenience, we omit vertices. The length of
a temporal walk ω is the number of edges it contains, and we
denote it with |ω|. Let ω = (e1, . . . , e`) be a temporal walk
in a temporal graph G. The starting time of ω is s(ω) = t1,
the arrival time is a(ω) = t`+λ`, and the duration is d(ω) =
a(ω)− s(ω). Finally, we define l(ω) =

∑`
i=1 λi.

For example, in Figure 2, there are three paths between
vertices a and d. The first one consists of only the edge
P1 = ((a, d, 1, 5)) and with d(P1) = 5. The second is
P2 = ((a, b, 2, 1), (b, d, 7, 2)) with d(P2) = 7. And, path three
P3 = ((a, b, 5, 2), (b, d, 7, 2)) with d(P3) = 4.

There are several optimality criteria for temporal paths used
in the literature, and we distinguish the following.

Definition 2. Let G be a temporal graph and P be the set of
all temporal paths in G. A (s, z)-path2 P ∈ P is

• an earliest arrival path if there is no other (s, z)-path
P ′ ∈ P with a(P ′) < a(P),

• a latest departure path if there is no other (s, z)-path
P ′ ∈ P with s(P ′) > s(P),

• a minimum duration, or fastest, path if there is no other
(s, z)-path P ′ ∈ P with d(P ′) < d(P),

• a shortest path if there is no other (s, z)-path P ′ ∈ P
with l(P ′) < l(P), and

• a minimum hops path if there is no other (s, z)-path
P ′ ∈ P with |P ′| < |P |.

For the example in Figure 2, P3 is the only fastest (a, d)-
path. Notice that the subpath P ′3 = ((a, b, 5, 2)) is not a
fastest (a, b)-path. The only fastest (a, b)-path consists of edge
(a, b, 2, 1) and has a duration of one.

We provide algorithms for determining the temporal dis-
tances of Definition 2 for the different data structures, see Ta-
ble II. The reason for providing the algorithms for different
data structures is that depending on the topology of the graph,
different algorithms can be more efficient than others, see,
e.g., [15], [16], [19]. We additionally introduce a new shortest
paths algorithm for the ILISTS data structure and a new
earliest arrival algorithm for the TRS data structure3. For each
temporal distance, we provide algorithms to obtain an optimal
temporal path and the temporal diameter, which is defined
as the maximum optimal temporal distance between any two
(reachable) vertices in the network [40].

B. Centrality Measures

The centrality of a node (edge) in a network quantifies its
structural importance. Various functions can be used to mea-
sure node (edge) centrality by assigning values corresponding
to some measurement of importance to each node (edge),
where the informative value must be assessed based on a
research question. For introductions of centrality approaches,
see, e.g., [41]–[44]. TGLIB provides the following centrality
measures designed explicitly for temporal graphs.

2 We use z instead of t as the target vertex because we use t to denote a
time stamp. 3 A formal description of the algorithms with correctness and
complexity proofs will be in an extended version of this paper.

1) Temporal Closeness: Due to the differences in reach-
ability and optimality in temporal graphs, several versions
of temporal closeness have been suggested, see, e.g., [16],
[45], [46]. Using the optimal distance computations for earliest
arrival paths, fastest paths, etc., we provide four different
versions of harmonic temporal closeness defined as

C(u) =
∑

v 6=u∈V

1

d(u, v)
,

where we define 1/∞ = 0 for non-reachable vertices. Fur-
thermore, we provide the top-k approach introduced in [16]
for finding the k highest closeness centrality values and the
corresponding vertices. The authors of [16] only introduced
their top-k algorithm for harmonic closeness wrt. to the
minimum duration distance. We provide a new additional
implementation for the minimum transition times distance.

2) Temporal Edge Betweenness: Similar to the static edge
betweenness [47], the temporal edge betweenness is an edge
centrality measure and quantifies the importance of the tempo-
ral edges in terms of the shortest temporal paths crossing the
temporal edge. It can be computed by counting the shortest
paths in the directed line graph representation due to the one-
to-one mapping of walks in G and DL(G) [17].

3) Temporal Katz Centrality: The Katz centrality intro-
duced in [48] measures vertex importance in terms of the
number of random walks starting (or arriving) at a vertex,
down-weighted by their length. The authors of [25], [49] adapt
the walk-based Katz centrality to temporal graphs.

4) Temporal PageRank Centrality: Rozenshtein and Gio-
nis [26] incorporate the temporal character in the definition of
the static PageRank originally introduced by [50]. They obtain
a temporal PageRank by replacing walks with temporal walks.

5) Temporal Walk Centrality: Temporal Walk Centrality
is a recently proposed centrality measure that aims to rank
the vertices according to their ability to obtain and distribute
information [27].

C. Further Local and Global Properties

Moreover, we implemented the following local and global
temporal graph properties.

1) Burstiness: Burstiness measures how much a sequence
of contacts τ (of a single node or between a pair of nodes)
deviates from the memoryless random Poisson process [20].
It is defined as

B(τ) =
στ −mτ

στ +mτ
∈ [−1, 1],

where στ and mτ denote the standard deviation and mean of
the inter-contact times τ , respectively [28]. A value close to
one indicates a very bursty sequence, and a value close to
minus one a more periodic sequence.

2) Temporal Clustering Coefficient: The temporal cluster-
ing coefficient is defined as

CC(u) =

∑
t∈T (G) πt(u)

|T (G)|
(|N(u)|

2

) ,
where πt(u) = |{(v, w, t, λ) ∈ E | v, w ∈ N(u)}| [29].

3) Temporal Efficiency: The temporal efficiency is a global
statistic based on the temporal closeness values of the
nodes [29]. It is defined as

Teff(G) =
1

n(n− 1)

∑
u∈V (G)

∑
v 6=u∈V (G)

1

d(u, v)

with d(u, v) being a temporal distance and 1/∞ = 0 in case
of non-reachable vertices.

4) Topological Overlap: The topological overlap of a node
is defined as

Tto(u) =
1

T (G)

T (G)∑
t=1

∑
v∈N(u) φ

t
uvφ

t+1
uv√∑

v∈N(u) φ
t
uv

∑
v∈N(u) φ

t+1
uv

,

where φtuv = 1 iff. there exists a temporal edges between u
and v at time t and zero otherwise [30], [31]. In case that the
denominator equals one, we define Tto(u) = 1. And the global
topological overlap is defined as Tto(G) = 1

n

∑
u∈V Tto(u).

The topological overlap lies in the range between zero and
one. A value close to zero means many edges change between
consecutive time steps, and a value close to one means there
are often only a few changes.

V. COMPARISON TO RELATED SOFTWARE

There are several popular graph libraries designed for
conventional static graphs, e.g., Networkit [51], OGDF [52],
LEMON [53], or Boost graph [54]. However, they are not de-
signed to handle the peculiarities of temporal graphs, e.g., they
do not support algorithms that respect the temporal restrictions
in temporal walks and paths. The SNAP library provides
various algorithms for temporal graphs, like counting specific
temporal motifs [55]. We are not aware of a dedicated C++
library for temporal graphs. For Python, the Teneto library is a
dedicated temporal graph library supporting various analytical
methods [14]. However, the library focuses on analyzing small
networks obtained from fMRI brain scans and does not support
transition times on the edges. Moreover, it does not perform
well on mid-size to large temporal graphs as its mainly
based on Python code and matrix-based computations. Finally,
Teneto is published under the, compared to the MIT license,
more restrictive GNU GPL3 license.

VI. EXAMPLE USE-CASE

For this example use-case, we load two real-world data sets
and compare different variants of temporal closeness. The first
one is the AskUbuntu, a network consisting of interactions
on the stack exchange website Ask Ubuntu [55]. The second
data set is the Enron email network between employees of
a company [56]. To obtain the basic statistics, we load the
temporal graph and call the get_statistics function
(see Listing 1). Table III shows (a subset) of the returned
statistics. Note that Teneto is unable to load these data sets due
to its temporal graph representation as a sequence of adjacency
matrices and the resulting out-of-memory error (6.13 EiB
for Enron). Next, we compute the closeness centrality with
respect to minimum duration distance and earliest arrival time.

TABLE III
OVERVIEW OF THE TEMPORAL GRAPH STATISTICS.

Data set |V | |E| |T (G)| |Es| δ−max δ+max

AskUbuntu 159 316 964 437 960 866 596 933 4 926 8 729
Enron 87 101 1 147 126 220 312 321 288 6 165 32 613

We compare the obtained rankings using Kendall’s τ rank
correlation using SciPy4. We obtain correlations of 0.79 for
AskUbuntu and 0.94 for Enron, showing that the two types of
temporal closeness are strongly correlated in both graphs.

1 import pytglib as tgl # tglib
2 import scipy.stats as ss # for Kendall’s tau

↪→ correlation
3 tgs = tgl.load_ordered_edge_list("datasetname")
4 stats = tgl.get_statistics(tgs)
5 print(stats)
6 closeness_fastest = tgl.temporal_closeness(tgs,

↪→ tgl.Distance_Type.Fastest)
7 closeness_ea = tgl.temporal_closeness(tgs, tgl.

↪→ Distance_Type.Earliest_Arrival)
8 tau, p_value = ss.kendalltau(closeness_fastest,

↪→ closeness_ea)

Listing 1. Example Python use-case code

VII. OPEN-SOURCE DEVELOPMENT AND LICENSE

TGLIB free software licensed under the permissive MIT
License. It is available at https://gitlab.com/tgpublic/tglib. We
aim to encourage a diverse community, including network re-
searchers, data mining practitioners, and algorithm engineers,
to use TGLIB and contribute to the open-source development.

VIII. CONCLUSION AND FUTURE WORK

We introduced the open-source toolkit TGLIB, a C++ library
for efficient temporal graph analysis featuring an easy-to-
use and accessible Python front-end. So far, we have imple-
mented a wide range of algorithms for distance, centrality, and
analytical computations based on various efficient temporal
graph data structures. TGLIB offers researchers, practitioners,
and students convenient access to temporal graph algorithms.
Furthermore, it offers a unified and accessible approach for
reproducibility and comparability. We are actively working to
integrate further and future methods and algorithms into our
library. Using the permissive MIT license, we hope that TGLIB
will be used and extended by the temporal graph community.

REFERENCES

[1] J. Candia, M. C. González, P. Wang, T. Schoenharl, G. Madey, and
A.-L. Barabási, “Uncovering individual and collective human dynamics
from mobile phone records,” Journal of physics A: mathematical and
theoretical, vol. 41, no. 22, p. 224015, 2008.

[2] J.-P. Eckmann, E. Moses, and D. Sergi, “Entropy of dialogues creates
coherent structures in e-mail traffic,” Proceedings of the National
Academy of Sciences, vol. 101, no. 40, pp. 14 333–14 337, 2004.

[3] P. Holme, C. R. Edling, and F. Liljeros, “Structure and time evolution
of an internet dating community,” Social Networks, vol. 26, no. 2, pp.
155–174, 2004.

[4] C. Avin, M. Kouckỳ, and Z. Lotker, “How to explore a fast-changing
world (cover time of a simple random walk on evolving graphs),” in
International Colloquium on Automata, Languages, and Programming.
Springer, 2008, pp. 121–132.

4 https://scipy.org/

https://gitlab.com/tgpublic/tglib
https://scipy.org/

[5] A. Chaintreau, A. Mtibaa, L. Massoulié, and C. Diot, “The diameter
of opportunistic mobile networks,” in Proceedings of the 2007 ACM
Conference on Emerging Network Experiment and Technology, CoNEXT,
J. Kurose and H. Schulzrinne, Eds. ACM, 2007, p. 12.

[6] M. Ciaperoni, E. Galimberti, F. Bonchi, C. Cattuto, F. Gullo, and
A. Barrat, “Relevance of temporal cores for epidemic spread in temporal
networks,” Scientific reports, vol. 10, no. 1, pp. 1–15, 2020.

[7] L. Oettershagen, N. M. Kriege, C. Morris, and P. Mutzel, “Classifying
dissemination processes in temporal graphs,” Big Data, vol. 8, no. 5,
pp. 363–378, 2020.

[8] S. Hanneke and E. P. Xing, “Discrete temporal models of social net-
works,” in ICML Workshop on Statistical Network Analysis. Springer,
2006, pp. 115–125.

[9] A. Moinet, M. Starnini, and R. Pastor-Satorras, “Burstiness and aging
in social temporal networks,” Physical review letters, vol. 114, no. 10,
p. 108701, 2015.

[10] R. Gallotti and M. Barthelemy, “The multilayer temporal network of
public transport in great britain,” Sci. data, vol. 2, no. 1, pp. 1–8, 2015.

[11] N. Huynh and J. Barthelemy, “A comparative study of topological
analysis and temporal network analysis of a public transport system,”
International Journal of Transportation Science and Technology, 2021.

[12] S. Lebre, J. Becq, F. Devaux, M. P. Stumpf, and G. Lelandais, “Statistical
inference of the time-varying structure of gene-regulation networks,”
BMC systems biology, vol. 4, no. 1, pp. 1–16, 2010.

[13] T. M. Przytycka, M. Singh, and D. K. Slonim, “Toward the dynamic
interactome: it’s about time,” Briefings in bioinformatics, vol. 11, no. 1,
pp. 15–29, 2010.

[14] W. H. Thompson, P. Brantefors, and P. Fransson, “From static to
temporal network theory: Applications to functional brain connectivity,”
Network Neuroscience, vol. 1, no. 2, pp. 69–99, 2017.

[15] S. Gheibi, T. Banerjee, S. Ranka, and S. Sahni, “An effective data struc-
ture for contact sequence temporal graphs,” in 2021 IEEE Symposium
on Computers and Communications (ISCC). IEEE, 2021, pp. 1–8.

[16] L. Oettershagen and P. Mutzel, “Efficient top-k temporal closeness
calculation in temporal networks,” in IEEE International Conference
on Data Mining (ICDM). IEEE, 2020, pp. 402–411.

[17] L. Oettershagen, N. M. Kriege, C. Morris, and P. Mutzel, “Temporal
graph kernels for classifying dissemination processes,” in SIAM Interna-
tional Conference on Data Mining (SDM). SIAM, 2020, pp. 496–504.

[18] S. Roth, Clean C++: Sustainable Software Development Patterns and
Best Practices with C++ 17. Apress, 2017.

[19] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu, “Path problems in
temporal graphs,” Proc. VLDB End., vol. 7, no. 9, pp. 721–732, 2014.

[20] P. Holme and J. Saramäki, “Temporal networks,” Physics reports, vol.
519, no. 3, pp. 97–125, 2012.

[21] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[22] B. Bui-Xuan, A. Ferreira, and A. Jarry, “Computing shortest, fastest,
and foremost journeys in dynamic networks,” International Journal of
Foundations of Computer Science, vol. 14, no. 02, pp. 267–285, 2003.

[23] L. Oettershagen and P. Mutzel, “Computing top-k temporal closeness in
temporal networks,” KAIS, pp. 1–29, 2022.

[24] N. Santoro, W. Quattrociocchi, P. Flocchini, A. Casteigts, and F. Am-
blard, “Time-varying graphs and social network analysis: Temporal
indicators and metrics,” arXiv preprint arXiv:1102.0629, 2011.

[25] F. Béres, R. Pálovics, A. Oláh, and A. A. Benczúr, “Temporal
walk based centrality metric for graph streams,” Applied Network
Science, vol. 3, no. 1, pp. 32:1–32:26, 2018. [Online]. Available:
https://doi.org/10.1007/s41109-018-0080-5

[26] P. Rozenshtein and A. Gionis, “Temporal pagerank,” in ECML PKDD,
ser. LNCS, vol. 9852. Springer, 2016, pp. 674–689.

[27] L. Oettershagen, P. Mutzel, and N. M. Kriege, “Temporal walk central-
ity: Ranking nodes in evolving networks,” in Proceedings of the ACM
Web Conference 2022, 2022, pp. 1640–1650.

[28] K.-I. Goh and A.-L. Barabási, “Burstiness and memory in complex
systems,” EPL (Europhysics Letters), vol. 81, no. 4, p. 48002, 2008.

[29] J. Tang, M. Musolesi, C. Mascolo, and V. Latora, “Temporal distance
metrics for social network analysis,” in Proceedings of the 2nd ACM
workshop on Online social networks, 2009, pp. 31–36.

[30] A. Clauset and N. Eagle, “Persistence and periodicity in a dynamic
proximity network,” arXiv preprint arXiv:1211.7343, 2012.

[31] J. Tang, S. Scellato, M. Musolesi, C. Mascolo, and V. Latora, “Small-
world behavior in time-varying graphs,” Physical Review E, vol. 81,
no. 5, p. 055101, 2010.

[32] G. Khanna, S. K. Chaturvedi, and S. Soh, “Two-terminal reliability
analysis for time-evolving and predictable delay-tolerant networks,”
Recent Advances in Electrical & Electronic Engineering, vol. 13, no. 2,
pp. 236–250, 2020.

[33] Q. Liang and E. Modiano, “Survivability in time-varying networks,”
IEEE Trans. on Mobile Computing, vol. 16, no. 9, pp. 2668–2681, 2016.

[34] D. Braha and Y. Bar-Yam, “Time-dependent complex networks: Dy-
namic centrality, dynamic motifs, and cycles of social interactions,” in
Adaptive Networks. Springer, 2009, pp. 39–50.

[35] M. Gendreau, G. Ghiani, and E. Guerriero, “Time-dependent routing
problems: A review,” Computers & operations research, vol. 64, pp.
189–197, 2015.

[36] A. Idri, M. Oukarfi, A. Boulmakoul, K. Zeitouni, and A. Masri, “A new
time-dependent shortest path algorithm for multimodal transportation
network,” Procedia Computer Science, vol. 109, pp. 692–697, 2017.

[37] E. Pyrga, F. Schulz, D. Wagner, and C. Zaroliagis, “Efficient models
for timetable information in public transportation systems,” Journal of
Experimental Algorithmics (JEA), vol. 12, pp. 1–39, 2008.

[38] J. Enright and R. R. Kao, “Epidemics on dynamic networks,” Epidemics,
vol. 24, pp. 88–97, 2018.

[39] H. H. K. Lentz, A. Koher, P. Hövel, J. Gethmann, C. Sauter-Louis,
T. Selhorst, and F. J. Conraths, “Disease spread through animal move-
ments: a static and temporal network analysis of pig trade in germany,”
PloS one, vol. 11, no. 5, p. e0155196, 2016.

[40] M. Calamai, P. Crescenzi, and A. Marino, “On computing the diam-
eter of (weighted) link streams,” in Intl. Symposium on Experimental
Algorithms. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[41] K. Das, S. Samanta, and M. Pal, “Study on centrality measures in social
networks: a survey,” Social Network Analysis and Mining, vol. 8, no. 1,
p. 13, 2018.

[42] A. Landherr, B. Friedl, and J. Heidemann, “A critical review of cen-
trality measures in social networks,” Business & Information Systems
Engineering, vol. 2, no. 6, pp. 371–385, 2010.

[43] F. A. Rodrigues, “Network centrality: an introduction,” in A Mathemat-
ical Modeling Approach from Nonlinear Dynamics to Complex Systems.
Springer, 2019, pp. 177–196.

[44] A. Saxena and S. Iyengar, “Centrality measures in complex networks:
A survey,” CoRR, vol. abs/2011.07190, 2020. [Online]. Available:
https://arxiv.org/abs/2011.07190

[45] R. K. Pan and J. Saramäki, “Path lengths, correlations, and centrality in
temporal networks,” Physical Review E, vol. 84, no. 1, p. 016105, 2011.

[46] P. Crescenzi, C. Magnien, and A. Marino, “Finding top-k nodes for
temporal closeness in large temporal graphs,” Algorithms, vol. 13, no. 9,
p. 211, 2020.

[47] U. Brandes, “On variants of shortest-path betweenness centrality and
their generic computation,” Social networks, vol. 30, no. 2, pp. 136–
145, 2008.

[48] L. Katz, “A new status index derived from sociometric analysis,”
Psychometrika, vol. 18, no. 1, pp. 39–43, 1953.

[49] P. Grindrod, M. C. Parsons, D. J. Higham, and E. Estrada, “Communi-
cability across evolving networks,” Physical Review E, vol. 83, no. 4,
p. 046120, 2011.

[50] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank
citation ranking: Bringing order to the web.” Technical Report 1999-66,
November 1999, previous number = SIDL-WP-1999-0120. [Online].
Available: http://ilpubs.stanford.edu:8090/422/

[51] C. L. Staudt, A. Sazonovs, and H. Meyerhenke, “Networkit: A tool
suite for large-scale complex network analysis,” Network Science, vol. 4,
no. 4, pp. 508–530, 2016.

[52] M. Chimani, C. Gutwenger, M. Jünger, G. W. Klau, K. Klein, and
P. Mutzel, “The open graph drawing framework (ogdf).” Handbook of
graph drawing and visualization, vol. 2011, pp. 543–569, 2013.

[53] B. Dezső, A. Jüttner, and P. Kovács, “Lemon–an open source c++ graph
template library,” Electronic Notes in Theoretical Computer Science, vol.
264, no. 5, pp. 23–45, 2011.

[54] J. Siek, L.-Q. Lee, A. Lumsdaine et al., The boost graph library.
Pearson India, 2002, vol. 243.

[55] A. Paranjape, A. R. Benson, and J. Leskovec, “Motifs in temporal
networks,” in Proceedings of the Tenth ACM International Conference
on Web Search and Data Mining, 2017, pp. 601–610.

[56] B. Klimt and Y. Yang, “The enron corpus: A new dataset for email
classification research,” in European Conference on Machine Learning.
Springer, 2004, pp. 217–226.

https://doi.org/10.1007/s41109-018-0080-5
https://arxiv.org/abs/2011.07190
http://ilpubs.stanford.edu:8090/422/

	I Introduction
	II Preliminaries
	III Design Goals, Architecture, and Temporal Graph Data Structures
	III-A General Architecture
	III-B Design Goals
	III-B1 Performance and Efficiency
	III-B2 Usability and Integration
	III-B3 Exentability, Reuseability, and Sustainability

	III-C Temporal Graph Data Structures
	III-C1 Temporal Edge Streams (Stream)
	III-C2 Edge Incidence Lists (Ilists)
	III-C3 Static Expansions

	IV Implemented Algorithms
	IV-A Temporal Paths, Reachability, and Distances
	IV-B Centrality Measures
	IV-B1 Temporal Closeness
	IV-B2 Temporal Edge Betweenness
	IV-B3 Temporal Katz Centrality
	IV-B4 Temporal PageRank Centrality
	IV-B5 Temporal Walk Centrality

	IV-C Further Local and Global Properties
	IV-C1 Burstiness
	IV-C2 Temporal Clustering Coefficient
	IV-C3 Temporal Efficiency
	IV-C4 Topological Overlap

	V Comparison to Related Software
	VI Example Use-Case
	VII Open-Source Development and License
	VIII Conclusion and Future Work
	References

