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Abstract—Often, recommendation systems employ continuous
training, leading to a self-feedback loop bias in which the system
becomes biased toward its previous recommendations. Recent
studies have attempted to mitigate this bias by collecting small
amounts of unbiased data. While these studies have successfully
developed less biased models, they ignore the crucial fact that the
recommendations generated by the model serve as the training
data for subsequent training sessions. To address this issue,
we propose a framework that learns an unbiased estimator
using a small amount of uniformly collected data and focuses
on generating improved training data for subsequent training
iterations. To accomplish this, we view recommendation as a
contextual multi-arm bandit problem and emphasize on exploring
items that the model has a limited understanding of. We introduce
a new offline sequential training schema that simulates real-world
continuous training scenarios in recommendation systems, offer-
ing a more appropriate framework for studying self-feedback
bias. We demonstrate the superiority of our model over state-of-
the-art debiasing methods by conducting extensive experiments
using the proposed training schema.

Index Terms—Recommendation Systems, Self-feedback Loop
Bias, Contextual Multi-Arm Bandit, Continuous Training

I. INTRODUCTION

Recommendation systems are built by training a model on
a dataset D that contains historical interactions between users
and items. This dataset is typically obtained from a previously
deployed recommendation algorithm; hence learning from this
data may introduce bias into the model. The goal is to learn
a model represented by parameters θ that can estimate the
probability p(r|a, c). Here, r indicates whether a user will
show interest in the suggested item a, and c includes all
relevant contextual information associated with the user-item
interaction. The optimal parameters θ are typically obtained
through point estimation techniques. This is typically done by
minimizing a loss function over the dataset:

θ∗ = argmin
θ

|D|∑
i=1

wil(ri, r̂i(θ)) (1)

Here, ri represents the true user feedback, while r̂i(θ) repre-
sents the model’s prediction. The term wi denotes the sample
weight, which is often set as 1

|D| , providing equal weight
to each sample in the dataset. However, relying solely on
estimating parameter θ based on (1) can result in a biased
model towards the training data.

This bias, known as the self-feedback loop [1], persists
even when an optimal algorithm is utilized for dataset col-
lection. When the learned model encounters novel items or
contexts not present in the training data, it often provides
suboptimal recommendations with high confidence based on
its acquired knowledge. As a result, these recommendations
generate biased training data for subsequent iterations, thereby
perpetuating bias in subsequent models.

Recent research focused on addressing the self-feedback
loop in recommendation systems can be categorized into two
groups. The first group, termed debiasing methods, encom-
passes methods that aim to acquire an unbiased estimation
of parameter θ from the initially biased dataset. The second
group, denoted as uncertainty-aware methods, emphasizes the
inherent nature of continuous training in recommendation
systems. These approaches strive to generate recommendations
in a non-greedy way that produce less biased training data for
subsequent training rounds.

Debiasing methods aim to mitigate bias in recommenda-
tion models trained on biased datasets. One common ap-
proach to achieve unbiased models is by incorporating Inverse
Propensity Scores (IPS) as sample weights in (1) [2]–[4].
However, these methods may face challenges associated with
high variance, especially when the data collection algorithm
differs significantly from the learning algorithm. Recent stud-
ies propose methods that leverage information from uni-
formly recommended items to learn unbiased models [5]–[7].
However, the amount of uniformly collected interactions in
recommendation systems is often limited due to its negative
impact on user satisfaction. The well-known epsilon-greedy
algorithm exemplifies such an approach by utilizing a small
amount of randomly suggested items to learn an unbiased
model. Nonetheless, debiasing methods often prioritize recom-
mending items with the highest expected feedback in a greedy
manner without considering the impact on the composition of
subsequent training datasets.

Uncertainty-aware methods are designed to optimize long-
term user satisfaction by generating recommendations that
contribute to the creation of enhanced training data. These
methods typically integrate exploration mechanisms that pri-
oritize items with higher uncertainty, ensuring that the model is
exposed to recommendations it has limited knowledge about.

ar
X

iv
:2

31
0.

04
85

5v
1 

 [
cs

.L
G

] 
 7

 O
ct

 2
02

3



This helps mitigate bias during continuous training iterations
[8]–[10]. However, these methods overlook the unbiased na-
ture of uniformly collected data as a valuable source for
debiasing in recommendation systems.

To address these limitations, we introduced the Epsilon non-
Greedy (EnG) framework, which combines the advantages
of both groups above. Our EnG framework overcomes the
limitations by achieving unbiased recommendations through
learning on biased datasets and generating recommendations
that can serve as less biased training data for subsequent
training iterations, ultimately maximizing long-term user sat-
isfaction.

Given the widespread use of deep neural networks in state-
of-the-art recommendation algorithms [11]–[13], we adopt
them as our framework’s underlying backbone. To achieve
an unbiased recommendation system, we propose a teacher-
student architecture with a novel training loss function that
effectively leverages information from a small quantity of
uniformly collected data. To incorporate systematic explo-
ration into our framework, we view the recommendation as
a contextual multi-arm bandit problem. We integrate Thomp-
son sampling into our framework by employing the dropout
technique, enabling us to recommend items the model has
limited knowledge about. By incorporating this approach,
the resulting interactions serve as improved training data for
subsequent training sessions, ultimately enhancing long-term
user satisfaction.

The conventional training schema commonly employed in
recent studies does not accurately reflect the debiasing capa-
bilities of recommendation systems. We propose a novel of-
fline sequential training schema that simulates the continuous
training process observed in real-world recommendation sys-
tems. Using this training schema, we perform comprehensive
experiments and demonstrate that our proposed framework
exhibits superior debiasing power compared to state-of-the-art
methods. This paper presents several key contributions:

I EnG Framework: We introduce the EnG framework,
which enables unbiased recommendations and generates
training data with a reduced bias for subsequent train-
ing iterations. By utilizing a teacher-student architecture
trained with the proposed loss function, the framework
facilitates the development of an unbiased learner. Addi-
tionally, the incorporation of Thompson sampling through
the dropout technique allows the model to explore items
for which it lacks certainty, effectively breaking the self-
feedback loop and enhancing long-term recommendation
performance.

II Sequential Training Schema: We introduce a sequential
training schema that closely aligns with real-world recom-
mendation scenarios. This schema allows for evaluating
debiasing capabilities in recommendation algorithms by
simulating the continuous training process observed in
real-world systems.

III Experimental Evaluation: Extensive experimentation is
conducted on two popular real-world datasets. The results

demonstrate the superior debiasing power of the proposed
EnG framework, surpassing state-of-the-art methods.

II. RELATED WORK

This section summarizes prior research endeavors to tackle
the problem of self-feedback loop bias in recommendation
systems. The existing literature can be broadly classified into
two main categories: methods that primarily aim to achieve
unbiased estimators and techniques that incorporate uncer-
tainty to enhance long-term user satisfaction by improving the
quality of training data for subsequent training iterations.

A. Debiasing Methods

Current research endeavors aiming to obtain unbiased esti-
mators from biased data can be categorized into two main
groups. The first group primarily uses inverse propensity
scores, while the second concentrates on leveraging a limited
quantity of collected unbiased data to learn an unbiased model.

1) Inverse Propensity Score: Propensity scores are crucial
in addressing self-feedback loop bias in recommendation sys-
tems. These scores represent the probability of observing a
particular data point in the dataset and are typically determined
by the recommendation algorithm. Methods that leverage
propensity scores assign weights to each sample based on their
inverse propensity, enabling the estimation of unbiased loss
function of interest even when calculated on biased data [14].
The utilization of propensity scores has demonstrated improve-
ments in the performance of matrix factorization methods [14],
[15]. A recent study used propensity scores to predict users’
preferences from Missing-Not-at-Random (MNAR) implicit
feedback [4].

Furthermore, in seeking unbiased estimation for loss func-
tion of interest, researchers have also explored using propen-
sity scores in conjunction with positive-unlabeled learning
techniques [3].

Inverse-propensity-based estimators, commonly used for
unbiased point estimation, often face the issue of high variance
when there are substantial disparities between the recommen-
dation algorithm and the data collection algorithm. To mitigate
this challenge, several solutions, including self-normalization,
clipped, and doubly robust estimators, have been proposed [4],
[16], [17].

2) Uniformly Collected Data: Uniformly collected data
refers to a dataset where recommendations are made with
equal probabilities for different items. This data type provides
an opportunity to estimate user preferences without the in-
fluence of self-feedback loop bias, resulting in an unbiased
estimator [18]. However, collecting a large amount of uniform
data is impractical due to potential negative impacts on user
satisfaction and business revenue. The epsilon greedy algo-
rithm is a fundamental approach that leverages small amounts
of uniformly collected data. This algorithm incorporates a
random item selection strategy with a probability of epsilon,
while the remaining items are selected greedily based on
their expected rewards. A recent study proposed a multi-
task objective that jointly factors the model trained on biased



data with the model trained on uniformly collected data [19].
Another recent study presents an alternative approach employ-
ing knowledge distillation methods for counterfactual recom-
mendations, specifically classifying them into four categories:
label-based, sample-based, feature-based, and structure-based
distillation [5]. Our proposed approach is closely aligned with
label-based distillation, particularly regarding the loss function
utilized. Influence functions were also used to assign weights
directly to training samples [20].

A recent study proposed a general framework that ad-
dresses different biases using a meta-learning algorithm to
obtain sample weights and provide unbiased estimations of
the loss function of interest [6]. Theoretical guarantees also
support the effectiveness of these debiasing strategies; causal
diagrams have been employed to model biased and unbiased
feedback generation processes in recommendation systems
[21]. A debiasing strategy based on information bottleneck
has been proposed by identifying the confounding bias as
the disparity between the two diagrams. A recent research
investigation has provided upper bounds for the unbiased loss
function of interest, encompassing both a generalization error
and a separability-based bound. Building upon these bounds, a
novel debiasing approach named debiasing approximate upper
bound (DUB) has been introduced [7]. Recent studies also
have demonstrated the potential benefits of integrating inverse
propensity scores alongside uniformly collected data [18],
[22].

B. Uncertainty Aware Methods

Uncertainty-aware methods aim to address the self-feedback
loop bias by approximating the posterior distribution of model
parameters p(θ|D) or estimating its variance since it is a
way to quantify the uncertainty associated with the model’s
predictions. Considering the uncertainty in the model’s pre-
dictions, these methods promote exploratory recommendations
to capture user interests and break the self-feedback loop. As
the model explores diverse recommendations, the uncertainty
decreases (convergence of the posterior distribution) and tends
to exploit its learned knowledge more effectively. The con-
textual multi-arm bandit problem has emerged as a widely
adopted framework for an uncertainty-aware recommendation.
A notable example is the LinUCB algorithm, which leverages
contextual information to make informed recommendations
[23]. In a related study, a factorization-based bandit algorithm
that incorporates low-rank matrix completion by incrementally
constructing a matrix representing user-item preferences has
been proposed [24]. Thompson sampling helps balance the
exploration/exploitation trade-off in recommendation systems
[25]. This approach allows for a more principled exploration
of the recommendation. Yarin Gal and Zoubin Ghahramani
contributed significantly by providing a probabilistic interpre-
tation of dropout in deep learning models. They developed
a theoretical framework casting dropout training in deep
neural networks as approximate Bayesian inference in deep
Gaussian processes [26]. A recent study viewed the recom-
mendation system as a contextual multi-arm bandit problem.

They compared different techniques, including bootstrapping,
dropout, and a hybrid method, for drawing samples from
the posterior distribution in their model [8]. Furthermore, the
authors investigated various exploration mechanisms. They
compared the performance of the epsilon-greedy, Thompson
sampling, and upper confidence bound methods in terms of
their effectiveness as exploration strategies. A study proposed
a comprehensive review of Thompson sampling to balance
the exploration/exploitation trade-off [27]. In addition, some
studies investigate the usage of propensity scores alongside
exploration mechanisms. For instance, learnable propensity
weights are employed to achieve unbiased estimations in the
REINFORCE algorithm [28], [29].

III. EPSILON NON-GREEDY

In this section, we introduce our framework, referred to as
Epsilon Non-Greedy (EnG), which is specifically developed to
accomplish two key objectives: (1) establish an unbiased rec-
ommendation system by effectively utilizing a limited quantity
of uniformly collected data and (2) generate recommendations
that contribute to the creation of high-quality training data
for subsequent training iterations. We make certain assump-
tions regarding the recommendation system. We consider a
scenario where the system recommends only one item at a
time to the user. Additionally, we model the user’s feedback
as a binary random variable, denoted as r, where r = 1
indicates that the user likes the recommended item, while
r = 0 shows otherwise. Furthermore, we assume that the
contextual information vector, represented as c, is sufficiently
comprehensive to encompass all relevant information required
for the recommendation problem. Therefore, estimating the
probability p(r = 1|a, c) to address the recommendation task
effectively is sufficient.

We propose a teacher-student architecture accompanied by a
novel loss function to effectively harness the information in the
uniformly collected data. This component of our framework,
which shares similarities with using random interactions in
the epsilon-greedy algorithm to learn an unbiased model, is
called the ”epsilon” component. Recognizing the significance
of recommended items in the continuous training process,
we incorporate Thompson sampling into the EnG framework.
By utilizing Thompson sampling, the framework recommends
items based on their probability of being the optimal choice.
This deviates from the greedy approach of selecting items
with the highest expected instant reward. This probabilistic
recommendation strategy is called our framework’s ”non-
greedy” component.

To train the EnG framework, we utilize the historical
interactions logged in a dataset denoted as D = {(ri, ai, ci)}i.
This dataset can be divided into two main parts. The first
part, denoted as Dr, consists of a relatively small amount of
data collected using a uniform policy. This data is obtained by
suggesting items to users with equal probability. The second
part, denoted as Db, comprises the logs of interactions between
users and items that were selected by the recommendation
algorithm itself. In the recommendation problem, the user-item



interactions are often sparse, meaning that each user typically
interacts with only a few items. Consequently, numerous user-
item pairs remain unobserved in the dataset, denoted as Du. In
the subsequent sections, we will provide a detailed explanation
of each framework component.

A. Epsilon

We propose a teacher-student architecture to unleash the
unbiased information of Dr. The teacher model is specifically
trained on the uniformly suggested items in Dr to learn
unbiased recommendations. Its role is to distill and transfer
this knowledge to the student model, enabling the student to
make less biased predictions. Fig 1 illustrates the proposed
architecture of the EnG framework, which employs feedfor-
ward neural networks as the backbone for both the teacher
and student models. The training process starts by training
the teacher network solely on Dr. The loss function used for
training the teacher network is defined as follows:

Lt =
1

|Dr|

|Dr|∑
i=1

l(r̂ti , ri) + λtR(θt) (2)

Where r̂ti represents the predicted reward by the teacher
network for the i-th sample. The true reward is denoted as ri.
The loss function l is employed to quantify the discrepancy
between predicted and true rewards. We choose Binary Cross
Entropy (BCE) as it is suitable for binary classification tasks.
R represents the regularization term. The parameters of the
teacher network are represented by θt, and the hyperparameter
λt controls the regularization strength. After the convergence
of the teacher network, the student network is trained with
the guidance of the teacher network using the following loss
function:

Ls =
1

|D|

|D|∑
i=1

l(r̂si , ri) +
γreg

|Du|

|Du|∑
i=1

lreg(r̂
s
i , r̂

t
i) + λsR(θs)

(3)

The first term involves training the student network on all
available data D. However, relying solely on this term could
introduce bias into the model due to the majority of data
being non-uniformly collected. To mitigate this bias, we
introduce the second term, which leverages the knowledge
of the teacher network to establish an unbiased estimator.
The student network is regularized by encouraging it to have
similar predictions to the teacher network on unobserved data
Du. Unobserved data is chosen as it provides a large amount of
data for extensive training and shares similar unbiased charac-
teristics with the uniformly collected data. The third term aims
to regularize the weights of the student network to prevent
overfitting. The γreg is used to control regularization strength
in (3). To ensure that the student’s predictions are close to the
teacher’s predictions, we consider two types of loss functions
(lreg). The first group of loss functions treats the predictions as
logits and measures the discrepancy between these predictions.
Examples of such loss functions include squared error and
absolute error. The second group of loss functions considers

the predictions as parameters of Bernoulli distributions, which
effectively model the probability of obtaining a reward based
on a given action and context. Notable examples of such loss
functions include the Kullback-Leibler (KL) divergence and
Jeffreys divergence, which represents a symmetric variant of
the KL divergence.

Our proposed solution addresses the challenges of training a
high-capacity model with limited uniform data by training the
teacher and student models separately. The teacher model is
initially trained with constrained capacity, θt ∈ Rp, θs ∈ Rq ,
where p << q, to mitigate variance and stabilize its recom-
mendations. This ensures consistent and reliable knowledge
transfer from the teacher to the student, even with limited
uniformly collected data. By adopting this approach, the
student model can benefit from the teacher’s guidance while
maintaining its capacity for accurate recommendations. This
framework effectively enables the student model to learn from
available data while leveraging the insights and expertise of
the teacher model.

B. Non-Greedy

To this point, utilizing the proposed epsilon component of
the framework has enabled us to recommend items with the
highest expected instant reward.

argmax
a∈A

E[r = 1|a, c] (4)

However, this strategy is considered greedy as it continually
selects items that maximize the expected instant reward. To
evaluate the impact of recommendations on continuous train-
ing data, we can rewrite the probability p(r = 1|a, c) using
Bayes’ rule:

p(r = 1|a, c) =
∫

p(r = 1|a, c, θ)p(θ|D)dθ (5)

By accessing this posterior distribution, a non-greedy item
selection strategy emerges. Instead of selecting items solely
based on expected instant reward, we can recommend items
in proportion to the probability of them being optimal. This
can be expressed as:

p(a = a∗|c) =
∫

I[E[r|a, c, θ] = max
a′

E[r|a′, c, θ]]p(θ|D)dθ

(6)
In practice, obtaining the exact posterior distribution p(θ|D)
and calculating the integral is intractable in many real-
world scenarios. However, Thompson sampling provides an
alternative technique. Instead of directly evaluating the inte-
gral, Thompson sampling involves sampling model parameters
from the posterior distribution and selecting the best item
based on these drawn parameters. Thompson sampling allows
for systematic exploration of the recommendation problem.
Thompson sampling breaks the self-feedback loop by choosing
items non-greedily using the drawn parameters. Initially, when
the training begins, the posterior distribution is relatively flat,
indicating uncertainty in the model parameters. Samples drawn
from this distribution explore a wide range of parameter val-
ues, leading to the exploration of various items. As the training



Fig. 1: (Left) The smaller teacher network is trained via (2). (Right) The student network is trained via (3).

progresses, the posterior distribution becomes more peaked,
indicating increased confidence in the learned parameters.
Consequently, samples drawn from the posterior distribution
tend to cluster around the most probable parameter values,
prioritizing the exploitation of the learned knowledge.

To draw samples from the posterior distribution of neural
network parameters, the study conducted by Yarin Gal and
Zoubin Ghahramani offers valuable insights. They demonstrate
that using the dropout technique during the inference stage of
a neural network can be interpreted as obtaining model predic-
tions based on samples drawn from the posterior distribution
of the model parameters [26]. Dropout is a computationally
efficient approach, making it practical to implement within
recommendation systems without significant computational
overhead. Therefore, the student network employs the dropout
technique during the inference process (Fig 1). This allows
for a balanced approach between exploration and exploita-
tion in the recommendations made by the student network.
By incorporating a teacher-student architecture and utilizing
Thompson sampling during the recommendation process, the
proposed framework effectively addresses the recommendation
algorithm’s short-term and long-term objectives.

C. Sequential Training Algorithm

Recent studies and endeavors aiming to disrupt the self-
feedback loop in recommendation systems through uniformly
collected data have predominantly adopted a conventional
training approach. This approach involves partitioning the
available uniform data into three distinct subsets: a small
portion for model training, another portion for validation
and hyperparameter tuning, and a final portion for unbiased
evaluation. However, the conventional training approach fails
to fully capture the continuous training nature of real-world
recommendation systems. Evaluating the model solely based
on this training schema may not accurately reflect its long-
term performance. We propose a sequential training schema
specifically tailored for training recommendation systems to
overcome this limitation and better simulate real-world sce-
narios.

The proposed training algorithm adopts a sequential process
wherein the training data, comprising uniformly collected and
biased logged data, is divided into M batches. In each training
round, the model predicts scores for all items in the batch.

A proportion ρ of items with the highest predicted scores
are selected as chosen recommendations and included in the
model’s training data. This sequential training schema aims
to emulate the behavior of recommendation systems in real-
world settings, where collected interactions often consist of
recommendations suggested by the model itself. By incor-
porating this sequential training schema, the algorithm aims
to effectively integrate the continuous training aspect into the
model learning process.

The complete training algorithm, presented in Algorithm
1, outlines the step-by-step procedure for implementing the
proposed Epsilon non-Greedy framework. In the 7th line of
the algorithm, we incorporate the dropout technique to obtain
predictions. This utilization of dropout introduces additional
diversity in the selected training data, thereby enhancing the
exploration aspect of the dataset generation process for our
recommendation model. When a method solely prioritizes
learning an unbiased algorithm without considering the com-
position of subsequent training data, it tends to predominantly
recommend items for which it already possesses knowledge.
Consequently, the quality and diversity of the model’s training
data diminish, leading to a bias toward recommendations
generated by the method during subsequent training iterations.

IV. EMPIRICAL EVALUATION

This section comprehensively evaluates the performance
of the EnG framework compared to state-of-the-art meth-
ods. Firstly, we demonstrate the effectiveness of our teacher-
student architecture in achieving unbiased recommendations
using limited uniformly collected data through conventional
and sequential training. Secondly, we investigate the potential
enhancement of the proposed method by integrating Thomp-
son sampling into the recommendation process, particularly
in reducing biases over extended durations. Additionally, an
ablation study is conducted to analyze the impact of important
hyperparameters on the performance of EnG. The code can be
accessed via github.com/FeyzabadiSani/Epsilon-nonGreedy/

1) Datasets: This section provides an overview of the
datasets used in our experiments. The statistical characteristics
of these datasets, including the positive sample ratio (PR), are
presented in Table I.

YahooR3 [30]: Comprises user ratings of songs on a scale
ranging from 1 to 5. The dataset consists of interactions

https://github.com/FeyzabadiSani/Epsilon-nonGreedy/


Algorithm 1 Epsilon Non-Greedy

Require: Dr, Db, Du, M , ρ, λteacher, λstudent, γstudent
1: Split Dr into Dr

train, Dr
validation, Dr

test
2: Divide Dr

train, Db into M equal batches (dri , dbi )
3: Initialize θ0student
4: Sb ← {}
5: Sr ← {}
6: for i = 1 to M do
7: scores← fθi−1

student
(dbi )

8: Sort dbi based on scores in descending order
9: winners← top ρ portion of dbi

10: Sb ← Sb ∪ winners
11: Sr ← Sr ∪ dri
12: Initialize θiteacher
13: Initialize θistudent
14: θiteacher ← update on Sr using (2)
15: θistudent ← update on Sr,Sb, Du using (3)
16: end for
17: return θMstudent

between 15,400 users and 1,000 songs. It is divided into two
parts: the first part consists of user ratings collected during
regular interactions with Yahoo music services, which can be
considered as the biased portion of the dataset. The second part
consists of user ratings on randomly selected songs, which can
be considered as the uniform portion of the dataset.

Coat [14]: It includes ratings of 290 users on 300 different
coats, using a scale ranging from 1 to 5. Each user is initially
asked to rate 24 coats based on their personal interests.
Additionally, a further 16 coats are randomly selected for the
user to rate, constituting the dataset’s uniform data portion.

The datasets are binarized based on user ratings, represent-
ing the sparsity of user feedback. Ratings of 5 indicate liked
items, while ratings below 5 indicate disliked items.

2) Evaluation Metrics: In line with recent studies, we adopt
two commonly used evaluation metrics: Area Under the ROC
Curve (AUC) and Binary Cross-Entropy (BCE) loss [5]–[7].
The AUC metric assesses the discriminative power of an algo-
rithm in distinguishing between positive and negative classes.
It can be interpreted as the probability that the algorithm
predicts a random positive sample with a higher score than
a random negative sample. A higher AUC value indicates
better performance in ranking positive samples higher than
negative samples. On the other hand, the BCE loss considers
the model’s confidence in its predictions. It penalizes the
model heavily when it assigns a wrong label to a sample with
high confidence. The model is encouraged to make confident
and accurate predictions by minimizing the BCE loss.

3) Baselines: Recent studies predominantly rely on matrix
factorization, while our framework leverages neural networks
due to their enhanced representational capacity, which has
made them the primary architecture in state-of-the-art recom-
mendation algorithms [11]–[13]. To ensure a fair comparison,
we consider existing studies that can be adapted as loss

TABLE I: Statistics of Datasets

Dataset |Dr| |Db| |Dr|
|Db| PR(Dr, Db)

Coat 4640 6594 0.70 (0.05, 0.09)
YahooR3 54000 311704 0.17 (0.03, 0.24)

functions similar to our proposed EnG loss. These include
the Bridge and Refine strategies [5], Autodebias approach [6],
and the DUB method [7]. Two baseline models, ”Uniform”
and ”Union,” are also included for performance comparison.
The ”Uniform” model is exclusively trained on uniformly
collected data Dr, while the ”Union” model is trained on the
entire dataset D, including both uniformly collected and biased
logged data.

Hyperparameters were selected based on the achieved AUC
scores on the validation set. The range for the regularization
weights, including γreg, was set as [1e-4, 1e-3, 1e-2, 1e-1,
1]. The batch size of the data loader was varied among the
values [16, 32, 64, 128, 256]. The hyperparameter αrefine was
explored within the range [1e-4, 1e-3, 1e-2, 1e-1, 0.1, 0.2, ...,
0.9]. For the YahooR3 dataset, embedding dimensions of [10,
20, 50, 100, 200] were used for user and item IDs. Network
architectures with both 2-layer and 3-layer configurations
were examined, with neuron counts per layer ranging from
[32, 64, 128, 256, 512], ensuring that the teacher network
had significantly fewer parameters than the student network.
Results on the Coat dataset were averaged over 10 runs, while
results on the YahooR3 dataset were averaged over 5 runs.
Convergence was ensured using an early stopping method
based on the BCE score on the validation set. The code will
be made available upon acceptance of the paper.

4) Performance Investigation using conventional training
schema: In this section, similar to prior studies, we employ
conventional training schema to evaluate the efficacy of the
EnG framework in utilizing limited uniformly collected data.
The uniform portion of the dataset was divided into three
disjoint sets: training, validation, and testing. The validation
and test sets were chosen explicitly from the uniformly col-
lected data to ensure an unbiased evaluation process. For
both datasets, 20 percent of the uniformly collected data was
allocated for training, while the remaining uniform data were
evenly distributed between the validation and test sets. The
experimental results are presented in Table II.

Upon analyzing the results, several noteworthy observations
emerge. First, strategies that utilize uniformly collected data
effectively yield higher AUC scores than the Union strategy,
which combines all available data. Although all strategies suc-
cessfully use this information, the proposed EnG framework
exhibits significantly higher AUC scores than other state-of-
the-art methods. This indicates its superior effectiveness in
leveraging the information from uniformly collected data. It
is worth noting that the YahooR3 dataset, being sparser and
more challenging, presents more considerable disparities in
the positive ratio feedback distribution (PR) between uniform



TABLE II: Performance Comparison - Conventional Training

Method Coat YahooR3
AUC BCE AUC BCE

EnG-MAE 0.829 0.174 0.775 0.132
EnG-MSE 0.829 0.171 0.775 0.192
EnG-KL 0.835 0.164 0.780 0.228
EnG-Jeffrey 0.837 0.160 0.787 0.209

Bridge 0.801 0.183 0.668 0.224
Refine 0.774 0.209 0.765 0.325
Autodebias 0.779 0.242 0.748 0.103
DUB 0.796 0.194 0.727 0.112

Union 0.749 0.204 0.631 0.279
Uniform 0.676 0.186 0.614 0.112

and biased data when compared to the Coat dataset (refer to
Table I). This more significant divergence poses a heightened
challenge in effectively utilizing the uniformly collected data
within the YahooR3 dataset. Consequently, the AUC scores
achieved for the Coat dataset consistently surpass those ob-
tained for the YahooR3 dataset. Furthermore, when examining
specific strategies, it is observed that the AUC scores of the
Bridge and DUB methods on the YahooR3 dataset are notably
lower than their respective AUC scores on the Coat dataset.
The Bridge strategy, where teacher and student networks
are trained simultaneously, encounters difficulty achieving
stability during training. This, combined with the challenge
of extracting knowledge from the uniformly collected data
in the YahooR3 dataset, explains the performance drop of
the Bridge strategy. In the case of the DUB loss function,
the term that aims to make the student mimic the teacher’s
prediction error on uniform data becomes less effective due
to the more significant discrepancy between the feedback
distributions of uniform and biased data in the YahooR3
dataset. Lastly, the BCE score is directly influenced by the
similarity between the training and test distributions, as it
measures the discrepancy between predicted and ground truth
distributions. Consequently, the Autodebias approach achieves
a lower BCE score as it directly optimizes its parameters using
uniformly collected data without employing a teacher-student
architecture. However, since the difference in the positive
ratio distribution between uniform and biased data is much
more significant in the YahooR3 dataset compared to Coat,
incorporating biased data can help reduce the BCE score on
the Coat dataset. As a result, the proposed EnG framework
achieves a lower BCE score on the Coat dataset.

5) Performance Investigation using sequential training
schema: In this section, we adopt a sequential training schema
described in Section III-C. The training data is divided into
20 batches, and we carefully adjust the selection ratio (ρ) and
the proportion of uniformly collected data used in training to
ensure that the ratio of unbiased data to biased data in each
batch remains low (approximately 5 percent).

The experimental results are presented in Table III. We
observe a decrease in AUC scores and an increase in BCE
scores compared to the results of previous experiments. This

TABLE III: Performance Comparison - Sequential Training

Method Coat YahooR3
AUC BCE AUC BCE

EnG-MAE 0.790 0.220 0.739 0.132
EnG-MSE 0.787 0.219 0.758 0.202
EnG-KL 0.797 0.191 0.760 0.255
EnG-Jeffrey 0.795 0.216 0.769 0.231

Bridge 0.737 0.280 0.653 0.226
Refine 0.708 0.296 0.731 0.359
Autodebias 0.740 0.323 0.691 0.333
DUB 0.644 0.207 0.646 0.128

Union 0.687 0.209 0.612 0.289
Uniform 0.594 0.281 0.547 0.114

can be attributed to two main reasons. First, the reduced
amount of uniformly collected data poses challenges for the
methods to extract unbiased information, leading to a decline
in performance. Second, adopting a sequential training schema
intensifies the self-feedback loop effect, where the model’s
recommendations are increasingly influenced by its previous
predictions, potentially introducing bias in subsequent training
iterations. Consistent with the previous results, except for the
DUB strategy on the Coat dataset, the EnG framework and
state-of-the-art methods achieve higher AUC scores than the
Union strategy. However, the EnG framework demonstrates
further improvements in AUC scores, indicating its capability
to effectively utilize smaller amounts of uniformly collected
data, even in a sequential training schema. This highlights
the effectiveness of the EnG methods in leveraging limited
amounts of unbiased data for improved recommendation per-
formance. The observed decrease in AUC score for the DUB
strategy on the Coat dataset, resulting in inferior performance
compared to the Union strategy, can be attributed to the spe-
cific characteristics of the DUB approach. The DUB strategy
incorporates a loss term that encourages the student network
to emulate the prediction errors of the teacher network on
uniformly collected data. However, in this scenario where the
teacher network’s reliability is diminished, this loss term may
introduce misleading guidance to the DUB model, thereby
hindering its overall performance. Lastly, the intensified bias is
evident through higher BCE scores for all methods, including
Autodebias, on the YahooR3 dataset. The Uniform strategy
attains the lowest BCE score, benefiting the most from the
similarity between the training and test data distributions.
However, relatively smaller BCE scores are observed for the
EnG methods on the Coat dataset. The reasons for this can be
attributed to similar explanations as before.

6) Impact of Introducing Thompson Sampling: In this sec-
tion, we aim to investigate the potential performance enhance-
ment of our proposed model through the incorporation of
Thompson sampling (TS) and the introduction of exploratory
behavior in the recommendation process. We analyze two
settings, differing only in applying Thompson sampling while
selecting the model’s training data. The findings of this anal-
ysis are summarized in TableIV. Initially, we observe that the



TABLE IV: Impact of Thompson Sampling

Method Coat YahooR3
AUC BCE AUC BCE

EnG-MAE 0.726 0.266 0.665 0.175
EnG-MAE(TS) 0.777 0.192 0.728 0.105

EnG-MSE 0.740 0.260 0.734 0.198
EnG-MSE(TS) 0.779 0.180 0.741 0.116

EnG-KL 0.740 0.268 0.763 0.216
EnG-KL(TS) 0.783 0.110 0.768 0.110

EnG-Jeffrey 0.715 0.263 0.672 0.201
EnG-Jeffrey(TS) 0.773 0.190 0.773 0.111

utilization of Thompson sampling improves both the AUC and
BCE scores of the EnG methods. It is important to note that
the architectural design and hyperparameters remain consistent
across both methods. Thus, the observed improvement can
be directly attributed to the enhanced quality of the training
data resulting from the application of Thompson sampling.
Furthermore, our analysis reveals that the improvements in
terms of the BCE score are more pronounced compared to the
enhancements in the AUC score. This could be attributed to
utilizing dropout techniques during inference in the Thompson
Sampling models. This leads to recommending items with
lower scores if dropout techniques were not employed. This,
in turn, increases the inclusion of uncertain items in the
model’s training data for the subsequent training iteration.
Incorporating these uncertain items contributes to enhancing
both coverage and diversity within the training data. Given
that the BCE score is sensitive to the dissimilarity between the
training and test data distributions, including these uncertain
items helps mitigate this discrepancy, thereby reducing the
BCE score. Lastly, the improvement in AUC for the MAE and
Jeffreys regularization loss functions is more substantial com-
pared to the MSE and KL regularization loss functions. This
observation can be attributed to the nature of the loss functions
themselves. The MAE loss imposes stricter constraints than
MSE loss on the output range of the teacher and student
networks, as it operates within the range of 0 to 1. Similarly,
the Jeffreys loss, a symmetric KL variant, is also a more
restrictive loss function. Consequently, adding exploration has
a more significant potential to enhance the performance of
models trained with MAE and Jeffreys regularization loss
functions.

7) Impact of Regularization Losses: The findings presented
in Table II, Table III, and Table IV demonstrate that the KL
and Jeffreys loss functions exhibit a slight advantage over the
MAE and MSE loss functions. This performance discrepancy
can be attributed to the inherent properties of the KL and
Jeffreys distances, which incorporate a logarithmic penalty
to measure the discrepancy between the teacher and student
network predictions. As a result, these loss functions impose a
more substantial penalty on the divergence between the output
probability distributions of the two networks. Consequently,
they facilitate a more effective transfer of knowledge from

Fig. 2: Varying different sequential training parameters.

the teacher to the student network, ultimately enhancing the
performance of the student model.

8) Ablation Study: In this section, we investigate the impact
of various learning parameters on the performance of our
proposed EnG framework. Specifically, we analyze the effects
of different factors, namely the amount of uniformly collected
data used in training (|Dr

train|/|Dr|), the selection ratio (ρ) for
choosing top predictions from each training batch, and the
dropout ratio that determines the level of exploration during
prediction.

The influence of using different amounts of uniformly col-
lected data and varying selection ratios (ρ) is presented in Fig
2. To solely consider EnG’s capability to extract information
from uniformly collected data, we restrict the amount of biased
data by setting ρ = 0.25 for the Coat dataset and ρ = 0.1
for the YahooR3 dataset. Our observations reveal that the
AUC scores generally increase as more uniformly collected
data is available in the training dataset. Furthermore, the EnG
methods exhibit promising performance in utilizing uniformly
collected data compared to state-of-the-art competitive meth-
ods. Notably, the Refine strategy demonstrates limited effec-
tiveness in leveraging uniformly collected data, potentially due
to the manner in which uniform data is incorporated. In Refine
strategy, the teacher network imputes labels on biased data,
but given the small amount of uniformly collected data, these
imputed labels could not effectively transfer the knowledge
from the uniform data.

In order to exclusively examine the impact of selecting
varying amounts of biased data in each training batch, we
limit the quantity of uniform training data to 1 percent of
the total available uniform data within the datasets. The
results demonstrate that all methods exhibit an increasing
trend in AUC scores with a larger quantity of biased data
selected in each training batch (Fig 2 right). Notably, the
EnG methods show further improvements with an increased



amount of biased data. However, a significant performance
gap is observed between the EnG methods and other state-of-
the-art approaches on the Coat dataset. This can be attributed
to two reasons: first, the EnG framework effectively utilizes
small quantities of uniformly collected data, as observed
in previous experiments, and second, the relatively smaller
disparity in positive ratios between the uniform and biased
data in the Coat dataset, as compared to the YahooR3 dataset,
provides an explanation for the effectiveness of EnG methods
in utilizing a larger quantity of biased data in conjunction
with limited unbiased data. Notably, this increasing trend is
not observed in the Bridge and DUB methods. In the Bridge
strategy, where the teacher and student networks are trained
simultaneously, the interleaving training procedure becomes
detrimental when only a small portion of uniform data is used.
Similarly, enforcing the student network to mimic the teacher’s
prediction error in the DUB strategy can lead to adverse effects
when the teacher network is relatively weak.

The increase in dropout rate introduces additional random-
ness in the outputs of neural networks, leading to increased
exploration and stronger regularization during training. How-
ever, excessively high dropout rates can have detrimental
effects on model performance due to excessive exploration
and regularization, hindering the model’s ability to exploit
learned knowledge effectively. Therefore, it is crucial to strike
a balance when incorporating randomness into the model. In
Fig 3, we analyze the impact of varying dropout rates on the
performance of EnG methods. The AUC scores demonstrate
an upward trend as the dropout rate increases, indicating
that a moderate increase in the dropout rate can benefit the
methods by encouraging exploration and appropriate regular-
ization. However, there is a trade-off between exploration and
exploitation, as some methods initially benefit from increasing
dropout rates but experience a decline in performance when
the dropout rate becomes excessively high. Similar trends
are observed in the BCE scores. For example, on the Coat
dataset, the BCE scores initially decrease with an increasing
dropout rate but eventually rise due to excessive exploration
and regularization. Conversely, on the YahooR3 dataset, lower
dropout rates yield better performance in BCE scores, with an
increase in the dropout rate leading to higher BCE scores.

V. CONCLUSION AND FUTURE WORKS

In conclusion, recommendation systems commonly suffer
from bias induced by the self-feedback loop, which arises
from continuous training of the algorithm on its previous
recommendations. To address this issue, we propose a teacher-
student architecture that effectively leverages a small quantity
of uniformly collected data to learn an unbiased model.
By incorporating Thompson sampling, we ensure that the
architecture learns an unbiased recommendation system and
generates recommendations that contribute to improved train-
ing data for subsequent training iterations. This integration
allows the model to exhibit exploratory behavior towards items
it is unaware of, resulting in less biased training data for
future training iterations. To evaluate the effectiveness of our

Fig. 3: Impact of varying dropout rate on EnG framework.

architecture, we introduce a sequential training schema that
emulates the continuous training process observed in real-
world recommendation systems.

Distribution shift poses a significant challenge in recom-
mendation systems, as the distributions of user interests,
item preferences, and contextual information undergo dynamic
changes over time. When combined with the continuous train-
ing nature of recommendation systems, this distribution shift
can exacerbate the self-feedback bias. Despite the importance
of this dynamic nature in recommendation problems, current
studies and datasets do not adequately capture it. Hence,
investigating the relationship between distribution shift and the
self-feedback loop represents a promising avenue for future
research.
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